
Multics Technical Bulletin MTB-433

To: Distribution

From: Paul .Green

Date: 12/27/79

Subject: Recent Improvements to PL/I

INTRODUCTION

The Multics PL/I compiler has recently been modified to
improve the performance of some old constructs, and several new
constructs have been added that are more efficient than the old
ones they replace. The purpose of this memo is to publicize
these recent additions, so that programmers can convert old
programs, and can use the constructs in new programs.

NEW BUILTINS

clock and vclock Builtins

The clock
the language to
clock, and the
table gives the

and vclock builtin functions have been added to
provide a fast and easy way to get the real-time
virtual-time clock, respectively. The following
old and new methods:

OLD: declare clock entry () returns (fixed bin (71));
c = clock <>T

NEW: declare clock builtin;
c = clock ();

OLD: declare virtual cpu time entry ()
returns (fixed-bin (71));

vc = virtual_cpu_time_ ();

NEW: declare vclock builtin;
vc = vclock ();

Since both the old and new functions return a fixed bin(71)
value, no compatibility problems can arise if the old external
function was properly declared. If -eitner ~-clock_ or
virtual cpu time was declared to return "fixed bin (52)" or "bit
(72)", for- exa;ple, then extreme care must be taken when

Multics project internal working documentation. Not to be
reproduced or distributed outside the Multics project.

Page 1.

MTB-433 Multics Technical Bulletin

conver~ing to the new builtins. I have already found a bug in IOI
that was caused by the following incorrect conversion:

OLD: declare clock entry () returns (fixed bin (52));
bit32 =bit (clock (), 32);

NEW, wITH BUG:
declare clock builtin;
bit32 =bit (clock(), 32);

NEW, WITH BUG FIXED:
declare clock builtin;
bit32 = substr (bit (clock(), 71), 20, 32);

OR:
bit32 = substr (bit (bin (clock(), 52), 52), 1, 32);

OR:
bit32 =bit (bin (clock(), 52), 32);

A call to clock takes 51 microseconds; a call to clock
takes 16 microseconds: A call to virtual_cpu_time_ takes 37
microseconds; a call to vclock takes 22 microseconds. The object
segment is slightly smaller, since no link needs to be generated.
The dynamic linking overhead is also reduced; from one snapping
per program, to one snapping per process.

The clock and vclock builtins are available in Release 24
and subsequent releases.

rank Builtin

The rank builtin function converts a char(1) value to a
fixed bin(9) value that represents the binary encoding of the
character. In other words, it converts a character to its ASCII
value (it also works on non-ASCII characters, those> 177 octal).

The rank builtin function has been added to the language to
replace two equivalent constructs, one of which was efficient,
but machine-dependent, the other of which was inefficient, but
machine-independent. The rank builtin function is both efficient
and machine-independent. The following old constructs should be
changed to use the rank builtin:

OLD NEW
binary (unspec (char1), 9) rank (char1)
index (collate9 () ' char1)-1 rank (char1)
binary (unspec (substr (cs, i ' 1)) ' 9)

rank (substr (cs, i ' 1))

In the 3rd case given above, the new implementation of rank ~
generates substantially better code than the old way.

Page 2.

Multics Technical Bulletin MTB-433

The rank builtin is available in Release 25 and subsequent
releases.

byte Builtin

The byte builtin converts a fixed bin (9) value to a
char (1) value that has the same binary encoding. In other
words, it converts the number K to the Kth ASCII character
(zero-origin). It works on non-ASCII characters as well,
those > 177 octal.

The byte builtin is the inverse of the rank builtin, and has
been added for similar reasons. The following typical old
constructs should be changed to use byte:

OLD: substr (collate9(),i+1, 1)
NEW: byte (i)

OLD:
NEW:

unspec (char 1) = subs tr (addr (i) -> char4, 4, 1),
char1 = byte (i)

The byte builtin is available in Release 25 and subsequent
releases.

IMPROVED BUILTINS

The verify, ltrim, and rtrim builtins have been improved in
the cases where the 2nd argument is a char(1) constant (either a
literal constant, an options(constant), or substr of one of
these). Note that this includes the common cases for ltrim and
rtrim where the 2nd argument is omitted, and hence is a single
blank. Formerly the compiler generated a 128 word table in the
text section of each program that used verify, ltrim, or rtrim
with a constant second argument. (An operator call was, and
still is, generated for a variable second argument). Release 25a
of PL/I (the MR8.0 compiler) generates a reference to one of 512
possible tables in pl1_operators_ for the char(1) constant cases.

This optimization means that every program that uses verify,
ltrim, or rtrim with a constant, char(1) second argument will
become 128 words shorter when compiled with release 25a. Further,
since pl1 operators is wired, no page fault will ever be taken
on these -tables. Rather than attempting to determine whether a
program that uses these builtins meets the optimization criteria,
the best technique is simply to recompile all programs that use
verify, ltrim, or rtrim. Obviously, no source changes are
necessary.

,,,,,., I recommend that all programs that use verify, ltrim, rtrim
be recompiled for MR9.0.

Page 3.

MTB-433 Multics Technical Bulletin

signed and unsigned ATTRIBUTES

The signed and unsigned attributes have been added to the
language to enable the programmer to specify whether a real
(i.e., not complex) variable should have storage for a sign, or
not. These attributes specify the sign-type of a variable. The
unsigned attributes specifies that a value represents nonnegative
values only, and therefore no sign is needed nor wanted.

The present definition permits only real fixed binary
variables to have the unsigned attribute. Someday we will permit
real fixed decimal values to have it, too. Any variable declared
with the fixed or float attribute can have the signed attribute.
See the PL/I Language Specification (AG94), section 5.5, page
5-34, which explains attribute compatibility, for a complete
description.

A value declared "fixed bin (18) unaligned" takes 19 bits.
A value declared "fixed bin (18) unaligned unsigned" takes only
18 bits. Hence, the unsigned attribute can be used to "squeeze
out" one more bit of storage, or conversely, to store twice as
many values in the same storage.

The signed and unsigned attributes
implemented) as a property of variables
meaningless to talk · about the sign-type of
with the data-type and alignment attributes,
match in a call-by-reference context.

are defined (and
in storage; it is

an expression. As
the sign-type must

The abbreviation for unsigned is uns. The signed attribute
has no abbreviation.

The maximum precision for fixed binary values remains 71;
there is no fixed bin (72) unsigned. The switch from
single-precision computations to double-precision computations
remains at 35/36; fixed bin (36) unsigned is double-precision.

Aligned unsigned variables differ from unaligned unsigned
variables in two respects. First, only unaligned unsigned
variables actually save storage. Aligned binary variables
continue to take one or two words, as appropriate. Unaligned
binary variables take an exact number of bits, as before.
Second, the rule for whether one word or two words is used
differs between aligned and unaligned unsigned variables. The
split is at 35/36 for aligned, and at 36/37 for unaligned.
Normally, this should not concern the programmer, since the
normal PL/I precision and argument-matching rules ensure that the
compiler can't get confused. The only time the programmer needs
to think about the difference is when he or she is counting every
word carefully.

Page 4.

Multics Technical Bulletin MTB-433

It is invalid PL/I to assign a negative value to an unsigned
variable. The size ~ondition prefix, if enabled, detects this
error. A value of zero is permitted.

The signed and unsigned attributes are available in Release
24 and subsequent releases.

PACKED DECIMAL

One of the major changes in Release 25 is the change from a
9-bit representation to a 4-bit representation for unaligned
decimal variables. Thus, unaligned decimal variables take about
half the space as aligned decimal variables. If P is the
precision (number of digits), then the formulae are:

real fixed dee (P) unal:

real float dee (P) unal:

real fixed dee (P) aligned:

real float dee (P) aligned:

(P+2)/2 bytes

(P+4)/2 bytes

(P+4)/4 words

(P+5)/4 words

While decimal is infrequently used in systems programs, all
of the programs that do use it, and have no compatibility
problems, should be changed to use unaligned decimal. To
suppress a warning message from the compiler, the
"packed_decimal" option must also be given on the main procedure.

If you recompile a system program and suddenly get the
warning about the change in the implementation of decimal, do NOT
simply add the packed decimal option without first ensuring that
there are no compatibility considerations. The warning message
is the only way we have of detecting programs that use decimal in
the old way.

Page 5.

