
MULTICS TECHNICAL BULLETIN MTB-434

To: MTS Distribution

Fr om: Me l a n i e We a v e r and S t e v e W e b be r

Date: January 23, 1980

Subject: New Call/Push/Return Strategy

HI I B Q .Q U C. I l Q::l

This MT8 proposes a new call/push/return CCPR) strategy for th~

standard Multics environment. The proposed changes are very
large and have many implications. Yet, from recent data, it
appears that the changes are warranted. With the current
mechanism the cost can be so high the programmers do very
unstructured things to avoid the cost. Those programmers who
c l i n g des par a t e l y to the i r i deal s of we l l s t r u c tu red so f t w a re a re
di s courage d by the n on t r i v i al c o st i n p r o g r a m e x e cut i on t i me to
use these techniques.

The proposed changes are also needed as we go to highly pipelined
hardware. We would like to reorganize the instruction sequences
to minimize turbulence in the pipe.

The end result of the project, including extensive performance
analysis after the implementation is complete, will give valuable
input to design of firmware oriented instructions on any new
hardware developed.

There are three separate ex~eriments that indicate that a very
large amount of CPU time is spent in the CPP. overhead. These
experiments are
on the CISL deve
CMT9-41Q), (2)

(1) a special version of the system (bootloaded
lopment machine) that counted the number of calls

a special version of pl1_operators_ used to
measure argument list preparation overhead, and (3) data
collected with the use of the sim_6180 user ring simulator.

MTB-4i0 concludes that the overhead of the CPR mechanism in
~·ultics (not including argument list preparation) is about 20~.

This number is reinforced with data collected from the simulator ..
The simulator data is summarized in Table 1. The simulator data
also reinforced the findings of the special version of
pl1_operators_ that looked irto argument list preparation cost.

~·uLtics Project internal working doculT'entation. Not to be
reprcduced or distrituted outside the Multics Project.

MULTICS TECHNICAL BULLETIN

Script

pl 1 comp i le
pl1 compile with -ot
command script

Table 1
Call/Push/Re turn Overhead

Total
Instructions

9 3344 7
1146476

3 77 34 2

Instructions
in CPR

188617 C20%)
287484 <25%)

56388 (15%)

Instructions
Preparing
Arg List

12047 <1.3%)
16947 (1.5%)

6364 (1.7~)

The simulator data does not include ring 0 runs which are quite
different in one respect. A large part of the time spent in ring
0 is spent in the assembly language programs constituting page
control, interrupt intercepting (ii), fault intercepting (fim,
signaller, etc.), and the traffic controller {pxss). These
routines do not labor under the weight of the fully general CPR
overhead--indeed much of the reason for placing this code in
assembly l3nguage was to avoid the CPR overhead. Ignoring these
assembly language programs, the rest of ring 0 should behave a
great deal like ring 4 programs since it is written in PL/I.
H en c e , i f l<1e c a n e x p e ct to g et a n N % inc r ea s e i n p er form an c e w i t h
another CPR strategy, we should expect this same gain in segment
control, directory control, and tty interrupt handling.

We can then predict what this improvement might mean to system
performance. The proposed PL/I CPR sequence for an external
entry <see attached code) uses 27 instructions as compared to the
current 44 instructions. This saves about 39% of the CPR
overhead for a total non ring 0 savinq of about 8%. It is
estimated that about so~~ of the system's time is spent in ring 0
with about 40% of that in alm, so the total system performance
gain should be about 6%. Furthermore, there are additional
changes that can be made to the binder to optimize intrasegment
calls. These changes are discussed tater in this MTB.

A further optimization could be accomplished with a new arqurT"'!:'nt
list strategy that uses ITP pointers. However, the gain in this
case does not seem wcrth the effort.

If the current CPR strategy is so expensive and more efficient
alternatives are available, then why are we still using the
cu r rent c ::> st l y sd1 em e ? The a n s we r i s s i mo l y t hat t he
imolementation and integration costs were trought to be too high
to •.iarrant the "expectec" gains. Well, the exoected gains, due
to the rec~nt set of experiments, are higher than previously
t~ought--he~ce this ~T3. However, many of the exoe~sive features
were out there for valid reasons. A fe•..; of the more important
a r e :

Page 2

,,...

MULTICS TECHNICAL BULLETIN MTB-4 34

1. Ib~ uJ~ Qf ~a QC~c~tQc i~gm~at 1Q imQ!~m~o1 tb~ ~l~QcitbmJ
This is costly not only because it means more instructions
getting into and returning from the operators but also because
much information must be passed to the operators (in
registers) so that operators alone can know where to toad and
store t he v a l ue s.

This strategy, however costly it is, should not be abandoned.
We could not be contemplating the changes proposed in this MTB
if we had not isolated the protocols into a few replaceable
modules. Had we firmware to play with we might think of
placing this kind of logic in firmware, tut we would probably
not consider very much, if any, in hardware. Similarly, we
should not place any in the object modules of the system
(e)(cept, of course, the system support facilities that are as
easily replaced as the operators). Some of the binder
optimizations discussed below do put all the CPR logic in the
object segment, but users of these will be aware that they may
have to rebind if the CPR protocol changes, and these bound
segments will be easy to find.

2. S2~iog gQQ c~~lQciog iadi~~!Qrs
There is some confusion in the Multics community as to the
exact degree to which indicators are saved and restored across
a call. On the 645 the stcd and rctd instructions stored and
restored the indicators. These instructions were used to
effect part of the CPR algorithms. On the 6180 hardware this
feature was not provided (due to cur error in specifying the
instructions]_ On the 5~~, saving and restoring the
indicators was effectively free. On the 6180 we have to
simulate the effect and the cost is sometimes challenged.

The policy on saving and restoring registers and indicators
across a call is as follows:
1. All registers needed by a calling program must be saved and

restored by the calling proqram; except
2. Pointer registers 0 (operator pointer) and 6 (stack frame

pointer) as well as the indicators are restored from saved
values upon return.

This :neans that if a program wants the indicators <or its
operator pointer) restored to some value, the value must be
set uo i n t h e st and a r d s t a c k fr am e l o cat i o n r;i .r: i Q .r: l Q ..t .b s:
c~ll. PL/I and FORTRAN set up these values when a stack
frane is created so that the overhead need not be done on
each call. (Note th3t although these values are restored
returning to an AL~ program, PRO does not carry the
semantics of an operator pointer and PRO can therefore be
used in such a 'day th<lt it is restor~d automatically by the
callee, if it has been saved appropriately.)

Page '

MTB-434 MULTICS TECHNICAL BULLETIN

Hence, indicators are reloaded upon return to a program but
unless they were saved just prior to the call, they are not
Q!~~~!Y~.d across the call.

The overhead of dealing with indicators at all is due to the
desire to guarantee that a program can expect a fault if an
overflow or underflow condition is detected by the hardware.
Were the indi caters not restored, a called program could mask
overflows and underflows for the caller and change the
behavior of the program it returns to. <This could, of
course, beef fected by changing the saved value of the caller
so that when returned to it had the new indicator values.)

Basically the only purpose that restoring indicators serves,
then, is to protect the ability to detect overflow and
underflow faults. This could be changed so that any programs
that wanted this protection could set the indicators each time
returned to. To do this would require compiler changes and
might well be tQo large a project. An alternative is to have
the hardware do much of the work. The rtcd and stcd
instructions, if they worked as on the 645, would solve some
of the prob le m. We w ou l d a l so have to in i ti a l i z e the
indicators during the entry sequence <or about that time).
One possibility is to have the callsp instruction set the
overflow mask, overflow/underflow indicators, and, if we can
get the feature, the underflow mask to Q, the most useful
initial state. It is also possible that the stcd instruction
could set these indicators (after storing all the indicators)
but this is less promising as many potential CPR algorithms
cannot u s e the st c d i n s tr u ct i on (i t would mean embed d i n g
knowledge of stack offsets in object programs).

The cost of indicator management as a part of the CPR
mechanism is about 1% of the system. The prooosat is to get
improvements in future hardware, but to live with
over h ea d- i n - s of t w a re u n t i l th en •

3. QQMbi~-Ib!~a~g~ l!~'k f!j~~~
All stack frames currently have both the backward and forward
threads. The main reason is to ease debugging. It is clear
that a hackward pointer is required, but the forward (next)
stack frame pointer is not needed, as indicated by the
cont a i n ed p r o po s a l •

4. Ib.e "§.t.J.1:.:S-~o.d-Eaia.t.er" ~oo~ec.t
Each stack has in its header a pointer to the next availahle
space in the given stack. This pointer is updated on each
call and again on each re turn. It is needed '-lhen:
- a ne·.i stack frarr.e is created by a callee program:

a call to an in.'"ler ring stack is made: and
the signaller "caps'' a stack and cre'3tes an environ:rent in

Page 4

MULTICS TECHNICAL BULLETIN MTB-434

5 •

i..ihich signal_ can be invoked.
The first use is easily satisfied with alternate techniques.

T h e i n n e r - r i n g c a l l o f t ad a y i s an e l e g a n t m e th o d s e t u p i n
such a way that a program called in an inner ring need not
know that it was called from an outer ring or that it is the
first program to establish a frame on the inner ring stack.
i.e., the "push" algorithm works identically for intra-ring
and inter-ring calls.

The work of capping a stack
routine that today uses the
being signalled on. This is
error-prone.

QQiQ.!.~..t.e .CQQ~

is done by a privileged ring 0
stack end pointer in the stack
convenient although potentially

There is some code executed as
maintenance of obsolete features

part
(e.g.

of the CPR facility in
version PL/I).

~i~s.ed QQlimiialiQci
As a final note, there were
either missed or postponed
necessary to take advantage of

several optimizations that were
due to the development effort
them.

The proposed new CPR strategy makes the following changes to the
conventions and irr.plementation teach followed by a brief
description of the implications)

1. No more support for Version 1 PL/I.

This is not a serious problem since the ccmpiler itself was
never released to the field. It did exist at ~~IT but· MIT is·
-willing to {and encourages us to) delete support for it. The
only system code still in v1pl1 is now obsolete and no longer
used (it should be deleted when we get the time).

2. Single-threaded stack frames.

This will cause a ::iroblem to all code, both system and user,
t h a t c u r r e n t l y d e c od e s s t a c k f r a m e s f o r t r 3 c i n g - l i k e p u r P o s e s •
The system code is isolated in the debuggers, trace_stack, the
sign;il ling mechanism, and various other tools.

3. rJo 11ore stack end oointer.

This \.'ill require
cappir1c; the stack)
atle to use the
strea11line:J for

chan,:ies to the sign.:illing mechanism (for
and to all gates. Gates will no longer be

"normal" push secuence since it will be
the much more frequent intra-ring calls.

Page 5

ll.TB-434 MULTICS TECHNICAL BULLETIN

Rather, gates will be required to lay down the first stack
frame using the "stack-begin-pointer" in the header of the
inner ring stack. This is not a difficult problem to solve
since gates must be in ALM today anyway if they want to take
advantage of the call limiter hardware.

The advantages gained by not using the stack-end-pointer
discipline are efficiency, simplicity, and less I/0 on page
zeroes of stacks (they usually don't get modified except for
updating the stack-end-pointer).

4. Changes to the format of the call sequence, entry sequence and
stack frame.

The basic premise is to allow the compiler to provide as much
information as possible at compi Le time and at the same time
minimize the push overhead.

AL l of
various
extent,

the above changes
operator segments

the runtime support

will require extensive changes to the
(PL/I, COBOL, etc.) and to a lesser
facilities.

The changes proposed for PL/I in the basic inter-segment case are
l i s t e d be l o•.J :

Fill in the argument List header in the object code in a
ll'O r e e f f i c i en t \ol a y i n s t ea d o f i n t h e c a l L op e r a tor •

- Get a pointer
ins t e ad of ju s t

to the araument
the offset in index

List in
register

- Get a pointer to the return Location while
code and store it during the call operator.
tr an s fe r r i n g t o the c a L L ope r a t c r v i a a t s x 0
filling in the return offset. The return
Long e r i n i t i a L i z e d du r i ng t h e e n try sequence.

the object
L

code

in the object
This replaces
and then just

pointer is no

- Make th e c om p i l er - gene rat e d o f f s e t s o f t he ca l l and r e t u r n
operators point to the actual operators instead of to the
transfer vector. This means that the operators' Locations
are frozen but it also avoids transfers out of the transfer
'J e c tor.

- Do not set PR4 to the
(this was for version 1

Linkaqe
PL/1).

~cinter in the call operator

- In the object code entry secuence, load a dou~le ~ord

containing the stack frame size, original stack frame size
(need both fields; one must net t·e changed during stac'.;

Page 6

MULTICS TECHNICAL BULLETIN MTB-434

extensions), entry offset, and translator ID instead of just
loading the stack frame size.

Transfer to the entry operator via a pointer in the stack
header (as ALM currently does), thus avoiding loading a
pointer to the operator transfer vector and transferring out
of the transfer vector.

In the entry operator, store the double word containing the
frame s i z e , e n t ry of f s e t , e t c • Th i s r e p l a c es get t in g a
pointer to the entrypoint, storing it, setting the forward
frame oointer, and setting the stack end pointer. Also do
not store a copy of the forward pointer at spl4 for use when
making temporary frame extensions.

Fill in a new variable, stack_frame.operator_return_ptr with
a pointer to the base of the object segment. This replaces
the text base pointer and the operator return offset. All
languages must initialize this variable since it will be the
standard location of the stack frame owner's segment number.

In the return operator, do not reset the stack-end pointer
or reset PR? to point to the stack header.

It:!E_fHliQEB

One of the improvements considered in the past but never work~d
on due to nanpower demands is a binder that performs a set of
opt i rd z a t i on s • The s e op t i mi z a t i on s r a n q e f r om do i n g i n l i n e
(nonoperator) calls to sharing stack frames. Some of these
binder enhancements are relatively easy to do. These will be
considered in this MT9 •. ~nether reason for considering them now
is that they reouire minor ccmpi ler changes to the call and entry
sequences, and that area of the compiler is already affected by
the rest of the proposal.

There are three progressively more efficient CPP protocols that
can be used bet1o1een components of bound seg~ents. They are:

1) optimization with operator support,
2) optimization without operator support, and
3) optimization to make components act like c;uick internal

oroce:Jures.
It s possible that a single bound segment might contain all
three protocols, depending on the attributes of the CO'n:JOnent
entries. The optimizations will cause the binder to be
kr.0 1.o1ledgeable about specific language i'llplementations. It is
proposed that these optimizations initially acply only to PL/I
arr.! FCRTRAtJ components.

The first ::::rotocol is used 1-1h en
Ccallat:Le externally) or 1.o1hen it

Page 7

th e called entry i s
is desired to keep

rE>tained
the CPR

MTB-434 MULTICS TECHNICAL BULLETIN

mechanism in the operators. The second protocol is used when the
called entry is not retained but does require its own stack
frame. The third protocol is used when the called component is
neither retained nor recursive, so that it can share the stack
frames of all of its callers. Protccots 2 and 3 imbed the CPR
mechanism into the object segment, so any bound segment using
them would have to be rebound if the CPR mechanism changes again.
This is much easier than recompilation, however. A new flag in
the object map indicating this degree of optimization will both
facilitate locating these segments and enable the Linker to
detect them so it can log access to them or refuse to Link to
them (or neither) as the user requests.

Protocols 2 and 3 should not be enabled hy default because they
e m b e d p o t e n t i a L L y i n c om p a t i b L e c o d e i n o b j e c t s e g me n t s • I n s t e a d
they will be controlled explicitly. The decision about whether
to use protocols 2 and 3 will be determined by the bindfile or a
control argument (independently). To enable the binder to
perform the transformation, code must be be extended; the
compiler must provide space for this at certain places in the
object segment. Tris feature i..iill be controlled by a new
compiler option.

Prototype code sequences for protocols and
this MTB. 3asically, the differences between
optin;izations with operator suopport) and the
CPR protocol are:

2 are included in
protocol 1 (binder
proposed standard

- Bypass the call operator and the transfers to and from the
entry sequence in the object code. Instead, pick up in the
calling sequence the double word containing the frame size
and set the return pointer 1n the entry operator. For this
the compiler must generate a pad word in the new call
sequpnce.

- Use the transfer vector •..ihen transferrini:; to the call./entry
operator so that these entries can be traced.

- Do not set PRO to point to the
it to the operator table.

argument List and then reset
The new entry_from_bound_seg

operat:)r uses a different pointer register convention for
argument lists.

Do not load the indicators in the entry operator. Since the
caller is ir PL/I or FORTRAi'J~ the indicators are guaranteed
to be .J:<maske'."J before the call.

- Do not obtain a new
current value •..iill be
get a pointer to the

linkage pointer (FRl)
recuired to be valid.

routine to call.)

Fage 8

va Lue since the
(It is usec to

~ULTICS TECHNICAL BULLETIN ' MTB-434

lf no entry in the called component is retained, a new
return operator that does not load the indicators can be
used.

CPR protocol 2 <binder optimizations without operator suoport)
differs from protocal 1 primari Ly in that the CPP code is
embedded in the object segment at the entry and return points.
This eliminates several instructions transferring to and from the
operators.

CPR protocol 3 (optimization to make components act Like quick
internal procedures) eliminates the overhead of pushing and
popping stack frames. Although the details have not yet teen
worked out, the call/return overhead in this case is reduced to
about 7 instructions. However, there are several restrictions to
the use of this protocol. First, none of the components that are
to use this optimized protocol can be callable from outside the
bound segment. Second, the combined stack frame size cannot
exceed 161< words. Thi rd, none of the components that share a
stack frame can be recursive either internally or within the
bound segment (except for the component that does the pushing).
To aid the binder, the compilers must turn on a new object map
flag if a program is not recursive. All stack references would
have to be relocated and those in the first 64 words of the frame
special cased. Care must be taken so that large areas of a stack
frame are riot wasted. The bindfile syntax will be changed to
allow control of this feature ..

In ALM, the operations performed by the PL/1 entry operator are
split between the entry and push operators. The push operator
may not be invoked at all or may te invoked in a "subroutine"
used by several entries. For this reason, the double word
containing the stack frame size and entry offset will be copied
by the entry operator. Thus the assembler will have to calculate
a stack frame size even if there will be no frame.

ALM programs depend on PR7 always pointing to the base of the
stack. Now that the PL/I/FORTRAN return operator will no longer
reset DR?, the ALM short_call pseudo-op must be changed to reset
i t. A l l A L ~·1 p r o g r a m s u s i n g t h e s h o r t _ c a l l p s e u d o - o P m u s t b e
reassembled QffQr~ the new CPR protocol goes into effect. The
call pseudo-op already restores all the registers.

Some AU~ programs take advantage fa c t that the first
instruction of tre expanded

of the
PUS h ~seudo-op is eax7

stack frame size by oicking the
instruction. These programs must
reassemblec with the new pseudo-cos.

Page 9

frame size
be changed

The orcpos"ll

out of the
h ~ . • .. e.ore ::ie1rg

is to crea~e a

rna-434 MULTICS TECHNICAL BULLETIN

new AL~ pseudo variable, %stack_frame_size, which is flexible and
wi LL free these programs from dependence on generated code.

The changes
There is not

proposed for the ALM operators are described below.
as rruch improvement as in the PL/I case.

- Use the current frame's size instead of the stack end
pointer to determine 1..ihere the next frame begins.

- In the entry operator, store the double word containing the
stack frame size, entry offset and translator ID where the
new stack frame will be.

- Transfer to the new entry and push operators via the
p L 1 _ o pe r a t o rs_ po i n t e r i n t h e s t a c k he a de r i n s t ea d of
through a direct pointer in the stack header. The AL"l
return operator is the same for both old and new code, so
transfers to it can remain the same.

- In the push operator, use index register 7 to hold the old
frame's size.

- Do not set the stack end pointer.

- Set the operator return pointer.

Gates can no Longer use the standard oush and entry operators
because their stack frames are not usually contiguous '.lith their
callers' frames. When entering an inner rirg, the stack can be
assumed to be empty, so the stack begin pointer 1n the stack
header can be used to determine the beginning of the gate's
frame. Ho ... ever, sometimes a gate call dces not cause a ring
change; for example, dorint, which uses message seg~ents, running
in ring 1. 6ecause of those cases, the gate push code must check
whether a ring (stacU change has occurred. If it has, the stack
begin pointer is used. Otherwise the ne\.I frame is located at the
end of the old frame 3S usual.

The extra overhead of cneckirg for ring changes is partly offset
by some optimizations available to gates. Gates do entry and
push at the same time, so since there must be a ne\.I ooerator
a n y •.i a y, i t can comb in e b o t h f u n c t i on s • 8 e s i c e s , the s tan d a rd
entry O;:'.)erator does several things that are useless to gates.
For exarnole, gates invoke the entry operator in a "subroutine",
making the entry offset the same for all entries in a ·;;ate
segment. If tsp3 is used instead of tsx2 to transfer to the
setup "s·Jbrout:ine", op3 can be used to obtain a 'TlOre realist~c

er.try orrset. Ho•.iever it still will not tie the "real" on<? in the

Page 1 0

~ULTICS TECHNICAL BULLETIN MTB-434

gate's transfer vector.
detailed list below.

Other changes are mentioned in the more

Currently, hardcore <]ates do not use the alm entry operator.
They obtain the linkage pointer from a Location in the text
sectio~ that is initialized by init_hardcore_gates, rather than
from the LOT. The only justification for this appears to be a
saving of one instruction. Gates would be simpler if this
mechanism were eliminated. If that cannot be done in general
(because fast gates would be one instruction longer, etc.), at
least it should be done in the standard harrlcore push case. Then
the same push/entry operator can be use>d for both hardcore and
non-hardcore gates.

The prooos3l is to have a new gate push operator which is
transferred to via the pl1_operators_ transfer vector. Before
the new CPR protocol goes into effect, all non-hardcore gates
must be reassembled with new gate macros that use the gate_push
operator. Both a temporary version of the operator and the
r~assembled gates must then be installed. After that, when the
system that changes the CPR protocol is installed, all the gates
w i l l au t o ma t i c a l l y w or k c or rec t l y. An a l t e r n a t i ve w o u l d be to
put the gate push cede in the gate macros themselves. In order
to be compatible across protocols, the macro gate push code would
have to check a flag in the stack header to determine what type
of frame to push. If the macros were not compatible, the
non-hardcore gates would have to be installed in ring 1 using
non-standard procedures just after the system came up. The
answering service would not be able to use message segments, etc.
(e.g. dprint anything) until this was done. Of the three
methods, using a new operator seems the most straightforward.

The list below summarizes the proposed actions related to a gate
push.

- Transfer to the setup "subroutine" via a tsp3 instruction.

- Transfer to the gate
pointer in the stack
vector.

push operator using the pl1_operators_
header and the pl1_operators_ transfer

- In the operator, compare the segment numher i::ortions of PR6
and PR?. If they are the same, locate the new frame at the
end of the current frame as usual. Otherwise, use the stack
begin oointer in the stack oointed to by P?7 to locate the
ne•tJ frame.

- Store ~rev_sf;, arg_ptr and operator_return_pointer.

- Use an rrlr instruction <to avoid changing re.:::ist<?rs) to ccpy
the wares containing the stack frame size and translator ID
fro~ t>ie location following the transfer to tne ooerator.

Page 1 !

"' TB-4 34 MULTICS TECHNICAL BULLETIN

- Store rel(PR3)-1 as the entry offset.

- Obtain the Linkage pointer from the LOT and store it Cin
hardcore gates too).

- Do n o t ob t a i n a nd s t o r e th e s t a ti c po i n t e r s i n c e it is not
needed by gates.

Pac'O' 1?

~ULTICS TECHNICAL BULLETIN MTB-434

F o l Low i n g i s a l i s t o f mo st o f t he sys t em mo du le s t h at a re
affected by changes to the CPR protocol. Rather than presenting
a complete List of all procedures, it is more useful in some
cases to state categories.

b~r9~Qr~
GOS stack dump
p a rt s o f s y s t em i n i t i a l i z a t i on
all gates
parts of page control
scheduler
the signalling mechanism
outward_ca Ll_handler_
pl1_operators_ and friends
cu_
~ound_error_hand ler s_
alm programs that use short call
alm programs that depend on the push pseudo-op to generate

eax7 stack_frame_size

I'.QO-b~rd~:H.e
all gates
trace_stack
bound_debug_ut i
trace
probe
debug
stu
other language operators
fortran_io
operator _na11es_
o L dump
gate_meters
all compilers and alm
i f d
alm progra11s that use short_calL
private stack switching proqrams, etc.

In addition,
be updatec.

a s i g n i f i c a n t am ou n t o f i·~ PM S W G doc um en t a t i on m us t

This section Lists the steps involved in irncle'nenting the
orooosed c.~Jnges. They are Listec aporoxir:ia~ely in chronoL:igical
orcer except that many of the changes can ~e coded ahead of time.

inst::ill current ol1 ooerHors with new gate_oush opera;:or
set bit i1 stack header incicatinc; frame format

Pa~e 13

MT8-434 MULTICS TECHNICAL BULLETIN

- change gate macros to use gate_push <via macro, not pseudo-op)
- reassemble and install all (non-hardcore) gates
- change everything in hardcore that needs changing
- change trace_stack and bound_debug_util_ compatibly

install trace_stack and bound_debug_util_
- change an:J install assembler to reset PR? during short_call
- reassemble and install all alm programs that use short_call,

including user orograms
- make the rest of the non-hardcore changes incompatibly
- install new system including untested new operators

install incomi:;atible non-hardcore programs immediately
afterword in a special session

- c h a n g e PL I I , F 0 R T R A :~ , .ti L M a n d C 0 B 0 L t o g e n e r a t e i mp r o v e d
c a l l/ e n t ry seq u enc e s

- change binder to optimize call/push/return ("quick" external
procedures may be delayed)
install pl1_operators_ with debugged new operators
install binder
install improved compile rs (PL/ I, FORTRAN and ALM will now use
the new oo er at ors)

This section presents the proposed new code seouences to be used
in the operators. The instructions in the operators are
i n di c at e d by a v e r t i c a l l i ne i n t he l e ft ma r g in • A l l o t her
instructions are in the caller's or callee's object segments.
Code in parentheses is not considered to be part of the CPR
mechanism. Argument list preparation is not included. The code
seauences have not been completely optimized for pipelined
hardware. The PL/I versions are prototypes, since there are
several PL/I entry operators.

Page ;4

~ULTICS TECHNICAL BULLETIN

eaaeQSEQ fL/1 l~IEa SEG~EUI t!LL SEQUE~tf
(Total = 27)

(l da q
eppbp
eppb b
staq
tspab

sp r i ab
eopap
callsp

lda q
ts pb p

ld x 0
SD r i Sp

eppsp

staq
epaq
lprplp
sp r i l p
sp r i a p
spbpbp
eppa p
sp r i a p

l di
tra

arg List_ header)
cal lee
a rg l i st
bblO
a o I ca l l _op

solstack_frame.return_ptr
bblO
bplO

*-N
s b I stack_ header • new_ en t _op,*

s p Is tack_ tram e. size
s p I s tack _ f ram e. pr ev _ s p, 0
splO,O
spl stack_frame.si ze
bplO
sbl stack_header~ Lot_ptr,..*au
s p I l i n k age_ p t r
so I stack_ f ram e. a r g_ pt r
spl stack_frame.operator_return_otr
ooe rat or _table
spl stilck_frame.operator_ptr
0 ,d l
b pl M

(random code)

(end of code)
tra

eopso
eppa p
l di
rtcd

a p I re tu r r _ op

s p I s ta c k _ f r a me • p r ev _ s p, *
sol stack_frame.operator_r-tr,•
spl stack_frame. return_pt r+1
s p I stack_ frame.return_ pt r

Page 15

MTB-434

(f l d
eppbp
ea x 1
tsxO

tra
epbpsb
ora
st a q
st:.: a
eppap
eoplp
call s p

ea x 7
eppb p
ts pbp

tra
epµbp
epaq
lorplp
eppbb
spri sp
so r i a p
eopab
sp r i ab
sp r i ab
eops p
spri lp
spribp
SD bpb P

spbpbp
st z
eopa p
spriap
spriab
L-1 i
tra

MULTICS TECHNICAL 9ULLETIN

'UEEE~I 'a~~ ~fQU~~'f
<Total = 44)

arg list_ head,du)
callee
a rg l is t
a p I c a l l _ op

call_ext_out
splO
4, d l
sbl0,1
s p I stack_ frame.return_ pt r + 1
sbl Q,1
so I link a ge _pt r, *
tplO

stack_size
sbl stack_header. pl 1_opera tors_ pt r,*
bpi entry _op

ext_entry
bpl-3
bplO
sbl stack_header. lot_ptr,*au
sblstack_header.stack_end_ptr,*
b b I s tac k _ f ram e. or ev _ s p
hbl stack_frame.arg_ptr
bbfQ,?
bbl stack_frame.next_sp
sbl stack_head<:'r.stack_end_ptr
bblO
s p I l i n k a ge _ p t r
spl stacl<_frame.entry_ptr
spl stack_f rame. return_ptr
spl text_base_otr
spl stack_frame.operator_return_offset
ope rat o r _ t ab l e
sol stack_frame.operator_ptr
spl4
0 ,::! l
t·o I 5

(random code)

C'=nd of code)
tr a a o I re tu r n_ op

tr a
e;:ibpsb

return_rriac
splCJ

Page :s

MULTICS TECHNICAL BULLETIN

SP r i s p
eppsp
e:ipsb
eopap
L :Ji
rtcd

sbl stack_header. stack_end_ptr
spl stack_frame.prev_sp,*
sp!O
s p I stack_ f ram e. operator_ pt r, *
splstack_frame.return_ptr+1
spl stack_frame.return_ptr

F' ag e

MTB-434

r• TB-4 34

Cepplp
<L daq
eppbp
eppbb
st aq
Ld aq
ts pa b

tra
sp r i ab
ld x 0
sprisp
eppsp
staq
sp r i l p

SP rib b
spriap
spbpa b
tr a

MULTICS TECHNICAL BULLETIN

l~IR~-~~§~~~l £!bb ~~BY~~£~
(WITH OPERATORS)

<Total = 19)

s p I L i n k a ge _pt r, *)
arglist_header)
cal Lee
arglist
bblO
target_ frame_ size
apl bound_cal l

bound_ ca l l _en try
spl stack_f rame. return_pt r
spl stack_frarne.si ze
spl stack_frame.prev_sp,O
splO,o
s p I s tac k _ f r a me. s i ze
s p I l ink a ge _ p t r
s p I st a c k _ f ram e. a r g_ pt r
spl stack_frame.operator_ptr
s p I stack_ frame.opera tor_ return _o tr
b pl x

(random code)

(end of code)
tr a

eppsp
rt Cd

a p I re tu r n_ op_ no_ i nd

s p I stack_ f ram e. p rev_ s p, *
sol stack_frame. return_ptr

Page 1 E

MULTICS TECHNICAL BULLETIN

<e pp L p
< L daq
eppbb
staq
stcd
tspbp

l d a q
ld xO
SP r i s p
eops p

st aq
spbpb p
SP r i l p
SP rib b
sp r i a p
(random

l~I~~-~EG~f ~I ~~~~ ~fQUf~Lf
(NO OPERATORS)
<Total = 15)

s p I l i n k a ge _ p t r, *)
arglist_header)
arglist
bblO
spl stack_frame.return_ptr
callee

*-N
spl stack_frame.si ze
spl stack_frame.prev_sp
splO,o
s p I stack_ frame. s i ze
s p I stack_ f ram e. opera tor_ return _pt r
spllinkage_ptr
s o I s t a c k _ f r a m e • a r g_ p t r
spf stack_frarne.operator_ptr

code)

(end of code)
eopsp
rt c d

s p I stack_ f ram e. pr ev _ s p, *
spl stack_frame.return_ptr

Page 1 9

MTB-434

MTB-434 MULTICS TECHNICAL BULLETIN

~Q~e~11e~E 1~IEa-s£~~E~I ~~l~ ~fQUf~1f
(Total = 35)

(fl d
eppbp
eax1
tsxO

tr a
ep bps b
ora
st a o
st x 0
eppap
C3llsp

ea x 7
e:::>pbp
tspbp

tra
ld x 0
st z
st x?
SP r i s p
epp so
ep aq
s x l 7
so r i a p

sto
spb.pbp
lprplp
sp r i l p

spbpbp

eo pap
sp r i a p
l d i
tr a

arglist_head,du)
callee
arglist
a p I cal l _op

cal l_ext_out
splO
4 ,j l
sbl0,1
spl stack_frame.return_ptr+1
sbl0,1
bp I 0

stack frar'1e size
sbl stack_header. pl 1_operators_pt r,*
bplentry_op

ext_entry
spl stack_frame.si ze
spl stack_frame. s i ze,O
spl stack_frame.si ze,O
s p I s tac k _ f ram e. pr ev _ s p, 0
splO,O
t· p I - 3
spl stack_frame.original_si ze
s p I s tack_ f ram e. a r g_ pt r
spl stack_frame.entry_offset
s f1 I stack_ frame.operator_ return _pt r
sb! stack_reader. lot_ptr,*au
spl linkage_ptr
splstack_frame.return_ptr
ope rat or _tab l e
sol stack_frame.operator_ptr
C ,d l
b p I 5

(random code)

(end of coce)
tr a

tr a
eopsp
ep pap
l :j i
rt cc

ap_ retur n_op

return_rnac
sol prev_ sp,*
sol stack_frame.operator_ptr,*
sol stack_frame.return_ptr+1
sol st3ck_frarrre.returr_otr

Paq".' 20

MULTICS TECHNICAL BULLET!~

Ldaq
eopbp
ts pb p

Ld x 7
staq
epaq
lorplb
sprplb
lprplp
tr a

ts pb p

epaq
ld x 7
st q
lprplb
sprplb
lprplp
tra

NEW

*-N
s b I stack_ header. p L 1 _operators_ pt r, *
bpi alm_entry_op

spl stack_frame.size
spl stack_frame. s i ze,7
bplO
sbl stack_header. i sot_pt r,*au
spl stack_frame.static_ptr,7
spl stack_header. Lot_ptr,*au
b p I 0

COM PAT 18 LE

sbl stack_header.entry_op_ptr,*

bp I -1
splstack_frame.size
spl stack_frame.entry_offset,7
s b I s tac k _ h ea de r • i so t _ pt r, *au
splstack_frame.static_ptr17
sbl sblstack_header.lot_ptr1*au
bolO

Page 21

MTB-434

ep pb p
tspbp

l d x7
sp r is p
eppsp
so r i a p
S;Jrilp
spbpbp
tra

eax7
tspbp

ldx7
sp r i s p

eops p
ld x 7
st x 7
s x l 7
ea x 7
sx l 7
SP r; a D

sp r i l p
spbpbp
tra

MULTICS TECHNICAL 8ULLETIN

NEW

s b I st a c k _header • pl 1 _operators_ ot r, *
bpl a lm_push_op

s p I stack_ frame. s i ze
splprev_sp,7
spl Q,7
s p I s ta c k _ f r a me • a r g_ pt r
spl stack_frame. lp_ptr
spl stack_frame.operator_return_ptr
bplO

COMPATIBLE

stack_ f rame_s ize
s b I s tack_ header • push_ op_ pt r, *

spl stack_frame.si ze
spl stack_ frame. prev_ sp,7
splQ,7
bpl-2
spl stack_frame.size
spl stack_frame.original_size
1
spl stack_frame.t ranslator_ id
s p I s t a c k _ f r a me • a r g_ p t r
spl stack_f rame. lp_pt r
splstack_frame.operator_return_ptr
bplO

Page 22

MULTICS TECHNICAL BULLETIN

tra

eopsp
eppap
l d i
rt cd

tr a

inhibit
sp r i s p
epps p
inhibit
epbpsb
eopa p
l d i
rt c d

NEW

s b I st a ck _header • r et urn_ op_ pt r, *

s p I s ta c k _ f r a me • p rev_ s p, *
spl stack_f rame.operator_ptr,*
spl s tack_f rame. return_pt r+1
s p I st a c k _ f ram e. re turn_ pt r

CURRENT

s b I s tack_ header • r et u r n_ op_ pt r , *

on
sbl stack_header.stack_end_ptr
spl stack_frame.prev_sp,*
off
splO
spl stack_frame.operator_rtr,*
spl stack_frame. return_otr+1
spl stack_frame.return_ptr

P ag e ?. ~

\lT 8- 4 3 4

MTB-434

tspbp

eppbp
epplp
sp rib p
epaq
Lprplb
sprplb
lorplp
tr a

ea x 7
tspbp

spribp
eppb p
so r i s p
sp r i a p

spri Lp
eopsp
eopb p
so rib p

SP rib p
ea x 7
st x 7
tra

MULTICS TECHNICAL BULLETIN

ENTRY

sbl stack_header.entry_op_ptr

b p I -1
sbl stack_header.stack_end_ptr,*
lpl stack_frame.entry_ptr
bplO
sbl stack_header. i sot_ptr,*au
Loi stack_frame.stati c_ptr
sbl stack_header. Lot_ptr,*au
b p I 1

PUSH

stack_frame_size
sbl stack_header.push_op_ptr

sblstack_header.stack_end_ptr,*
sbl stack_header.stack_end_ptr,*
b p I s tack_ f ram e. pr ev _ s p
b p I st a ck_ f ram e. a r g_ pt r
hp! stack_f rame. lp_pt r
bplO
sol Q,7
sbl stack_header.stack_end_ptr
spl stack_frame.next_sp
1
s p I st a c k _ f ram e • t r ans L at or_ i d
splO,*

Pac::e 24

,..

~ULTICS TECHNICAL BULLETIN

eppbp
ts pb p

tra
epaq
era
ana
tze
ep pl b
tra

lsame_ring:
I l d x 7
I ep pl b
lgate_push_join:
I sp r i s p

I mlr
I des c 9 a
I desc9a
I epaq
I spriap
I spbpbp
I st bq
I lprplp

SP r i l p
eopsp
tra

sbl stack_header.pl1_operators_ot r,*
tpl gate_ push_ op

gat e_pus h
splO
sbl stack_header. stack_begin_ptr
=-1 ,du
same_ring
sbl stack_header.stack_begin_otr,*
9 3 t e _pus h_ j o i n

spl stack_frame.si ze
splQ,7

Lbl stack_frame.prev_sp
(pr),(pr)
bplQ,8
Lbl stack_frame.size,8
bbl-1
L b I s tac k _ f r a me. a r g_ pt r
lbl stack_frame.operator_return_otr
lbl stack_frame.entry_offset,60
sbl stack_header. Lot_ptr,*au
lbl stack_frame. lp_ptr
lblO
b p I 1

Page 25

MTB-434

I•

I•
I•
I A

I•

r; E C J N l ~J C L U D F F l L [stack_ frame. incl.pl 1 *I

Mod i f i t• d : 1 () fl f> (1977, f) • L ev in - to a cld f i 0 _ps_ptr :J n d pl1_ps_ptr */
r-1 o rt i t i ~ cJ : 7 Feb 1'178, p • Krupp - to a rl d run_unit_manaoer hi t & main_proc hi t *I -'
Modifi·~:l: 2 1 March 1978, (\ . Levin - change fio_ps_ptr to support_ptr *I
Modified: ?1 December 1979, ·~ . Weaver - chanqe st a ck frame format *I

d (l sp pointer: /• pointer to beqinning of stack

d c l s t a c k _ f r a rn P _ m i n _ l e '"I ~1 t h f i x e d b i n s t a t i c i n i t (4 8) ;

dcl stack_ frame
? pninter_registers
2 prev_sp

based Csp) aligned,
CO:n ptr,
pci i n t er,

2 operator_retur'"l_ptr pointer,
2 return_ptr
2 s i z p

? ori9inal_size
2 entry_offset
2 transliltor id

pointer,
fixerl bin (18) unaligned
f i x e d b i n (1 8) u n a l i g ne d
bit (18) unaliqned,
f i x e d h i n (1 8) u n a l i g ne d

unsigned,
unsigned,

unsigned, /*Translator ID
0 => PL/l version II
1 => nLM
2 => PL/I version I
3 => signal caller frame
4 => siqnaller frame */

2 operator_and_l~_ptr ptr, /* serves as both */
? arq_ptr
2 static_ptr
2 support_ptr
? on_unit_relp1
:> p..id1
?. pad?.
? x
2 a
? q

? e
? timer
;~ pad3
? rin9_alarm_req

pointer,
ptr unaliqned,
ptr unal, /* only userl by fortran I/O •/
hit (18) unalignerl;
bit (18) unalignerl,
bit C36) unaligned,
(():7) bit (18) unaligned,/* index registers•/
hit C36),. /*accumulator•/
bi t (36) , I * q - r e g i s t e r * I
bit (36), /•exponent*/
hit <27) unaligned.. /* timer */
bit (6) unal iqned,
hit ()) unaligned;

3
-1
0
\

.s::.
cY

f .--(::::
rame */

) '))

de l

'
1 stack_frame_flaqs

? pa rl
2 xx (l
? 111ain_nroc
? run_ u n i t manao~r -
? signal
?. crawl_out
? siqnaller
? l in~ _trap
? support
? condition
?)(x n a
2 x)(1
? x)I?
2 x x <:
2 old _crawl_out
2 old_siqnaller
2 xx3a
") xx t, (.

? v?._pl 1_op_ret_::>ase

? xx 5
? pl1_::is_ptr

based (s p) aligned,
co: n bi t (7 2),

bit (22) u na L,
bit (1) unal,
bi t (1) una l ,
bit: (1) unal,
bit (1) una l ,
bit (1) unal,
bit (1) una l ,
bi t (1) unal,
hit (1) un al ,
bit (6) una l ,
ti x e d bin,
fixed bin,
hit (2 5) una l,
bit (1) un al ,
bit (1) una l ,
bit (9) unaligned,
(9) bi t (72) aligned,
ptr,

bit <72) aligned,
ptr:

HID IrJ C L U 0 F f I LE • • • s ta c k _ f ram e • i n c l • pl 1 *I

.,
'

/* skip over prs */

I* on i f frame belongs to a main procedure "I
I * on i f frame belongs to run unit manager •I
I * on if frame belongs to logical signal_ •I

/* on i f th i s i s a signal caller frame *'
I* on i f next frame i s signaller's *I
I * on i f th i s frame was made by the linker *I

'* on i f frame belongs to a support proc */

I" on i f condition established in th i s frame */

I* on if t hi s i s a signal caller frame *'
/* on if n E'X t frame i s signaller's •/

/* When a V2 PL/I program cal ls an operator the

* operator puts a pointer to the base of

* the caltinq procedure he re. (text base pt r) •I

/* ptr to ps for this frame: also used by fio. •/

3
-\
C0

£
(JJ
r:

I•;.
I ..

.' :\· ,
I ''· I ·'

I·:
/ ; ..

d 1::

.! ': I

: l !·~: ; :: : I ·: l l 1: I. U D E F I L E • • • ~:; t : 1 c k l 1 1: ': d e r . i. n c J • p l. 1 • • 1 I 7 ? B i l l ~ i. l '.Jt~ r ~ I ~
-) · · i ·L r···t ··.·J ·11··,,- 1 y '·1 '·Jl''lV ··r· f':-)r !:~y"'""111 1 i· r1 1'<· ·1r1rl •1or"' "yst,.·"l •is·(·' of ·1r·e•'J"' *I .Ill)~ •. l.·., (.> .J. 1. ~ ·' ··~ 1.. •. ") •• .)l.,• ... ·'- '\·>.:..,I l::: ., , l .. 1 ~ .. t. r .. ,

;1!udi t'i•:d -~/'('(Liy i•l. '.J..:::-ive1· to :id·! nit ptr if/

1110.lii'i.•:d ·11:10 ~>Y >I. '.·Je;wcr to dcfirH:: li·~\J f'rnrue for·:n::it bit '*/ (jJ
:.:•)•.lif';_i·d ·11·rn by ;.1. \.-1:!<:vt~1 .. to 1·c):11o·H~ st.::.1ci:_cncl-pt1· and <Jdd nc~i entr·y op ptrs ~/

~i !J p Lr· ;

~; L;icJ.: !11;;,d ·:r· [);I~;·'! d (.') b) ;1li[~rt~)d,

;) p;,d I (11) fixed bin,
·' u l u l u i, p t r p t 1· ,

;> ,;•Jiilt)i11 .. ~J .~;Lat pt1· pt1',

' ct 1·_p Lr· ptr·,
;·· ::1: .• x lot :;iz,;
) :1 :~~J-· r1--.-1~1~ 1:.~ fu!''t!l.l t

fi.xc~d bin(l'f) unr1l,
bit (1) un:.11,

,') 1•lc!.i.ti p1·0(:-i11vn 1<(:•.l
• > '111·1 -l~ 'l i \· -!- "J) <·I •. I • -·- ... __ ._l ..._ 1 .. 1

:• :;111· lot :;iz~:

"sy::;l:·.•1n_fr·c·t:_yl1"
? u:;:.·t· f1·\'(~ ptr·

") i I LI I. .l p Lt'

" :; !. !C !: lh~I~ i 11 ptr
') 11 u l l_ p t r p ::id
) 1 uL_rit1·

fixt:d hi11 (10) unnl,
f'ix1:d bin(5) u~1t.1l,
fix,:d bin(1·n un<1l,

p tr ,
ptt• I

p'.~r,

pt1·,
pt r ,
ptr·,

;) :·J i ! '. r i , : l _ p LI' pt 1· ,

;> Li I 1"'_1110·:1 [' __ s r> p Lt"' I

; ' p J 1 o 1w 1"1 Lor :.; p t r· p L t' ,
., ,-]- 'll' fl''l' -- 1)'·1· '··. ~ J_ l· ,

? pu:;l1 o~, pL1· ptr,
r··'l.•1~~n_o;i ___ ptr· ptr,

" I',· Luc' 11 nu pop op pt r· µ \: r' ,

·J ·111:1~y __ op_~t1· - - ptr,

') Lr-·, 1 ?1 s u ;.> ___ tv pLr· p \, ,. ' ..
- -

' i. :;o ~- pL1· ptr,
::•:I. p:,,· pLr,

.,
1111·.!T11t1 ··1· p Lt· pLi',

)

;·;/;
I*
I*

I~'

I*
I'"
I* .. / -"

I ~i

I ., ..
!'"

I -:f

/ ·" ..
I " ..
/'!'<

I*
I*
I*
I*

I*
l'i
I*
!'"

I*
I*
;:1
!'"

1·~< the inn in po.inter· to th::: st:ick header *rr:
(J.J

_c:.

(0)
(11)
(6)

;11.so used DS aq~ li~t !Jy out.\Jn1·cl cc.ill handler *
pointer to Uw lot fo1· current rTng (obsolete) *
pointer to area containinG sep::ir3L·2 static */

(3, 1 ~))
< 1 n, 12)
(1 0, 12)
(1 0 , 1?)
(1 0 ' 12)
(1 1 , 1])

(1 2' 1 11)
(1'1, 1())

(1G, 20)
(18, .?2)
(20' 211)
(22, 26)

(2 11 ' 3 ())
C2G, 32)
(2 r, , ~j 11)
C10, 3G)

(3 2, !I 0)
C Vt, 112)
C:F> , IJll)
(~:. ~ , 11 (,)

(110, 5 ())
(112, 52)
(1111 ' ~i II)
(11. r> , ') ())

)

pointer to :-ire:1 eont<::ining lin!-c.J~t~ s;.:ctions
Dll nu!:tbcr of uords .:i.l.loHc.J in lot Yr/
DL. 11 1nb if stack fr<i!ne format has chang,:;d :
DL nonz·;;ro if main proc<~clurc invol<~d in rur
DL number of ar.tivc run units stacked */
DU numb•.;r of ~10rds (~ntries) in lot !f/

pointer to system storage area */
point2r to user storace area */

*!
poinUT to first stacl< frame on the stack :f,

*I
point~r to the lot for the current rin3 */

pointer to sign::il procedure for curr('nt
value of sp before entering bar mod~ */
poi 11 te r to pl 1 opera tors ~;opera tor L1!J 1 <':
rwintcr to sL1ild< .. 1rd c2ll-opl;rator *!

pointer to standnrd push oper;)tor *I
pointer to s L1 nd <>rd r(.:turn opr~r;:itor ;i I

r :in1

*!

pointer to stand ,1rd return I no pop opc;rato1
pointer to

point.::r to
pointcr to
point~r to
pointer to

s Lind <1rd entry operntor "I

translator operator ptrs */
I SOT '~I
System Condition Table */
un\linder for curr•;nt rin:.\ ':t/

J

It'

I"

l
.;y:: l_i.11!: ir11'u ptr· 1itr·,

·' r · r 1 l, -- p Lr· -- -- p t,r· ,

-.:t pLr·
•• ~~)~·: 1~11 I. I tll<l·;:('.

I'' '.·, r '
pt i· pl. r· ,

, ·;.: l. _. · ·, 1\.1 · y ___ u ;i _y tr 1' L 1· ,

·' "x t: , ·: 1 L 1 • y _ 1 Jo>:; c __ op ___ p Lr p lJ ,
;i :;:; ,•1. L ... ·:i\.ry up pt1· pt1-,

: ; . ; ·. · l: t-- ._.. 11 \. 1· /-- .! .,;-;;.: op p Lr· p Lr· ,

i :1L ·.·11:.r·y ,J;> p'd· pL1·,
., l11!--, 11ti·y c: ~-;,; op pt.r· p!.r,

:;.·; __ T1ll __ ,::1Tr·y oii pTr· ptr,
·• .::; L11L :11t.1·y d 0 '.'..;C op_ptr ptr,

') I' . I . L· . (;) (i) ll i t (Y)) : ' l i i'. n ,,, cl ;

I :f

I '·' ..
; 1;

;-:·'

/·'I:
/•'>'
I"'
!*

I " ..
I'*
/)':

I \'. ..

F;

,
c 1~ n ,
(') 0 '
(~)? '
(5 ,, ,

(i ())

(1?)
(J ·'I)
66)

(56, '(n)
c [sr: , ·r?)
((i () ' '(IJ)
((i2, 'h)

((; !\ '
C66,
(63,
(70,

100)
1 () 2)
1 () IJ)
106)

('{?, 110)

'
poi.ntcr to ~'sy.st2rn linl(1-i.:.1r11e t::blc ·f;
po Lntcr to fi:.:fcr·,~nc·~: :·!:11nc T;i\Jle *I
po int<' r· \.:. o c vent ch ;1nno.:1 t z1 bl e *I
poi11tc1· to sLoraL,c: for· (ob~;olr:Lc:) hes :f.:1:.;sig

point:.:r to l)L/T opc~r:.itor c:xt ·:ntry */
po.Lntcr to PL/T opcr·:itur c~xt-cntry d:c:sc :~;
po int c r to PL I I op·~ r· ~tor .'3 s C: x L e nT r y *I
point(;r· to PL/T oper·:1tor ss-cxt--c:ntry .Je~;c *

pointer to !'L/T op::r.:..:tor· int ;:ntry 'I
pointer to PL/I opcr3tor int-entry dcsc ~/
po int c r· to PL I I operator s s T n t c n try * I
point:.2r '-,o PL/I oper·:::itor ss-int-cntry clc~sc

f o r f u t u r c c x p :rn '.3 i o n , i n c l u d i n 3 n c: 1-J c: n t r y o

T \I ! f' ol. l 0 '.I j_ r I '. 0 r f' ~., ('. ·.~ l'l' r c r ~~ t 0 'I t c1 b 10 u i th i n th c pl 1 ope1·citor L1ble. ;i I

dcl

·. ! ·~ !

tv off:;ct fixed bin i~1j_t(::;Ci1) i n t c i- n a 1 .s t .:i t i ~ ; I " (5 5 1) o ct :1 l * I

Tl1•' t'uLlc).:irr.'. cun:.;t:.inL; ~:r.::: offsets ~1ithi.n this tr;rnsfer vccto1~ L:blc. *I

(c ' i l I. 0 l' j' : ; '-~ :~
pu '.;l 1 of' t' :c:'.' t
r · , . 1, u ·;-: 11 u r r :> '~ L

!' \ .. ' \,ii I' 11=:I0 __ p0 p U f' f' 5 L' t
•·11L1·y oi'Cst!L

r i ;{ cd
r i. x (:d
j' ix ('cl
fI.xc~d

fjxc:d

bin
bl II
bin
bin
bin

init(271),
ini.t(27?),
j_nit(.273),
Lni.t(2711),
i11it(2'T5)) i n t c r n :. l s t. ::i t i c ;

~
-i
CJ

__{::

(JJ

L

