MULTICS TECHNICAL BULLETIN MTIB-434

To: MTB Distribution
From: Melanie Weaver and Steve Webber
Date: January 23, 1980

Subject: New Call/Push/Return Strategy

INIBOQDUCTIIQY

This MTR proposes a new call/push/return (CPR) strategy for the
standard Multics environment, The proposed - changes are very
large and have many implications. Yet, from recent data, it
appears that t he changes are warranted. With the current

mechanism the cost can be so high the programmers do very
unstructured things to avoid the cost. Those programmers who
cling desparately to their ideals of well structured software are
discouraged by the nontrivial cost in program execution time to
use these techniqgues.

The proposed changes are also needed as we go to highly pipelined
hardware. We would like to reorganize the instruction sequences
to minimize turbulence in the pipe.

The end result of the projects, including extensive performance
analysis after the implementation is complete, Wwill give valuable
input to design of firmware oriented instructions on any new
hardware developed.

EVIDENCE

There are three separate experiments that indicate that a very
large amount of CPU time is spent in the CPR overhead. These
expariments are (1) a special version of the system (bootloaded
on the CISL deve lopment machine) that counted the number of calls
(MT3-410) , (2) a special version of pli1_operators_ wusec to
measure argument list preparation overhead, and (2 data
collected with the use of the sim_6180 user ring simulator.

MTB~-43T concludes that the overhead of the (PR mechanism in
Multics (not including argument list preparation) 1is about 20¥%.
This number is reinforced with data collected from the simulator.,
The simulator data is summarizasd in Table 1, The simulator data

also reinforced the findings of the special version of
pll_operators_ that lookaed irtc argument (ist preparation cost.,

Multics Project internal working documentaticn. Not to be
reprcoduced or distrituted cutside the Myultics Project.

MTB-434 , MULTICS TECHNICAL BULLETIN

Table 1
Call/Push/Return Qverhead

Script Total Instructions Instructions
Instructions in CPR Preparing
Arg List
pl1 compile 933447 188417 (20%) 12047 (1.3%)
pll compile with -ot 1146476 287484 (25%) 16947 (1.5%)
command script 377342 56388 (15%) 6364 (1.7

The simulator data does not include ring O runs which are quite
different in one respect. A large part of the time spent in ring
0 is spent in the assembly language programs constituting page
control., interrupt intercepting (i1), fault intercepting (fim,
signalter, etc.), and the traffic controller {pxss). These
routines do not labor under the weight of the fully general (PR
overhead--indeed much of the reason for placing this code in
assembly language was to avoid the (PR overhead. Ignoring these
assembly lanquage programs, the rest of ring 0 should behave a
great deal like ring 4 orograms since it is written in PL/I.
Hence, if we can expect to aet an N¥% increase in performance with
another CPR strategy., we should expect this same gain in segment
control, directory control, and tty interrupt handling.

We can then predict what this improvement might mean to system

performance. The proposed PL/I CPR sequence for an external
entry (see attached code) uses 27 instructions as compared to the
current 44 dinstructions. This saves abeout 39% of the CPR
overhead for a total non ring O saving of about 8%, It is

estimated that about 50% of the system's time is spent in ring 0O
with about 40% of that in alm, so the total system performance
gain should be about 6%, Furthermore, there are additional
changes that can be made to the binder to optimize intrassgment
calls. These changes are discussed later in this ™78,

A further optimization could be accomplished with a new arqument
list strategy that uses ITP pointers. However, the gain in this
case does not seem wcrth the effort.

If the current CPR strategy is so0o expensive and more efficient
alternatives are availatle, then why are we still using the
currant costly stheme? The answer is simply that the
imolementation and intagration costs were thought to be too high
to wWarrant the '"expectec'" gains. Well, the expected gains, due
to the recant set of experiments, are higher than previcusly
thaught-=-hence this MT3, However, many of the expensive feagrtures
were put there for valid rsasons. A few cf the more 1important
are:

Page 2

MULTICS TECHNICAL BULLETIN MTB=-434

1.

Ihe use of ano gperator sgament to imelement the alaorithms
This is costly not only because it means more instructions
getting into and returning from the operators but also because
much information must be passed to the operators {(in
registers) so that operators alone <can know where to load and
store the values.

This strategy, however costly it iss, should not be abandoned.
We could not be centemplating the changes proposed in this MTB
if we had not isolated the protocols into a few replaceable

modules. Had we firmware to play with we might think of
placing this kind of togic 1in firmware, tut we would probably
not consider very much, if any, 1in hardware, Similarly, we
should not place any 1in the object modules of the system
(except, of course, the system support facilities that are as
easily replaced as the operators). Some of the binder

optimizations discussed below do put all the CPR logic in the
object segment, but users of these will be aware that they may
have to rebind if the (PR protocol changes, and these bound
segments will be easy to find.

Saving and restoring indigators

There is some confusion in the Multics community as to the
exact degree to which indicators are saved and restorecd across
a call. On the 645 the stcd and rctd instructions stored and
restored the indicators. These 1instructions were used to
effect part of the CPR algorithms. On the 6180 hardware this
feature was not provided (due to cur error in specifying the
instructions). On the LS, saving and restoring the
indicators was effectively free. On the 6180 we have to
simulate the effect and the cost is sometimes challenged.

The policy on saving ancg restoring registers and indicators

across a call is as follows:

1. ALl registers needed by a calling prooram must be saved and
restored by the calling proqram.; except

2. Pointer registers 0 (operator pointer) and 6 (stack frame
pointer) as well as the indicators are restored from saved
values upon return,

This means that if a program wants the indicators (or its
operator pointer) restored to some value, the value must be
set uD in the standard stack frame location prigr Lo the
call. ©2L/T and FORTRAN set up these values wWwhen a stack
frame is created so that the overhead neasd not be done on
each call. (Note that although these values are restored
returning to an ALM procarame. FRO does not carry the
semantics of an operator pocinter and PRO can therefore be
use2 In such a way that it is restored automatically by the
callee, 1% it has teen saved appropriately.)

MTB-434 MULTICS TECHNICAL BULLETIN

Hencer, indicators are reloaded upon return to a program but
unless they were saved just prior to the call, they are not
preserved across the call, '

The overhead of dealing with indicators at all is due to the
desire to guarantee that a program can expect a fault if an
overflow or underflow condition is detected by the hardware.
Were the indicators not restored., a called program could mask
overflows and underflows for the caller and change the
behavior of the program 13t returns to. {(This could, of
course, be effected by changing the saved value of the caller
so that when returned to it had the new indicator values,)

Basically the only purpose that restoring indicators serves.,
then, is to protect the ability to detect overflow and
underflow faults. This could be changed so that any programs
that wanted this protecticn could set the indicators each time

returned to. To do this would require compiler changes and
might well be too large a project. An alternative is to have
the hardware do much of the work, The rtcd and stcd
instructions, if they worked as on the 645, would solve some
of the problem. We would also have to initialize the

indicators during the entry sequence (or about that time)d.
One possibility is to have the callsp dinstruction set the
overflow mask, overflow/underflow indicators, and, if we can
get the feature., the underflow mask to 0O, the most use ful
initial state. It is alsoc possible that the stcd instruction
could set these indicators (after storing all the indicators)
but this 1s less promising as many potential (PR algorithms
cannot use the stcd instruction (it would mean embedding
knowledge of stack offsets in object programs).

The <c¢ost of indicator management as a part of the CPR
mechanism 1§ about 1% of the system, The proposal 1is to get
improvements in future hardware, but to live with
overhead-in-softwars until then.

Doubly-threadsd stack frarpes

ALl stack frames currently have toth the backward and forward
threads. The main reason is to ease debugging. It is ¢clear
that a hackward pointer 1is required, but the forward (next)
stack frame pointer is not needed, as indicated by the
contained propesaltl.

The "Stazck-Eps-Poioter” Concect

Fach stacx has in its header a pointer tc the next 3vailable
space in the aglven stack. This pointer is updated on each
call and againmn on =23ch return, It is neecded when:

- a new stack frame is c¢created by a callec program;

- a call to an inner ring stack is made, and

- the signaller "caps' a stack and creates 3n environment Iin

MULTICS TECHNICAL BULLETIN MTB-434

which signal_ can be invoked.
The first use is easily satisfied with alternate technigues.

The inner-ring <call of today is an elegant method set wup in
such a way that a program called in an inner ring need not
know that it was called from an outer ring or that it is the
first program to establish a frame on the inner ring stacks
i.€.0 the "push” algorithm works identically for intra-ring
and inter-ring calls.

The work of capping a stack is done by a privileged ring O
routine that today uses the stack end pointer in the stack

being signalled on., This is convenient although potentially
error-prone.

5. Qbsolete Code
There is some code executed as part of the CPR facility in
maintenance of obsolete features (e.g. version 1 PL/ID.

. Missed Qiimizeligns
As a final note, there were several optimizations that were
either missed or postponed due to the development effort
necessary to take advantage of them,

The proposed new CPR strategy makes the following changes to the
conventions and impleméntation (each followed by a brief
description of the implications):

1. No more support for Version 1 FL/I.

This is not a serigcus problem since the cempiler itself was
never released to the field. It did exist at MIT bur MIT s
wilting to {and encourages us to) detete support for it. The
only system coce still in vipl1 is now obsolete and no longer
used (it should be deleted when we get the time)d,

2. Single-threaded stack frames,

This will cause a oroblem to all code, both system and user,
that currently decodes stack frames for tracing-like purposes.
The system code 1is isclated in the debucagers, trace_stack, the
signal ling mechanism, and various other tcols.

2. No more stack end pointer,

This will reqguire changes to the2 signallina mechanism (for
capping the stack) and to all gates. Gates will no longer be
atl= to use the “normal"” push secguence since it will be
streamlined for the much more frequent intra-ring calls.

sl
Y]
o]
W
wn

“TB8=434 MULTICS TECHNICAL SULLETIN

Rather, gates will be required to lay down the first stack
frame using the "stack=-begin-pointer’” in the header of the
inner ring stack. This is not a difficult problem to solve
since gates must be in ALM today anyway if they want to take
advantage of the call limiter hardware.

The advantages gained by not using the stack-end-pointer
discipline are efficiency, simplicity, and less 1/0 on page
zeroes of stacks (they usually don't get modified excepot for
updating the stack-end-pointer).

4, Changes to the format of the call seguence, entry sequence and
stack frame.

The basic premise 1s to allow the compiler to provide as much
information as possible at compile time and at the same time
minimize the push overhead.

All of the above changes will require extensive <changes to the
various cperator seaments (PL/1, COBOL., etc.) and to a lesser
extent, the runtime support facilities.

The changes propcsed for PL/I in the basic inter-segment case are
listed below:

- Fill in the argument list header in the object code 1n a
rore efficient way instead of in the call operator.

- Get a pointer to the arqument list in the object code
instead of just the offset in index register 1.

- Get a pointer to the return lLocation while in the object
code and store it during the call operator. This replaces
transferring to the call operatcr via a tsx0 and then just
filling in the return offset, The return pointer 1is no
longer initialized Cduring the entry sequence,

- Make the compiler-generated offsets of the call and return
operators point to the actual cperators instead of tc the

transfer vector. This means that the operators' locations
ara frozen but 1t also avoids transfars out of the transfer
vector,

- Do not set PR4 to the linkage pcinter in the call c¢cperater
{this Wwas for version 1 PL/1).

- 1 k2 object code entry secuence. toad 3 dou2le word
containing the stack frame size, oricginal stack frame size
{need both fis2lds/ cne must ncet e changed cduring stack

MULTICS TECHNICAL BULLETIN MTB-434

extensions), entry offset, and translator ID instead of just
loading the stack frame size.

- Transfer to the entry operator wvia a pointer in the stack
header {as ALM currently does)., thus avoiding toading a
pointer to the operator transfer vector and transferring out
of the transfer vector.

- In the entry operator, store the double word containing the
frame size, entry offset, etc. This replaces getting a
pointer to the entrypoint, storing it., setting the forward
frame pointer, and setting the stack end pointer. Alse do
not store a copy of the forward pointer at spl4d for use when
making temporary frame extensions,

- Fill in a new variable, stack_frame,operator_return_ptr with
a pointer to the base of the object segment. This replaces
the text base pointer and the operator return offset, Alt
languages must initialize this variable since it will be the
standard location of the stack frame owner's segment number.

- In the return operator, do not reset the stack—-end pointer
or reset PR7 to point to the stack header.

IBE_BINQREER

One of the improvements considered in the past but never worked
on due to nanpower demands is a binder that performs a set of

optimizations., These optimizations ranae from doing inline
(nonoperator) calls to sharing stack frames. Some of these
hinder enhancements are relatively easy to do. These will be

considered in this MT8, Another reason for considering them now
is that they require minor ccmpiler changes to the call and entry
sequences, and that ares of the compiler 1is already affected by
the rest of the proposal.
There are three progressively more efficient CPP protocols that
can be used between components of bound segments. They are:

1) optimization with operator support.,

2) optimization without operator support, and

1) optimization to make components act Like cquick internal

procedures.

It is possitle that a single bound segment might contain all
three oprotocols., cdepending on the attributes of the comoonent
entriss, The ocptimizations will cause the hinder to be
xnowledgeahle about specific language implementations, It is
proposead that these optimizations initially aecply only to PL/I
ard FCORTRAN components.

g ry is retained

ccol is usad when the called 2n:
rnally) or when 1t is cesired to keep the (PR

MTB-434 MULTICS TECHNICAL BULLETIN

mechanism in the operators. The second protocol is used when the
called entry 1is not retained but does regquire its own stack
frame. The third protocol is used when the <called component is
neither retained nor recursive, SO that it can share the stack
frames of all of its callers. Protccols 2 and 3 imbed the (PR
mechanism into the object segment., so any bound segment using
them would have to be rebound if the (PR mechanism changes again.
This is much easier than recompilaticn, however. A new flag in
the object map indicating this degree of cptimization will toth
facilitate locating these segments and enable the linker to
detect them so it can log access to them or refuse to tink to
them (or neither) as the user reguests.

Protocols 2 and 3 should not be enabled by default because they
embed potentially incompatible code in object segments. Instead
they will bhe controlled explicitly. The decision about whether
to use protocols 2 and 3 willt be determined by the bindfile or a
centrol argument (independently). To enable the binder to
perform t he transformation, code must be be extended’, the
compiler must provide space for this at certain places in the
obtject segment, This feature will be <controlled by a3 new
compiler option.

Prototype code sequences for protocols 1 and 2 are included in
this MT3, 3asically, the differences between protocol 1 (binder
optimizations with operator suppport) and the proposed standard
(PR protocol are:)

- Bypass the call operator and the transfers tc and from the
entry sequence in the object code. Instead, pick up in the
calling sequence the double word containing the frame size
and set the return polinter in the entry operator, For this
the compiler must generate a pad word in the new call
sequence,

- Use the transfer vector when transferring to the call/entry
cperator so that these entries can be traced,.

- Do not set PRC to point to the argument list and then reset
it to the operator table, The new entry_from_bound_seg
cperator wuses a different pointer register convention for
argument lists,

- Do not load the indicators in the sntry operator, Since the
caller is irn PL/I or FORTRA:, the indicators are guaranteed
to b2 Jnmasked before the call,

~ Do not obtain 3 new Llinkage pointer (FRL) value since the

current value will be recuired to hbe valicd, (1t 1s usecd to
3et a pointer to the routine to call.)

Fage R

MULTICS TECANICAL BULLETIN ' MTB-434

- If no entry in the called ccmponent is retained, a new
return operator that does not load the indicators can be
used.

CPR protocol 2 (binder optimizations without operator support)
differs from oprotocal 1 grimarily in that the (PP code 1is
embedded 1n the object segment at the entry and return points.
This eliminates several instructions transferring to and from the
operators.

CPR protocol 3 {(optimization to make components act like quick
internal procedures) eliminates the overhead of pushing and
popping stack frames, Although the details have not yet been
worked out, the call/return overhead in this case s reduced to
about 7 i1nstructions. However, there are several restrictions to
the use of this protocol. First, none of the components that are
to use this optimized protocol can be callable from outside the
bound segment., Secand., the combined stack frame size cannot
exceed 14K words. Third. rone of the components that share a
stack frame can be recursive either internally or within the
bound segment (except for the component that does the pushing).
To aid the binder, the compilers must turn on a new object map
flag if a program is not recursive. Al L stack references would
have to be relocated and those in the first 64 words of the frame
special cased., Care must be taken so that large areas of a stack
frame are not wasted. The bindfile syntax will be changed to
allow control of this feature.

ALZ_CHANGES

In ALM, the operations performed by the PL/I entry operator are
split between the entry and push operators. The push operator
may not bhe invoked at all or may te invoked in a "subroutine'
used by seyeral e2ntries, For this reasons, the double word
containing the stack frame size and entry offset will be copied
hy the entry operator., Thus the assembler will have to calculate

3 stack frame size even if there will be no frame.

AL# programs dagend on PR7 always pointing tc the base of the
stack. MNOowWw that the PL/I/FORTRAN return cperator will no longer
reset PR7, the ALM

short_call pseudo=-op must be changed to reset
ograns wusing the short_call pseudo=-0p musSt be
2 the new (PR protocol goes intao effect. The
reacdy restores all the recisters.

reassembl 2

L

it ALL AL® or
e c

call pseudo~ L

Somes ALM programs take advantage of the fact that the first
instruction of the expanded cush rseudoc-op is eax’
stack_frame_size oy picking the frame size out of the

n. These orograms must e changed hefore Deing

instructio
2

reassemolec with the new oDseude~00s. The nregcosal ts te create 2

D
[4¥]
'e)

MTB~434 MULTICS TECHNICAL BULLETIN

new ALM pseudo variable, %stack_frame_size, which is flexible and
will free these programs from dependence on generated code.

The changes proposecd for the ALM operators are described below.

There is not as much improvement as in the PL/I case.

- Use the current frame's size 1instead of the stack end
pointer to determine where the next frame begins,

- In the entry operator, store the double word containing the
stack frame size, entry offset and translator ID where the
new stack frame will be.

- Transfer to the new entry and push operators via the
pti_operators_ pointer in the stack header instead of
throuaqgh a direct pointer 1in the stack header. The ALM
return operator is the same for both old and new codes, so
transfers to it can remain the same,

- In the push ©operator, use index register 7 to hold the old
frame's size.

- Do not set the stack end pointer.,

- Set the operator return pointer,

~

-

—4

E_CHANG

n

Gates can no longer use the standard push and entry operators
because their stack frames are not usually contiguous with their
callers' frames, When entering an inner rirgs, the stack can be
assumed to be emptys, SO the stack tegin pointer in the stack
header can be used to determine the heginning of the gate's
frame, However ,» sometimes 3 gate call deces not cause a ring
change:; for example, dorint, which uses message segments, runnring
in ring 1. ©EBecause of those cases, the gate push cocde must check
whether a ring (stack) change has occurred. If it hass, the stack
begin pointer is wuysed., Otherwise the new frame is lLocated at the
end of the old frame 35 usual.

The extra overhead of cneckirg for ring changes 1s partly offset
by some optimizations available to gates. Gates do entry and
cush at the same time, so since there must be 3 new oOperator
aNnyways it ¢an combine both functions. Residess the standard
entry operator cdoes several things that are Uuseless to gates,

For example, gates i1invoke the entry operatoer in a "subroutine',
making the entry offset the same for all entries in & gate
segment., IfT tspl 1s used instead of tsx2 to transfer to the

setup "subroutine”, PR3 ¢can te used to obtain a3 mcre realistic
entry offset, However 1t still will not be the "rezal” ane in the

Page 10

MULTICS TECHNICAL BULLETIN MTEB-434

gate's transfer wvector. Other changes are mentioned in the more
detailed list below,

Currently., hardcore gates do not use the alm entry operator.
They obtain the linkage pointer from a location in the text
section that is initialized Ly init_hardcore_gates, vrather than
from the LoT. The only justification for this appears to be 3
saving of one instruction. Gates would be simpler 3if this
mechanism were eliminated, I1¥f that <cannot be done in general
{because fast gates would be one instruction longer, etc.), at
least 1t should bte done in the standard hardcore push case. Then

the same push/entry operator can be used for both hardcore and
non-hardcore gates.

The oroposal is to have a new gate push operator which 1is
transferred to via the plil_operators_ transfer vector, 3Sefore
the new (PR protoccl goes into effect, all non-hardcore gates
must be reassembled with new gate macros that wuse the gate_push
operator. Goth a temporary version of the operator angd the
reassembled gates must then be installed, After that, when the
system that changes the CPR protocol is installed, all the gates
will automatically work correctly. An alternative would be to
puUt the gate push ccde in the gate macros themselves. In order
to he compatible across protocols, the macro gate push code would
have to ctheck a flag in the stack header to determine what type
of frame to push. If the macros were not compatible, the
non-hardcore gates would have to be instatled in ring ? using
non-standard procedures just after the system <came up. The
answering s2rvice would not be able to use message segments, etc.
(e.g. dprint anything) until this was done. of the three
methcds, using a new operator seems the most straightforward.,

The list below summarizes the proposed actions related to a 2ate
push.

4

Transfer to the setup "subroutine” via a tspl? instruction,

- Transfer to the gate push operator using the pli_operators_
pointer in the stack header anc the pl1_operators_ transfer

vector,

- In the operator, compare the segment numher gortions of 2R6
and PR7., I[f they are the same, locate the new frame at the
ensd c¢f the current frame as wusual. Otherwise, use the stack
segin ocinter in the stack pointed to by P27 to locate the
new frame.

- Stare orev_sn, arg_ptr and operator_return_pointer.

- Use an slr dinstruction (to avoid changirna recisters) to ccpy
the worcs contalining the stack frame size anrd translatoer D
from the Llocation following the transfer t¢ the oODerator.

MTB=-434) MULTICS TECHNICAL BULLETIN

- Store rel(PR3I)-1 as the entry offset.

- Obtain the linkage pointer from the LOT and store it (in
hardcore gates too).

- Do not obtain and store the static pointer since it is not
needed by gates.

[s1)

]
D

-
N

MULTICS TECHNICAL BULLETIN _ MTB=-4 34

PORULES_TQ_BE_CHANGED

Following 1is a list of most of the system modules that are
affected by changes to the CPR protocol. Rather than presenting
a complete List of atl procedures, it is more wuseful in some
cases t0o state categories.

hardcore

BOS stack dump

parts of system initialization

all gates

parts of page control

scheduler

the signalling mechanism

outward_call_handler_

pl1_operators_ and friends

cu_

hound_error_handlers_

alm programs that use short_call

alm programs that depend on the push pseudo-op to cenerate
eax? stack_frame_size

non-hardgore

all gates

trace_stack

hound_debug_util _

trace

probe

debug

stu_

other language operators
fortran_do_

operator_names_

ol _dump

gate_meters

atl compilers and alm

ifd

alm programs that use short_call
private stack switching programs, etc.

In addition, a significant amount of MPM SWG documentaticn must
be updated,

This section Lists the steps invclved 1in imclementing the
nropcsad changes. They are listed approximately in chrecnolaogical
orcer except that many of the chanrges c¢an 2 coded ahead of taime,

- iastall current
<

ol
- set 21t in sta n

operators_ with rew gate_oush cperaior
2r

k incicating frame format

e
[\
8]
‘D
—
Crd

MTR-434 MULTICS TECHNICAL RULLETIN

- change cate macros to use gate_push (via macro, not pseudo-op)

- reassemble and install all (non-hardcore) gates

- change everything in hardcore that needs changing

- c¢hange trace_stack and bound_debug_util_ compatibly

- dinstall trace_stack and bound_debug_util_

- change and install assembler to reset PR? during short_call

- reassemble and install all alm programs that wuse short_call,
including user orograms

-~ make the rest of the non-hardcore changes incompatibly

- install new system including untested new operators

- install incompatible ncn-hardcore programs immediately
afterword in a special session

- change PL/I, FORTRAN, ALM and {cBCL to generate improved
call/entry sequences

- thange binder to optimize call/push/return ("gquick" external
procedures may be delayed)

- dinstall pli_operators_ with debugged new operators

- install binder

- install improveo ccmpilers (PL/I1, FORTRAN and ALM will now use
the new operators)

RE_SEQUENCES

K>

HEW_LS

This section presents the proposed new code seqguences to be used
in the operators, The instruct ions in the operators are
indicated by a wvertical Lline in the left margin. ALl other
instructions are in the caller's or callee's object segments.
Code 1in parentheses is not considered to be part of the CPR
mechanism, Argument list preparation is not included. The code
seguenca2s have not heen completely optimized for pipelined
hardware, The PL/I versions are prototypes, since there are
several PL/I entry operators.,

0

a8}

[fe}

]
s
o~

MULTICS TECHNICAL BULLETIN MTB-434

ERQRQIED BL/I IMIER SEG

MEML CALL SEQUENCE
(Total = 27)

(ldag arglist_header)
eppbp callee
eppbb arglist
stagqg ol 0
tspab aolcall_op
! spriab splstack_frame.return_ptr
! eopap bbbl 0
| callsp bpl 0
ldagqg * =N
tspbp sbistack_header.new_ent_op.,=*
] tdx0 splstack_frame.size
| sprisp splstack_frame.prev_sp.,0
J 2ppsp spl0.,0
| stagq spistack_frame.size
] epaq Epl 0
! torplo sblstack_header.lot_ptrs*au
! sprilp spllinkage_ptr
| spriap solstack_frame.arg_otr
! Spbpbp splstack_frame,operator_return_ptr
| eppap cperator _table
! spriap splstack_frame,operator_ptr
| Ld3 Cral
! tra bolM

{(random coce)

{end of code)

tra aplreturr_op
| enpso splstack _frame.prev_sp,x
! 2opap splstack_frame,operator_ptr,»
) L4 splstack_frame.return_ptr+1
! rted splstack_frame.return_ptr

Page 5

MTR=-434

MULTICS

CURRENT CALL SEQUENCE
(Total = 44)

(fid arglist_head,du?

eopbp callee

eax] arglist

tsx O aplcall_op

tra call_ext_out

epbpsh splD

ora b3t

stag sbif,

stx0 splstack_frame.return_ptr+1
eppap sbl 0,1

eoplp sollinkage_ptr,*

callsp tpl 0

eax’ stack_size

eppbp sblstack_header.pll_operators_ptr,*
tspbp hpolentry _op

tra ext_entry

epphp tpl-3

epagqg Eplt O

lorplp sbistack_header.lot_ptr,*xau
eppbb sblstack_header.stack_end_ptr,x
SOrisp bblstack _frame.prev_sp

spriap bblstack_frame.arg_ptr

eppab bbbl 0,7

spriab tbistack_frame.next_sp

spriahb sblstack_header.stack_encd_ptr
epprsp Eol D

sprilp spllinkage_ptr

spricp splstack_frame.entry_ptr
sobpbp splstacx_frame.return_ptr
spbphp spltext_tase_ptr

stz splstack_frame.operator_return_offset
eppap operator_table

suoriap spolstack_frame,operator_gtr
spriab splé

L O/Cﬁl

tra EolS

(random ccd=a)

(and of cocd=)

tra aolreturn_cp
tra return_mac
eabpso spifd

(G4

Page

TECHNICAL

QULLETIN

Y

MULTICS TECHNICAL BULLETIN MTB-4634

sprisp
eppsp
eopsh
eppap
41
rtcd

sblistack_header.stack_end_ptr
splstack_frame.prev_sp,x*

spl0

splstack _frame.operator_ptr,*
splstack_frame.return_ptr+1
splstack_frame.return_ptr

(epplp
(ldagq
eppbp
eppbb
stag
ldag
tspab

tra
spriab
ldx(
sprisp
eppsp
stag
sorilp
spribb
spriap
spbpab
tra

MULTICS TECHNICAL

(WITH OPERATORS)
(Total = 192

spllinkage_ptr,x)
arglist_header)
callee

arglist

bbi 0
target_frame_size
aplbound_call

bound_caltl_entry
splstack_frame,return_ptr
splstack_frame.size
splstack_frame.prev_sp.,0
SDIO:O

splstack_frame.size
spllinkage_ptr
splstack_frame.arg_ptr
splstack_frame.operator_ptr
splstack_frame.operator_return_ptr
tplX

(random code)

(end of code)

trs

enpso
rtcd

aplreturn_op_no_ind

splstack _frame.prev_sp,*
splstack_frame.return_ptr

0
[s]
[Tv]
1

—_

(&3}

BULLETIN

MULTICS TECHNICAL BULLETIN MTB~4324

INTRA-SEQMENT [LALL SEQUENCE
(NO OPERATORS)
(Total = 15)

(spplop splilinkage_ptr,x)

(ldagqg arglist_header)

eppbb arglist

stag bhl 0

stcd splstack_frame.return_ptr
tspbp callee

ldag * =N

ldx0 splstack_frame.size

sSprisp splstack_frame.prev_sp

20pPS D spl 0,0

staaq splstack_frame.size

spbpop splstack_frame.operator_return_ptr
sprilp spllinkage_ptr

spriob splstack_frame.arg_ptr
spriap splstack _frame.operator_ptr

(random code)

(end of code)
eppsp splstack_frame.prev_sps,x
rtcd splstack _frame.return_ptr

MTB-434 MULTICS TECHNICAL BULLETIN

COQMPATIBLE INTER-SEGMENT CALL SEQUENCE
(Total = 35)
(fld arglist_head.,du)
eppbp callee
eax1 arglist
tsx0 aplcall_op
| tra call_ext _out
! sobpsb spil
| ora 4,44
| stag sbi0.,1
| stx0 splstack_frame.return_ptr+1
} eppap shi0,1
] callsp hpl O
eax’ stack_frame_size
enpbp sblstack_header.pll_operators_ptr,x
tspbp bplentry _op
] tra ext_entry
| ldx0 splstack_frame,s1ize
| stz splstack_frame.size,(
| stx? splstack_frame.size,O
| sprisp splstack_frame.prev_sp,0
] enpsp spi0.,0
! epagqg bpol=-3
] sx L7 splstack_frame.original_size
} spriap splstack_frame,arg_ptr
! stg splstack_frame.entry_offset
| spbpbp splstack_frame.operator_return_ptr
! lprplop sblstack_treader,.lot_ptr,*xau
| sorilp spllinkage_ptr
f spbobp splstack_frame.return_ptr
| eppap operator _table
} soriap splstack_frame.,operator_gtr
] Ldi C,dl
| tra bnl S
(random code)
(end of cocde)
tra ap_return_op
! tra return_mac
! 8spsSp splporev_spr,*
! eppap splstack _frame.operator_ptr,*
| L3 splstackx_Tframe.return_ptr+i
! rtcd spistack_frame,returr_ptr

MULTICS

TECHNICAL

tdag
eopbp
tspbp

ldx7
staag
epag
lorplb
sprplb
lorplp
tra

tspbp

epag
ldx7?
stq
lprplb
sprplb
lprplp
tra

BULLETIN MTB=-434

ALY ENIRY_SEQUENCES

NEW

* =N
shistack_header.pll_operators_gtr,*
bplalm_entry_op

splstack_frame.size
splstack_frame,size,7

bpl0
sblstack_header,1s0t_ptr,*au
splstack_frame.static_ptr.,7
splstack_header.lot_ptrs,*xau
bpl0

COMPATISLE
sblstack_header.entry_op_ptr.*

bpl -1

splstack_frame,.size
splstack_frame.entry_offset,?
sblstack_header.isot_ptr,*au
splstack_frame.static_ptr.,7

sblsblstack_header.lot_ptr,*xau
bpl 0

MTB-434 MULTICS TECHNICAL RULLETIN

ALM PUSH SEQUENLES
NEW

eppbp sblstack_header.pl1_operators_otr,*

tspbp tplalm_push_op
! ldx7 splstack_frame.size
| sprisp splprev_sp.,7
] eppsp spl Q0,7
| spriap splstack_frame.arg_ptr
| sprilp splstack_frame.lp_ptr
! spbpbp splstack_frame.operator_return_ptr
| tra ot 0

COMPATIBLE

eax? stack_frame_size

tspbp sblstack_header.push_op_ptr,x
i Ldx7?7 solstack _frame.size
| sprisp splstack_frame.prev_sp,7
I eups P sptQ.,7
! ldx7 . bpl-2
! stx7? splstack_frame.size
! sx {7 splstack_frame.original_size
! eax’ 1
! sx L7 splstack_frame.translator_1id
| spriao splstack_frame.arg_ptr
! sprilp splstack_frame,.lp_ptr
[spbpbo splstack_frame.operator_return_ptr
! o tra bpl 0D

MULTICS TECHNICAL BYULLETIN

tra

eopsp
eppap
ldi
rtcd

tra

inhibit
Sprisp
eppsp
inhibit
epbpsb
eppap
ldi

! rtcd

NEW
sblstack_header.return_op_ptr,*

splstack _frame.prev_sp,*
splstack_frame.operator_ptr,*
splstack_frame.return_ptr+1
splstack_frame.return_ptr

CURRENT
sblstack_header.return_op_ptr,*

on

sblstack _header.stack_end_ptr
splstack_frame.prev_sps,*

off

spl0
splstack_frame.operator_ptr,x
splstack_frame.return_ptr+1
splstack _frame,return_ptr

s

23

w
«QQ
[§4]

MTB-434

MTR=-434

tspbp

eppbp
epplp
spribp
epaq
lprplb
sorplb
lorplp
tra

eax’
tspbp

spribp
eppbp
sorisp
spriap
sorilp
eppsp
eopbp
spribp
spribp
eax7?
stx7
tra

MULTICS TECHNICAL

CURRENI ALY ENIRY/PUSH SEQUENCLES

ENTRY

sblstack_header.entry_op_ptr

bpl -1
sblstack_header.stack_end_ptr,x
loilstack _frame.entry_ptr

bpl O

sbistack _header.isot_ptr,*au
lplstack_frame.static_ptr
sblstack _header.lot_ptr,*xau
bpl1

PUSH

stack_frame_size
sblstack_header.push_op_ptr

sblstack_header.stack_end_ptr,«
sblstack_header.stack_end_ptr,x
bplstack_frame.prev_sp
bplstack_frame.arg_ptr
bplstack_frame.lp_ptr

Epl0

spl 0,7
sblstack_header.stack_end_ptr
splstack_frame.next_sp

1

splstack_frame.translator_id
splO,»*

BULLETIN

MULTICS TECHNICAL BULLETIN

!
!
!
!
!
I
J
!
!
f
[
!
I
!
!
!
|
I
|
!
|
!
!

epphp
tspbp

tra
epagq
era
ana
tze
enplb
tra
same_ring:
ldx7?
epplb
gate_push_joint
SDrisp
mlr
desc?a
desc9a
epagq
spriap
spbpbp
stbq
lprplp
sprilp
eppsp
tra

shistack _header.pll_operators_ptr,*
tolgate_push_op

cate_push

spl 0

sblistack _header.stack_bteqgin_ptr
=-1,du

same_ring
sblstack_header.stack_hegin_ptr,*
gate_push_join

splstack_frame.size
spl0,7

lblstack_frame.prev_sp
(pr),(pr)

bpl 0,8

Iblstack _frame.size,8

bbhi-1

Iblstack _frame.arg_ptr
Iblstack_frame.operator_return_otr
Iblstack_frame.entry_cffset,60
sblstack_header,lot_ptrs.xau
{bistack _frame.lp_ptr

{bl 0

bpll

MTB-434

]« BEGIN
/x Modified: 16
/* MNodified: 3
/» Modified: 21
/+ Modified: 21
del sn

dcl sta

dect 1 s

?

2

?

2

2

2

2

2

7

e

2

2

2

2

2

2

2

2

’

2

?

INCLUDE FILE ... stack_frame.incl.pl1l ... */
pec 1977, b, Levin - to add filo_ps_ptr and p
Feb 17978, P, Krupp - to add run_unit_manager
March 1978, D. Levin - change fio_ps_ptr to
December 1979, 1. Weaver - change stack fram
pointer;
ck_frame_min_length fixed bin static init (4

tack_frame
pointer_reqgisters
prev_sp

based (sp?
(0:7) ptr,
pointer,

alignede.

operater_return_ptr pointer.,

return_ptr
size

original _size
entry_offset
translator_id

operator_and_1lo_ptr
ara_ptr
static_ptr
support_ptr
on_unit_relpi
padl

pad?

X

3

qQ

e

timer

pad?3

rino_alarm_req

pointer.,

fixed bin (18) unaligned
fixed bin (18) unaligned
bit (18) unaligned.,

fixed bhin (18 unalignred

ptr.,
pointer.,

ptr unalianed,

ptr unal.,

bit (18) unaligned,
bit (18) unaligned,
bit (36) unaligned.,
(0:7) bit (18) unaligned
bit (36),

bit (36) .,

bhit (3())’

hit (27) unaligned,
bit (6) unal ianed,
bit (3) unaligned;

)

L1_ps_ptr */

hit & main_proc bit =*/

support_ptr */
e format «/
/* pointer to beginning of stack
g):
unsianed,
unsigned,
unsigned, /* Translator ID
0 => PL/T version 11
1T => ALM
2 => PL/I version 1
3 => signal caller frame
4L => signaller frame x/
/* serves as both */
/* onty used by fortran 1/0 «/

» /% index registers «/

/* accumulator =/
/* gq-register =/
/* exponent x/

/* timer x/

frame

LCh-Q_ LW

1

det

FND

stack_frame_flags based (sp) aligned.,
(N:7) bit (72),

~J

pad

2 xx{ bit (22) unal.,

2 main_nroc bit (1) unal.,

7 run_unit_manaaer bit (1) wunal.,

¢ signal bit (1) unal.,

S crawl_out bit (1) wunal.,

? signaller hit (1) unal.,

2 link_trap hit (1) wunal.,

2 support it (1) unal.,

2 condition bit (1) wunal .,

2 xx0a hit (6) unal .,

2 xxt1 fixed bin.,

2 oxx? fixed bin,

2 xx* hit (25) unal.,

2 old_crawl_out bit (1) wunal.,

2 otd_signaller bit (1) unal »

2 xxia bit (%) wunaligned.
2 ox x4 (9) bit (72) alianed.,
2 v2_pll_op_ret_nase ptro,

2 xxS bit (72) aligned.,
S plil_os_ptr ptr’

ITNCLUDF FILE

stack_frame_incl . pl1

*/

/] *

[/ *
/ *
/ *
] *
]/ *
/ x
] *
] *

/] *
/ *

skip over prs =/

on if frame belongs to a main procedure */
on if frame belongs to run unit manager */
on if frame belongs to logical signal_ */

on if this is a signal caller frame */

on if next frame is sianaller's x*/

on if this frame was made by the linker =/
on if frame belongs to a support proc */

on if condition established in this frame x/

on if this is a signal caller frame %/
on if next frame is signaller's x/

Wwhen a V2 PL/I program calls an operator the
operator puts a pointer to the base of
the calling procedure here. (text base ptr) */

ptr to ps for this frame, also used by fio. */

beh-gLW

/3 BRGIH THOLUDE FTLE ... SLUCk_hW”d“P.iHOl.p71 .

SR sgodiied /05 by Mo dWeaver for *"y links and

/T wodd Ui 2 by i Weaver to add L ptr

7 mod i ied 1750 by M, dWeover to defing _frome

Vs eod i ied 1/50 by ML Weaver Lo remove stacic end

Jdaod) pur;

dot o s Laelk headar basad (sb)y alignad,
2onad o (O) fFixecd bin, /% (0)
2oola Lol ptr ptr, /¥ ()
Jocombined stat plLr pur, /0 (6)
Coele plr phr /E(R
Comnk ot size fived LINCTYY unal, /% (10,
S rame format bit (1) unal, /% (10,
D omedn proe involcsd Fixed bin (10) unal, /% (10,
D orun uait depth Cixed bio(H) unal, /% (10,
osur lot size tixed LinC17) unal, /% (1,
Cosystom free ph pL, /% (12,
> uner free plr ptr, /* 1,
Donudd plre pLr, /% (106,
Dostoek begin pbr pLr /F (18,
2 null por pad ntr /F (20,
Plob phr pLr, /r (22,
2osional ot phr, /¥ (24,
2oL mode s pLr, /R (25,
o “11 operators ptr ptr, /¥ (20,
0 _liAop_pﬁr pLr, /R0,
2 opush_op pur plr, /¥ (32,
Doroturn op pur plr, /F (3,
Dorchucn no pop op phropie, /% (0h,
2 oomtey op pbr pLr, /* (20,
CoLrens op Ly plr pLr, /% (hn,
Coinot ple por, JE(h2,

sel opiy pur, /0 (ahy,

bl e pur nui, /E o (hh,

J

372 Bl

Silver Y/ 3;

smore system use of areas %/ _1

format bit %/ CD

_ptr oand add new entry op ptrs */ \

/% thoe wmaln

5 -

*/
N
=

pointer to the stack header

also used as arpg llist
pointcr to the lot for
pointer to

by ocucuard call handler ¥,
current ring (obsolete) *,
area contalning separate static ¥/

19) pointer to aren conteaining linkage soctions
12) DU number of words allowed in lot ¥/

12) DL "™i"b if stack frame format has chanpgad
12) DL nonzero if main procedure invoked in ru
12) DL number of active run units stacked ¥/
13) DU numbor of words (antries) in lot #/

14) pointer to systom storage area %/
15) pointer to usaer storage area Y/

20) */

22) pointer to first stack frame on tho stack ¥,
2y Xy

20) pointor to the lot for the current ring */

s

[NN
et e s s

pointer to signal procedure for current ring
value of g=p before entering bar mode ¥/
pointer to pll operutors $operator table ¥/
pointer to stondard czl)l operator ¥/

(R RS)

push operator #/

Landard return operator #/
tandard return / no pop oporaton
tundard entry operator #/

4n) polinter to standard
N2) pointer to s

W) pointer to
N49) pointer to

wn W

50) pointer to translator operator ptrs #/

52) pointer to ISOT #/ '
51) pointer to System Condition Table */ '
56) pointer to unwinder for currant rins ¥/

‘) .

)) y -

Joays lintc into o plroptr, /¥ (LS, 60) pointer to ¥systom linlk name table Y/ '

Dol pte - pir, /% (50, 62) pointer to Reference Hame Table */

NI TINE P, /% (52, 61 pointer to cvent channel table ¥/

Cooashen Linkege ple ptr, /% (50, 66) pointer to storage for (obsolete) hes Sussiy
cxlooceatry op o phr ptrey /¥ (56, 70) pointer to PL/T opoerator eoxt ontry */

Doorl entry desce op plroptr, /% (5%, 72) pointer to PL/T operator cxt_centry desc #/

Py oexb o onbry on ophr o pr, /¥ (60,)Y pointer to PL/I oparator ss ext _entry */

oons entTentry Jdese op pir oplr, /¥ (62, 15) pointer to PL/T operator ss_cxt entry desc ®

Toinn o oentry op opor pLr, /% (50, 100) pointer to PL/T operctor int_ontry ¥/

Doind antry doss oop o pte optre, /% (56, 102) pointer to PL/T operator int entry desc %/

Tons int o ealry op ptr ophr, /% (63, 104) pointer to PL/T operator ss_int ucntry */

Dous iul entry cdese op pir ophr, /% (70, 106) pointer %o PL/T operator ss_int _entry desc

Yopads (20) Dit (36) olipned; /% (72, 110) for future cxpansion, including new entry o

The foltlowine ofiset refers Lo o table within the pl1 operator table. */

del tv_oftset fixed bin init(361) internal static; /% (551) octal #*/

The fotlowint constants are offsets within this transfer vector table. ¥/

el (call_ofrsut fixed bin inlt(271),
pusih_ofiset fixed bin inic(272),
roeturn_olfsel fixed bin init(273),
return no pop offsct [ized bin inig(270h),
cutry offset fixed oin inict(275)) internal static;

beh-QLWW

