
Mu l t i cs Te ch n i ca l Bu l let in MTB-432

To: Dist r ·i but ion

From: Marsh all Presser

Date: 12/27/79

Subject: PL/I Macro Language facilities

INTRODUCTION

Th·is MTB proposes macro language facilities to be included in
Multics Pl/I. The primary purpose of these facilities is as a
tool for systems progr~mmers attempting to maintain software
intended to operate on a variety of hardware. Th1s MTB does not
address the Questions of compatibility with other macro
processors and customer desires.

The facilities proprosed here have their origin in a macro
processor described by Jim Falksen in MTB 345, nGENERALIZED MACRO
PROCESSOR", and from other considerations discussed in MTB 426,
"A Multics Macro Processor". What follows here is a semi-formal
description of the language itself~ some examples, a discussion
of the effects upon list·ings, the integration into the Pt.II
compiler, the interactions v·ith probe and the 1ormatt;ng
programs, and a br-ief discuss·ion of macro libraries.

This MTB is not intended as a final descr-iption of the macro
language, but as a working document.

PRELIMINARIES

All PL/I macro language constructs will begin with a lexeme whose
first character is the percent-sign, i.e. "%", called the trigger
character. This trigger character is used for these reasons:

(1) compatibility with the %include macro and the Xpage and
%skip listing control statements presently in Multics PL/I,

C2) clear demarcation of macro language constructs from PL/I
constructs,

C3) desirability of insuring that only users of macro
facilities pay any signifigant penalty for them.

Multics project internal wo.rking documentation. Not to be
reproduced or distributed outside the Multics project.

Page 1.

MTB-432 Multics Technical Bulletin

The macro language is an interpreted set of macro constructs that ~
perform text manipulation at compile-time and whose "natural"
operations are the replacement of one text strin9 by another and
the concatenation of strings. Various bui Lt-ins, pseudo-ops,
structured data types, and control structures have been included
to allow for ease of expression.

The language is designed to be insensitive to white space within
the syntax of macro constructs, but to preserve white space
within non-macro constructs and w·ithin macro quoted strings.

As the only data recognized by the macro processor is the
character string, clearly white space control is. an important'
part of macro construct-input and output and a fuller explanation
ma y be v a l ua b l' e • T he ·i mp o r t an t w h i t e s pa c e r u l es a r e :

C1) Where white space is explicitly required by the syntax
rules, all such white space so included is irrelevant to the
OUtJ:?_U t.

%macro foo %;

is equivalent to~

%macro f oo

C2> Where wh"ite space is used to seperate lexemes and is not
explicitly required by the syntax rules, it is signifigant
to the output, except when noted.

(a) -Xx Xy -, if xis a variable whose value is the
string "abc" and y is one w·ith value "def", yields
"-abc def -".

Cb) "X cal l C x, y >" i s an i nv o cat i on of
the macro named call with 2 arguments, each ot which is
one character long. To generate the whi.te space in the
a r g u me n t l i s t , o n e mus t m a c ro- Quo t e i t , e. g.

%call C %" x%", %" y % ")

<3> "The macro construct "%." is the null seperator. It
causes no output and is used to terminate lexemes
unambiguously. For example "%x%.y" causes the concatenation
of the ~aero variable x with the character y, while Xxy
causes the output of the macro variable xy.

(4) The macro construct "%+"is
absorbs all trailing white space
formatting macro constructs.

Page 2.

cal led the gobbler.
and is useful

It
in

. "

,..
Multics Technical Bulletin MTB-4 32

<5> The %skip and %page macros only generate wh·ite space in
the listing and do not affect any strings seen by the
compiler.

Finally, as the macro activity precedes within the confines of
the PL/I lex, macro constructs in PL/I comments and PL/I quoted
strings are ignored, since these are the fundamental lexemes of
PL/I. The macro languages can easily generate all such intents
with ease ..

The following terms occur frequently in the language description
f o l lo w·i n g :

<space>::= <blank> I <newline> I <tab> I <formfeed>

<blank>-::= a sci i blank character <octal 40)

<newline>::= ascii newline character <octal 12)

<tab>::= ascii tab characters (octal 1'1and13)

<formfeed>::= ascii formfeed c~aracter (octal 14>

<tri9ger>::= ascii percent-sign <octal 45)

<macro-terminator>::= Xi

< t ext >: : = a st r i ng o·f a s c i ·i
containing a trigger character.
a left to right scan ..

characters (possibly null> not
It is the largest such string in

<macro-integer>::= any macro construct that evaluates to a
decimal integer.

<macro-positive-integer>::= any macro construct that evaluates to
a positive decimal integer

<mac r o- i d e n t i f i e r >: : = < i dent i f i e r >

<identifier>::= a PL/I identifier

<macro-input>::= <macro-construct> I <text><macro-input><text>

< m a c r o- co n st r u c t :>: : = <m a c r o- de c l a r a t i on >
<macro-statement>

<macro-reference>

<macro-dee larati on>::=
<macro-variable-declaration>

<macro-definition>

<macro-reference>::= <macro-call> <macro-scalar-reference>
<macro-array-ref ere nc e> I <mac re-numbered-parameter-reference>
<macro-variable-parameter-reference>

Page 3.

MTB-432 Multics Technical Bulletin

<macro-command-line-argument-reference>
<macro-multiple-command-line-argument-reference>
<macro-active-function-call> I <mac ro-ari th met i c-eval uat ion>
<macro-literal-percent> I <macro-protected-string>
<mac ro-bu·i l tin> I <macro-com ma nd-l i n~-a rgumen t-c ount >
<macro-numbered-parameter-count>

·< m a c r o- s t a t em e n t >: : = <ma c r o- s ca l a r- a s s i g nm en t >
<macro-array-assignmnet> I <macro-if> I <macro-do>
<macro-return> I <macro-rescan> I <macro·-error> I <macro-comment>
I <macro-white-space-control>

INCLUDE, PAGE, SKIP, PRINT, AND NOPRINT MACROS

The include macro is discussed in the PL/I Language Manual AG94.

The page and skip macros are discussed in the pt1_new_features
info seg on system Mand will not be discussed here.

<print-macro>::= %print<space> ••• ;

<noprint-macro>::= Xnoprint<space> ••• ;

The %print and Xnoprint statements act as global switch~s to
control the contents of a· listing segment. When a %nopdnt is
encountered, it will inhibit further list·ing of the program until
a %print statement is encountered. Both these constructs produce
no replacement activity. The default value for listing control
·is %pdnt.

If no listing is requested in the pl1 co.mmand, these statements
are irrelevant. These macros are terminated with a semicolon for
compatibility with %page and %skip.

~ACRO DEFINITION AND INVOCATION

<macro-definition>::=
% m a c r o< s p a c e > ••• <ma c r o- i den t i f ·i e r > (< n am e d- pa r am e t e r- t i s t > J
<macro-terminator><macro-input>%mend

<named-parameter-list>::=
C<macro-formal-parameter>(,<macro-format-parameter>J ••• >

< m a c r o- f o r ma l - p a r a me t er > : : = <ma c r o- i d en t i f i e r >

When a macro definition is encountered, its definition is stored
verbatim, i.e. no evaluation is done at define time, only at
expansion time. A further explana·tion of macro expansion is
given below.

Page 4.

~ultics Technical Bulletin

Example:

%macro greetingsCname)~;
Hello there, %name %mend

MTB-4 32

w h en i n v o k ed a t r. g r e e t i n g s < f red) w i l l y i e l d t h e s t ri n g :

Hello there, fred

Notes:

(1) In either a
argument Ust in
serarator'·s, Ci.e.
ignored.

named parameter list or the corresponding
the call, white space between the argument

comma's> and the argument character strings is-

<2> Macros may be redefined, in which case the mostly recently
encountered definition holds. There is no method of undefining a
m a c r o to r et r i e v e i t s p rev ·i o us d e f i n i t i on •

(3) The
choice of
below and

definition of macros within macros is permitted, with a
syntax. This is discussed in the section on %define
in the example section.

<4> There is no restriction on the invocation of
macro definitions, even recursively. The recursive
include fi Les will not be permitted.,

macros w·i th in
nesting of

<S> To facilitate legibility, there is an implied "gobbler" after
the "%;" in the macro definition header. No white space before
the start of the macro body is relevant. lf some is required, it
can be macro-quoted or inserted with one of the white space
builtins.

(6) Macro names, as well as variable names, are not allowed to
conflict ~ith the macro reserved words. A list of reserved words
appears in appendix A.

(7) A l l ma c r o s a re g l ob a l i n s .c o p e •
internal procedures in PL/I.

(8) The pr eceed i ng
conventions:

t WO p 0 int S lead

There are no objects akin to

to the following naming

(a) Reserved words will
a l p h a be t i c s ..

always contain only lower case

Cb> Macro libraries should adopt a convention like that of
entry points in a single segment, e.g.
libraryname_entryname,

Page 5.

MTB-4 32 Multics Technical Bulletin

Cc> User defined macros are encouraged to consist of upper
case letters, numbers, and the under,score character. This
makes then easily visable in source segments.

(9) Depending upon interest and available time, a named argument
default ma~ be added.

<macro-format-parameter>::=
<m a c r o- i de n t ·i f i e r > (=<de fa u l t -v a l ue > J

<default-value>::= <macro-construct>

where the default value is computed at g~ti.Di time.

When the macro ·is invoked, if the corresponding argument
null string, the default value is supplied.

<macro-cat l>: := %·<macro-identifier>C<macro-argument-list>)

is the

<macro-argument-list>::= [<macro-argument>(,<macro-argument>JJ

<macro-argument>::= <macro-input>

When a macro call Cor invocation> is encountered, the text o·t the
c-all is replaced by the text stream produced by the ·invocation.
Macros must be defined before use, ei~her in the source segment,
an include file, or in a macro library. See below for a further
description of macro libraries and search rules for locating
macros.

Examples:

X f h u < fr ed, Xh i ya, X f h u < Zb ah r (s am)) >

is an invocation of the macro "fhun with three parameters, the
first being the character st ring "fred", the second the value of
the variable "hiya", and the third the result of the macro "-fhu"
invoked with argument the result of the macro "bahr" ~al led with
argument "sam".

Notes:

<1> The order ot evaluation of parameters is from le·ft to right.
Those who use this knowledge to take advantage of side effects
should be wary.

(2)
"(",

Le ad i ng and
", ", and "> ",

trailing white space betkeen delimiters,
is ignored.

Page 6.

i.e.

Multics Technical Bulletin MTB-432

<3> Unspecified arguments are passed as a null string so that
Xxxx(a,,Xa> is a call to macro "xxx" with three arguments, the
first the single character "a", the second the null string, and
the third the value of the macro variable "a".

(4) The number of arguments in an invocation can be either less
than, eQua l to, or greater than the number of named parameters in
the de~inition. If less than, the unspecified parameters are
considered to be the null str-ing, and ·if greater than, the excess
arguments are referenced as numbered parameters, a description of
which is given below.

M A C R 0 V A R I AB L E S

<macro-variable-declaration>::=
<ma c r o- s c o pe > < s p ace > <ma c r o- id en t ; f i er > < space> •••
[<macro-variable-type>J<macr~-terminator>

<macro scope>::= <macro-external-scope> <macro-internal-scope>
I <macro-local-scope>

<macro-extern•l-scope>::= %external Xe.xt

<macro-internal-scope>::= %internal %int

<macro-local-scope>::= %local I Xloc

<macro-variable-type>::= <macro-scalar> < m ac r o- s t a c k >
<macro-queue> I <macro-set> I <macro-array>

<macro-scalar>::= [[scalarJ(<macro-initiali.zer>JJ

< m a c r o- i n i t i a l i z e r > : : = =<ma c r o- i n pu t >

<macro-stack>::= Ci<macro-positive-integer>lJ stack

<macro-Queue>::= C!<macro-positive-integer>lJ queue

<macro-set>::= Cimacro-positive-integerlJ set

<macro~array>: := i<macro-array-bounds.>lCarrayJ

<macro-array-bounds>::= [<macro-lower-bound>:J<macro-upper-bound>

<macro-lower-bound>::= <macro-integer>

<macro-upper-bound>::~ <macro-integer>

Page 7.

MTB-4 32 Multics Technical Bulletin

Before a macro variable can be used it must be declared in a
ma c r o v a r i ab l e d e c l a r at i on s t a t e men t • A l l m a c r o v a r i a b l e s · a r e
character str-ings. They have both scope and type.

The scope rules determine where the names of these variables are
known within an invocation of the macro processor.

External vadables are known through the entire compilation after
the point at which they are declared. If the declaration occurs
within a macro de·finition, that macro must be invoked be·fore the
declaration is considered to have occurred. Once declared, any
further declaration of an external variable of the same name is
ignored. External variables retain their values in the same
fashion as PL/I static variables.

Internal and local vadables are kno:wn only within the macro in
which they are declared. Internal variables retain their values
from invocation to invocation, while local variables are known
only during the invocation of the macro in which they are
imbedded. Internal variables declared outside a macro
definition, i.e. in loose text are dee.med to belong to a macro
whose name is the null string, and are not known within the
invocation of any macro.

The use of local variables outside macro~ is not de·fined. ·rhe
macro processor may or may not indicate an error and the results
can not be guaranteed.

When a macro variable is assigned or referenced, the scope rules
for finding that reference are iirst local, parameter,or
internal, then external. Variable names must not conflict with
macro names nor with reserved words. Furthermore, ther~ can be
no conflict of parameter names with local or internal variable
names.

Macro variables can either be scalars or one of a variety of
aggregate types. The scalars are much like scalars in other
languages. They may be assigned or referenced.

If "xxx" is the name of a scalar :which is accessible via the
scope rules, then the macro processor replaces the string "%xxx"
by the current value of that scalar variable. Scalars not
explicitly initialized are implicitly initialized to the null
string.

Scalars may be initialized at declaration time to any input the
macro processor is capable of exaluating at the time the
declaration actually occurs. For internal and external
variables, this initalization only occurs the first time the
declaration is seen by the macro processor. For local variables,
this initialization occurs each time the macro containing it is
invoked.

Page 8.

Multics Technical Bullett~ MTB-432

If scalars are initialized, all leading and trailing white space
in the initialization is irrelevant. Required white space can be
obtained with the white space builtins or through macro-quoting.

Examples

Xe x t e rn a l T IM E s ca l a r = MON E Y X:
% l o c HO s c a l a r X ;
Xint FU=%bar(%flu>%;

The syntax of aggregate type declaration is very similar to that
ior scalars, but the semantics are much different.

A macro array is an ordered collection of character strings. If
in the declaration a single bound is declared, the array is
assumed to have subscripts beginning at 1 and continuing to its
upper bound. If bounds are declared they are the lower and upper
bounds. At this time arrays are one dimensional. future releases
may provide for multi-dimensional arrays ,.as ~ll as for the
initialization of arrays.

Examples:

% lo c a l F 0 0 {2 0} % ;

%ext GORGONZOLA {%1:%2} array%;

The array FOO has 20 elements, reierenced as XF00{1}, ••• %FOO
{20} respectively. The array GORGONZOLA will have bounds g·iven
by the first and second unnamed· arguments in the call to the
macro in which it is located. If either of these does not
evaluate to an integer or the upper bound is less than the lower
bound, it is an error.

<macro-scalar-assignment>!:= Xlet<space> ••• <macro-identifier> =
< s pa c e > <ma c r o- i n pu t > < s pa c e > ••• % ;

<macro-array-assignment>:: Xlet<space> ••• <macro-identifier>
<macro-array-designator>=<space> ••• <macro-input> x;

<macro-array-designator>!:= !C<macro_integer>J(:<macro-integer>ll

An assignment to a macro scalar variables causes the value of the
right hand side of the assignment statement to be assigned to the
macro variable whose name is indicated on the lef~ hand side of
the assignment. Variables must be declared before being
assigned ..

Page 9.

MTB-4 32 Multics Technical Bulletin

An array assignment is similar but ass·ignment can either be done
to· a single element or to a slice, i.e .. a set of consecutive
members of. the array. In this latter form o·f mult;ple
assignment, all elements are assigned the same value. Future
refinements may allow component-~ise assignment to a slice.. In
both cases the macro-input on the right hand side is evaluated
and the resultant .string assigned to the variable.

Leading and trailing white space ·is insign·ifigant on the right
hand side of the assignment statement ..

Examples:

Zlet foo = %1 z;

%let name = %mac22Ca,b,c> x;
%let mung_list{%foob(barb)} = %mun9_list {Jnumb_of_btots} x;
X l et mun g _ l i st { 2 : 6 } = % mun g _ l i s t {3) % ;

In the next to last example above, the bound f6r the assigned
elements are first computed, i.e. %foob<barb>. This must
evaluate to an appropriate array elements designator. It may, as
a side effect, alter the value of the macro variable
"number_of_blots". This must be kept in mind.

<macro-scalar-reference>::= %<macro-identifier>

<macro-array-reference>::= %<macro-identifier><macro-ref-desi9nator>

<mac r o- re f -des i gnat or>: : = ! [<mac r o- bounds>] (; <macro- ·input> J l

<macro-bounds>::= <macro-integer>[:<macro-integer>J

The semantics of variable reference are fairly simple. Only
previously declared variables may be referenced. Scalar
references are replaced by their values, whereas array references
are of one of three types:

C1> A single element. If one subscdpt
optional semi-colon and macro-input,
e l em e nt o f t he a r r a y i s p r o d uc e d • E • g •

%ABC{ 2 0}

is
the

given
value

and no
of that

returns the value oi the 20'th elelemnt of the array ABC.

Page 10.

Multics Technical Bulletin . MTB-432

<2> The entire array. If no bounds are g·iven1 the entire
array is returned, each element separated by a single blank.
If the semi-colon is present, the st.r;ng following it,
trimmed of leading and trailing white space, is used to
seperate the elements of the array.

Xpowers_of_array{;••} might produce som~thing like:

(3) A slice. If two subscripts of the array are given, and
the first is less than or eQual to the second, those
elements of the array w·i ll be returned, seperated by a
single blank, or if the sem·i-colon form is use, the
seperator string indicated after the semi-colon.

Xframmel{%numer1:Xnumer2:%my_seperator}

A macro stack has the property that it is assigned like a scalar
but .referenced like either an array or a scalar. An a~signment

i s e Qui v a l en t t o p u s h i n g a n e t em en t o n t h e t o p o f th e s t a c k an d a
scalar reference is equivalent to popping the top element off the
stack. An array reference can be use to examine elements in the
stack. The subscript 1 refers to the top of st~ck element, the
subscript 2 to the second element to be popped off the stack,
etc. It is invalid to attempt to e.xamine a stack element not
present in the stack. Stacks are conridered to be unlimited in
size unless an upper bound is explicitly given at declaration
time. In this case, the evaluated posit·ive integer is the
maximal number of elements in the stack. It is an error to push
more than that number of elements onto the stack. Stac:ks may not
be initialized.

Examples:

STAK
size,
each
equal

%external STAK stackX;
Xloc OPTOR_STACK {XSTACK_SIZE} X;

i s a ma c r o s t a c k
bu t OP T 0 R _ ST A C K
invocation of
t o t he v a l ue o f

o f e x t e r n a l s c ope t h a t i s un l i mi t e d i n
is a local stack whose s·ize is computed Con
the macro in which it ·is contained) to be

the macro varible STACK_SIZE.

A macro queue is much like a macro stack, except the discipline
for removal is first in-first out whereas for a stack it is last
in-first out. In all other respects they are equivalent. An
array reference, with subscript n, to a queue returns the n'th

Page 11.

MTB-432 Mult·ics Technical Bulletin

element that will be removed.

A macro set is a an aggregate type composed of elements which are
distinct character str-ings. Assignments are made in the scalar
fashion. At the time of assignment a check is made to see if the
character string ass·igned to the set is already an element. If
so, the assignment has no effect: otherwise the string is made an
element of the set and the number of elements in the set
incremented by one. Like queues and s~acks1 the maximal number
of elements can be established at declaration time or if no such
limit is placed, an unlimited number of elements is allowed.
Initialization of sets is not permitted. The only permissible
reference to a set is an arr.ay reference to all its elements~ as
neither a scalar nor an array reference to a single element by
position is meaningful.

In a later implementation, the set operations union, interse<:tion
and difference may be added~

Example:

% i n t F ix e d _ b·i n s s e t % ;
%let Fixed_bins=arg_count%;
%let Fixed_bins=bat_index%;
%let Fixed_bins = arg_count%;
dee la re C XFi xed_bins{; ,}) fixed bin;

produces the string:

declare C arg_count1bat_index > fixed bin;

PARAMEiER REFERENCE

I n t he f o l low i n g di s c us s i on i t i s assumed
parameters in the named parameter list
invoked, that there were n arguments is the
macro, and that m and n are non-negative.

that there are m
of the macro being
invocation of this

Parameters are of two kinds, named and numbered.
declared, but both are implicitly of type scalar
.scope. Named parameters are indicated in the
declaration, e.g.

%macro xyz (foo1, bar23> x;

Ne·it her can be
and o t local

he ad o t a ma c ro

A reference to named parameter has the same syntax and semantics
as a scalar reference. If the macro is called with fe~er
arguments than parameters Ci.e. n < m), those parameters with no
corresponding argument are assumed to be the null string. Of

Page 12.

Multics Technical Bulletin M"TB-4 32

course, the first argument corresponds to the first parameter,
etc. until the m'th argument.

<macro-numbered-parameter-reference>::: %<positive-integer>

There can be no white-space between the percent-sign and the
positive-integer. It should be noted that the positive-integer
is not a macro-construct whose result is a pos·it;ve integer. A
variable reference to a parameter can be achieved in a manner
described below.

If k is
Ck+m>'th
X k when
argument

a positive integer, then Xk is a reference to the
argument in the invo·cation of the macro. References to

k > n - m, i.e. a numbe.red parameter reference to an
that does not exist, ar:e treated as null strings •.

<%macro-numbered-parameter-count>~:= X*

The macro-numbered-parameter-count is the character string
representation of the number of optional <numbered) arguments
passed in the invocation of' the macro. In the terminology g·iven
above it is the maximum of 0 and n - m. All such system supplied
numbers are trimmed of lead·ing zero's.

Examples:

The following table may be illuminating:

The asterisk indicates that the named parameter doe~ not exist in
that row of the table.

~a-'l:~ li:i~~! 1:1.i~l:~ ~Jll zz
%macro z () r. z () * *
%macro z () Xz<a> * * a

%macro z () Xz(a,b) * * a b

%macro z () %z(a.,b,c) * * a b c

Y.macro z (x) Xz<> *

%macro z (x) Xz<a> a *
%macro z (x) Xz(a,b) a * b

1.mac ro z (x ,y) % z()

%macro z (x ,y) Xz<a> a

Page 13.

a

1

2

3

a

0

1

a

a

MTB-432 Multics Technical Bulletin

%macro z (x 'Y) Xz(a,b) a b 0

%macro z(x,y,w) "z ()

%macro Z (x IY 1 w) %z(a) a

%macro z(x,y,w) %z(a,b) a b

% macro z (x 1y, w) Xz<a,bic> a b

.%macro z (x ,y, z) Zz<a,b,c,a> a b d

<macro-variable-parameter-reference>::= Xi<macro-ref-designator>l

Macro multiple parameter reference works by analogy to multiple
array referencing. For positive integers n1 and n2 with n1 <=
n2, the macro construct

With
n2 or

%{n1 :n2:<stuff>}

is equivalent to

%{n1}<stuff>X{n1+1}<stuff> ••• X{n2-1}<stuff>%{n2~.

n2 < n1 the construct yields the null string and with n1 =
n2 absent, the construct is equivalent to %{n1}.

In this context, macro-constructs may be used to designate both
n1 and n2. If this is done, it is an error if either construct
does not evaluate to a positive integer.

Example:

%macro boo r.;
1.local ba1=2%; %local ba2=4X;
%{%ba1:%ba2:%1} %mend
%boo<••,wombat1aardvark1flea_bag>

will produce:

wombat**aardvark••flea_bag

Command line argument passing permits a command line interface
with the macro processor environment. The syntax of command line
argument input is like that for the alm command (SWG p 6-S>

As there are no equivalens to named parameters to correspond to
c om m a n d l i n e a r g um e n t s, a l l s u ch a r g um e n t s a r e i n t er p r e t e d a s

Page 14.

0

0

0

0

1

Multics Technical Bulletin MTB-432

numbered_ arguments. There is an exact equiva lnce between eommand
line argtJment reference and macro numbered parameter reference
with the understanding that the command line arguments are known
t h r o u g h o u t t he e n t i r e c o mp i l a t i o n •

<macro-command-line~argument-reference>::= %$<positive-integer>

<macro-command-line-argument-count>::=%$•

<macro-multiple-command-line-argument-reference>::=
%S!<macro-ref-designator>l

Example:

%ext count=1%;
%do %while %count<=%$• x;
%include %${%count}_traps;

%+
%let count:%(%count+1)%; Xod

If the compiler is invoked with the three command tine
arguments, e.g.

pt1 trap_handler -map -table -arg cpx fpx mpxr

the segments "cpx_traps.incl.pl1", "fpx_traps.inct.pl1", and
"mpxr_traps.incl.pl1" will be included in the ususal
fashion.

As the command line arguments usually come in no particular
order, it is sometimes easier to use the builtin function Xclarg
to test for expected arguments. This is described elsewhere.

FLOW OF CONTROL

The "natural" macro operations are text replacement and
concatenation. Hence the vast body of macro activity will
consist of argument replacement and the construction of text
strings by concatenating such replacements with non-macro text.
This is much like sequential execution of instructions in a
normal programming language and is clearly insufficient. As a
result some control structures have been provided. One such1 the
m a c r o i n v o ca t i on , i s di s c us s e d a b o v e • O t h e r s f o l l ow be l ow.

<macro-if>::= %if <space> ••• <macro-condition> <macro-then-clause>
C<macro-else-clause>J %f"i

<macro-then-clause>::= %then <space> ••• <macro-input>

<macro-else-clause>::=
<macro-then-clause>J •••

[%else if <space> ••• <macro-condition>
%else <space> ••• <macro-input>

Page 15.

M·Te-432 Multics T~chnical Bulletin

<mac r o- con di ti on.>: : = <mac ro- e x pre s s i on>
<macro-in put ><macro- rel op.><m a·c ro-i npu t> I <macro-input>

<macro-relop>::= <I<= I> I>= I= I·==

The macro-condition evaluated in Xif's and Xwhile's can be one of
the following forms:

(1 > If it is of .the form XC<mac re-expression>), the macro­
expression is evaluated ar·ithmet·ically. 1f it evaluates to
zero, the- condition is false: otherwise it is true.

<2> l f it is of form <macro-input><macro-relop><macro-input>
the comparison is lexicographic. Either of the
macro-input's may be generated by macro activity.

<3> If neither of the above forms hold, the text is
evaluated as a character string <with macro replacement
activity>. In this case, the strings "O", "f", "no", and
"false" cause the condition to be false: otherwise it is
true.

Examples:

%if XCday_nameJ=Sunday Xthen •••

Xdo %while %name1·=xname2 x; •••

When an Xif is encountered, the macro condition immediately
following is evaluated. If this string does not evaluate to
either "Q", "f", "false", or "no" <ignoring case), the
macro-input immediately following the first Xthen is
executed and the rest of the construct, to the matching %fi,
is ignored. If the macro-condition is equal to one of the
aforementioned false values, then

<a> The macro-conditions of the Xel~eif's are evaluated
sequentially until one does not evaluate to a false
string. The macro-input of its Xthen clause is
executed and the rest of the macro-i-f statement is
ignored.

Cb) Else, if none of the Xelseif's evaluates to true,
then the macro-input belong·ing to the Xelse clause is
executed.

<c> Else, if there is no %else clause, then no macro
a c t i v i t y o c c u r s a s a r e s u l t of t h i s m a c r o- i f ..

Page 16.

Multics Techn·ical Bulletin

In short, the macro-if behaves exactly
g a rd e n- v a r i et y p r o g r am m i n g
if ••• then ••• elseif ••• then ••• else ••• c~nstruct.
may be imbedded w·ithin macro-if's.

Examples:

Xif %xx %then %let name=pheu%; Xfi

r. i f % d a y = Mo nd a y
Xthen %include hugga;
%else %include mugga;

Xf i

Xi f % c la r g { ve r 1)
%then %let size=1024%;

Xe l s e i f % c l a r g C v e r 2)
%then %let si ze=2048'%;
%else Xlet size=4096%;

Xf i

MTB-4 32

like the'
language

Macro-if 's

Notes: There is no multiple closure oi macro-if's by a
single %f·i.

<macro-return»::= %return

The effect of a %return within a macro is to halt processing
of the macro at that point •. No further activity occurs
within that invocation of the macro. There is an implied
% r e t u rn a t th e % me n d o r % den d o f a mac r o de f i ni t i on •

If the macro-return is encountered outside a macro
definition, but within an include file, no further contents
of the include file are seen by the compiler <in this
instance of the %include>. If the macro-return is
encountered in loose text in the source segment, then no
more of the source segment is seen by the compiler.

The macro-return is purely a control s~atement and produces
no resultant text replacement activity.

If the %return is imbedded in another macro-construct, e.g.
a macro-if or a macro-do, then the syntax of that statement
must be correct, even if it is the case that the remainder
can never be executed under any circumstances. As a result
the following statement is in error:

%if TRUE %then %return

Page 17.

MTB-432 Multics Technical Bulletin

<macro-do>::= Xdo< space> <mac ro-·i npu t> Xwhi te<spac e.> •• ,.
<macro-condit·ion>X; <macro-input> Xod
<macro-break>::= %break

The macro-input following the %do is perform~d. The
macro-condition following the Xwh·ile is tested.. If H
evaluates to a false string, no further processing takes
p l a c e a s pa rt of t h i s c on s t r u c t • 0 t he r w i s e , th e m a c r o- i n p u t
following the x; after the macro-condition is performed.
This cycle of performance of the preceedin9 input, testing,
and performance of the trai ting input continues until the
macro-condition evaluates _ false or a macro-break is
encountered. this latter construct causes an immediate exit
from the loop.

Examples:

Xloc name=X1Xi
Xdo Xwhile Xname·=X(active_func XgorpJ %;
%let gorp = Xnext C%gorp> %;
Xif Xgorp=Xthen %let name=%2%i %break Xfi Xod

XL et var_ nu m= 0 X;
%do Xlet var_num=XC%var_num+1> %while XCXvar_num<=X*> %;
ARG. NO Xvar_num = X<Xvar_nwn} Xnewlinecn Xod

In the first example, the loop is executed until the
var-iable "name" is eQual to the value of the act·ive
function, or until the variable "gorp" is eQual to the null
string. In the first instance, .,name" will be set to the
first numbered parameter, while in the second instance, it
will be set to the value of the second numbered parameter.
The second example cycles through the unnamed arguments in a
call to a macro printing out an identi,fy·ing string and the
value of the argument.

Notes: The position o·f the test between the two
macro_inputs allows for either leading or trailing decis·ion
within one convenient syntax for looping. Ii the first
input is null, the condition is tested before any execution
of the trailing macro-input. This corresponds to WHILE
condition DO statements END, whereas if the second
macro-input is null, the construct corresponds to DO
statements UNTIL condition END.

Nesting of macro-do's is possible, but possibly confusing to
readers. Multiple closures of macro-do's i.s not supported.

Page 18.

Multics Technical Bulletin MTB-432

EXPRESSION EVALUATION

<macro- a r i th met i c-e val u at ion >: : = X C <mac r o-·i npu t ::>)

The e:ffect of the arithmetic evaluator is to perform arithmet·ie,
relational, and logical evaluation of character strings. Since
macro language is string manipulative and not arithmetically
orientated, the statments:

Xlocal foo=sx;
Xlet foo=%foo+1x;

assigns to foo the str-ing "5+1", not "6".. As a result, if
arithmetic evaluation is required, it .must be explicitly
demanded. The macro-input is expanded in a left to right scan
a n d t h e re s u l t an t c ha r a c t e r s t r i n g tr ea t e d ·a s t h ou g h i t we r e an
arithmetic expression. The operators available are the four
arithmetic operators C"+", "-", "*", and "/"), left and· right
parenthesis for grouping, and relational operators (":", "-=",
"<", ">", "<=", and "::>=">. Normal PL/I precedence rules apply
with relational operators having lower precedence than "+". The
relational operators r~turn a value of "1" if the relation holds
a n d "0" o t he r w i s e. A s a r es u l t , A ND ' i n g an d OR ' i n g c a n be
accomplished with "*" and"+" respectively~ All arithmetic is
done as fixed binC3S> .. It is an error if the macro-·input is not
capable of being evaluated due to the inclusion of non-numeric
items or arithmetic overflow.

Examples:

X l et tug u e = X C X fugue * 2 > X ;

Xi·f XC CXdrink=MILK_SHAKE) * CXsand-wich=ROAST_BEEF>)
%then Xtraf Xfi

Xloca l x_ok=QX;
Xloca l var=1%;
%do %while %var<=XS* x; %+
Xif Xlooks_reasonableC%${%var})

% t hen % l et x _ o k = X C % x _ o k-+ 1 > X; X f i X +
Xtet var=XC%var+1>X; Xod

In the first example the value of the macro variable fugue is
doubled. In the second example, if both conditions are met, the
macro variable traf is output .. In the third example, each of the
command line arguments, if any, is used as an argument to the
macro "looks_reasonable". Each time the macro returns a
non-false value, the va,..;able x_ok is in-cremented. This example
illustrates the use of a variable reference to a command line
argument.

Page 19.

MTB-432 Multics Technical Bulletin

COMMENTS AND ERROR REPORTING

<macro-comment>::= %comment <text> x;
<comment-text>::= any string of characters not containing the
<mac r o- t e r mi n a t o r >

This construct has no effect on the semantics
processing, yields no r~sultirig string, and allows the
of comments in macro constructs.

of macro
inclusion

<macro-error-statement>::= %error <space> ••• <macro-integer>
,<macro-input> x;
When a macro-error-statement is encountered, the macro-integer
and the macro-input are evaluated. The macro-integer must be a
positive ·;nteger less than s. This construct yields no resulting
string, but is used to generate a macro-error message it lex time
in the compiler. The error is passed on the the compiler and is
used to generate a PL/I error message with s~verity equal to the
value of the macro-integer. The purpose of th·is construct is to
allow the authors of macro libraries to report ·incorrect macro
usage.

Example:

%mac r o fr ob 0
%comment construct a call to the frob function and re·turns %;
%if %•<=3 %then %erro.r 2, "frob called w·ith too few arguments .. x;
•••
•••

%mend

MACRO BUIL TIN FUNCTIONS

Macro bui ltin fuctions prov·ide useful functions that either can
not be performed directly in macro language or can be performed
much more efficiently than if constructed in macro language.
They all have the syntax of macro calls, except that unlike some
user defined macros, all builtins that take a fixed numberCsl of
arguments. These calls wilt result in errors if the argument
count is unsatisfactory.

The following all
pl/I built ins.

7.substrO
%length()

have the same semantics as the corresponding

%ltrim0
%rtrimC>

Page 20.

%verify()
%search<>

Multics Technical Bulletin MTB-432

%index() %reverse()

Xcount(<macro_input>,<macro_input>)

%count returns a macro integer and has the following semantics:

(1) If the length of the first argument : o, %count returns
o.

<2) If the length of the second argument = Q, %count returns
the length of the first argument. ·

(3) Otherwise the value returned by %count is the number of
characters in the first argument before the first character
in the first argument not present in the second.

(4) If the second argument is omitted, a single blank
assumed.

Examples:

Xtet R=%count C<stuff1>, <stuff2>)

is equivalent to:

%let R=%C%verify(<stuff1>,<stuff2>)-1) %;
%if %R=-1 %then %let R=Xleng·thC<stuff2>)X;

is

If the value of %name is the 7 character string "abc+def",
then

%count <Xname,abcdef) : 3

Zcount<Xname,+*/-) = 0

%count (xy, wxyzab) = 2

%arg(<macro-input>)

When encountered in a macro, the value of the arg builtin is "1"
if the <macro-input> is equal to any of the arguments in the call
corresponding to numbered1 i.e. optional1 parameters. Otherwise,
this builtin returns "0". Named parameters must be tested
explicit Ly.

% cl a r g (<ma er o- i n put>)

Page 21.

Multics Technical Bull~tin

If any of the command-line-arguments is equal to the
<macro-input> this builtin returns "1"; otherwise it returns "0".

Both constructs should be used instead of explicit iteration
through the argument list.

%lboundC<macro-input>>
Z e mp t y C < m a c r o- i n p"u t »
XdeleteC<macro-input>,<macro-input>>
XmemberC<macro-input>1<macro-input>)

Xhbound<<macro-input>)

For all the above, the first argument must expand to the name of
a macro aggregate type. Scope rules apply. When a second
argument appears, it may be a arbitrary character string.

XlboundO returns the lower baund of an array and the value "1"
for all other aggregate types.

%hbound returns the upper bound for an array. For other
aggregate types, the returned value is the number of elements
currently held in that aggregate. For empty queues, stacks, and
sets, this·is "O", otherwise it will be a positive integer, less
than or equal to the declared maximal size, if any.

%empty does not return a value. It has the effect of removing
all elements from an non-array aggregate. For an array, all
e l em e n t s a re s e t t o t he nu l l st r i ng •

%delete does not return a value. For an array, if the second
argument as a character string is equal to any element of the
array, that element is set to the null string. For sets it
removes the element from the set. For Queues and stacks, the
element is removed and the queue or stack is appropriately
adjusted. It is not permitted to delete a non-e~istant element
nor to delete an element by position rather than by value.

%member returns a "1" if the second argument is equal to any
element of the aggregate type. Otherwise it returns a "O".

% n e w l i n e C < ma c r o- po s i t i v e- i n t e g er >)
%htabC<macro-positive-integer>)
XvtabC<macro-positive-integer>>
%spaceC<macro-posit ive-i nteger>>
%newpageC<macro-positive-integer)

These builtins generate white space as a result. If invoked with
an argument, that argument must evaluate to a positive integer,
which is the number of such white space characters produced. If

Page 22 ..

Multics Techn;cal Bulletin MTB-432

no argument is present, the number one is assumed.

XuniQueC>

Xu n i Q u e t a k e s n o a r g um e n t s and r e·t u r n s a p o s i t i v e · i n t e g er ; n t h e
range 1 to 2*•35-1. The ti rst 2••17-1 such integers are
guaranteed to ·be unique. It may be that these numbers wilt be
produced by a random numer generator.

XnumberC<macro-input>>

If the expansion of the macro-input yields a cha~acter string
capable of being evaluated as a macro-integer in an arithemtic
expression, the value returned is "1", otherwise it is "O".

ACTIVE FUNCTION CALLING

<macro- act iv e-t unction-cal l >: :-= X [<macro-input>]

The expanded macro-input is processed as as active function and
~ the result of the active function call returned. For nested

active functions, only the outermost left square bracket need be
preceeded by a percent-sign. There will be a h~ndler tor active
function errors, but erroneous active function calls will yield
macro and pl1 lex errors. In the best of circumstances an error
will be no.ted and the null string returned. Active functions are
found according to the usual search strategy.

Examples:

if reg_value = %[hexadecimal Xf robJ

1.let label= X[ltr-im [unique]! J Xi

call xx_Syy Cfnp, X[my_ac_fn bac let tom], code);

WHITE SPACE CONTROL

<macro-null-separator>::~ X.

<macro-gobbler>::=%+

The null-separator causes no output, but serves as an delim·iter
to separate macro lexemes from adjoining text. The gobbler
absorbs all trailing white space and is usefull in formatting.

Page 23.

MT B:- 4 32

Examples:

%ma c r o h i _ t he r e
hi there %+
bozo % mend

%hi there C >

returns the string:

hi there bozo

More useful,perhaps is the distinction:

Multics Technical Bulletin

which is a concatenation of the value of the macro variable foo
with the string "(x,y)", whereas:

returns the value of the macro foo called with a.rguments "x", and
"y".

OTHER MACRO FACILITIES

<macro-protected-string>::= ztt<macro-protected-text>%"

The macro processor does not expand any macro constructs in the
macro-protected-text. It does remove both the lead·ing and
trailing%" and converts internal double-%"'s to a single%".

Examples;

%let delim = %"%;%"%;
%let quoter = %"%"%"%"%;

assigns the string "%;"to delim and the string "%""to quoter.

<macro-literal-percent>::=%%

The result of the literal-percent is to produce a single percent
in the output. This is used in defin·ing macros within macros and
for rescanning purposes ..

Page 24.

Multics Technical BulCetin

Examples:

%let percent = xr. z;

assigns to the variable percent the character "%".

The following example shows nested macro definition:

%macro define_mac
%%macro %1
%%[12 %%{ }J %%mend

%mend

%define_macCADD1my_add)

w i l l g e n e r at e t h e f o t l o w i n g mac r o d e f in i t i o n :

%macro ADD
%Cmy_add %{ }J %mend

The macro invocation

%A D D C f r e d , s a m, j o e)

will return the string returned by the active funcion call

Cmy_add f red sam j oeJ

<macro-rescan>: : = r. rescan< mac r o-i npu t >%;

MTB-432

The macro-input is evaluated
for further macro-activity.
activity is not rescanned
such special case is that of

and the resultant text is rescanned
under norm a t c ·i r cums tan c es ma c r o
for subsequent macro activity. One

include files.

Example:

7.mac ro mac 1
%rescan %%foobC%1)%; %mend

%macro foob
%{ ,--} %mend

will produce:

hey--ho--tiddly--i--pom

Page 25.

MTB-432 Multics Technical Bulletin

NESTED MACRO DEFINITION

the ability to define a macro which can be used to further deiine
other macros ·is often useful. There are two mi!thods for doing
this which are best demonstrated by example.

%macro declare Cname,attirbutel x;
%rescan %%macro %name %"%:%"

declare(%%{;,)) %attribute; %%mend x;
%mend

If the macro "declare" is ;nvoked as:

%declare CFB,fixed binary)

the expansion of "declare" before rescanning produces:

Xr e s c a n % ma c r o F 8 x;
declare (%{;,})fixed bina~y; %mend x;

The rescanning defines FB as a macro.

If FB is then invoked as:

%FBCbat_snout,liver_wort, old_soxl

the resultant st ring is:

declare Cbat_snout,tiver_wort,old_sox>' fixed binary;

T h e a l t e rn a t e f o r m o f n es t e d mac r o d e f i n i t i on us e s t he
%define ••• %dend construct and produces more legible output and
automatically causes rescan~ing. With the %define statement, the
macro "declare" is:

%macro define (name,attribute) x;
%define %name x;

d e c l a r e < % % { ; , } > f i x e d b i n a r y ; % den d
Xmend

It is important to note that %define replace %%macro, Xdend
replaces %%mend. Rescanning is autom~tic1 so it is not
specified. This yields the winnage that the %; ·in the header of
the nested macro definition need not be protected. It was
required in the previous ex.ample becau.se it would terminate the
%rescan prematurely. The double percent's are still required
because they refer to the numbered parameters of the defined
macro, not the defining macro.

Page 26.

Multics Techn·ica l Bulletin

The macro "dee la re" can be
example:

imbedded

%mac r o f i x e d_ bi n s % ;
%local i = 1 r.·;

in other macros,

%do %while %i <= %* %:
%dectare(F8%{%i},fixed binaryC%{%i}))
%let i = %< %i + 1 > %; %ad

%mend
When invoked as:

MTB-432

so for

produces the declaration macros "FB8","F817", ••• "FB35". ~hus the
invocation:

%FB8Cada,otto,madam)

produces the desired result:

declare Cada~otto,madam) fixed bi nary (8);

<macro-nested-definition>::= %define<space> ••• <macro-input> %dend

The macro input must evaluate to the form required in a
macro-def i ni t i on, i . e.,

(1) the name of the defined macro must be a
macro-identifier;

C2J there may be an optional named-parameter-list:

(3) the macro terminator must be included in the
macro-header.

Macro-nested def i nit i on s may ·only appear within
macro-definitions.

MACRO CROSS REFERENCE

The macro processor will generate a cross reference listing of
all macro variables, builtins, pseudo-ops, and macro calls used
in the compiled program. This will include such items as na.me of
the item, class of item <e.g. macro, ext stack {20}, parameter,
builtin, etc}, and locations of declarations and use. As in
other line numbering schemes, all line numbers refer to real
locations in the storage system. Use of macros with macros will
be designated in a manner analagous to the present listing of
include files.

Page 27.

MTB-432

Example:

MACRO ACTIVITY IN THIS COMPILATION

NO.
0
1

IDENTIFIER
comm _err_
epug oms_

LISTINGS

TYPE
macro
ext array

Multics Techn·ical Bulletin

DECLARATION/USAGE
1 5 / 1 9 9-1 1 M 4
9-11/M4 22

Macro activity in. the compiler introduces two problems in the
general area of listings: what should the compiler produce and
how should it number its lines.

In many cases, the programmer will wish to see only the macro,
e.g. in the case of macro use of named constants. In others1 the
expansion is more relevant, especially when debugging. What
holds for macro activity also holds for in-elude file content.To
solve this problem, expansion control will be controlled by two
macro builtin functions, Xilist to control include file
expansion, and Xmlist to c~ntrol macro expansion listing.

Both built ins are ~al led with either no arguments or one argument
which may be either "source", "expand", or flboth". If the
argument is "source", the Li sting will show only the source of
all macro constructs. If the argum~nt is "expand", the listing
will show only the exp~nsion of macro constructs. If the
argument is "both", both the source and the expansion is show.n,
with the expansion first, followed by the source, delimited by
PL/I comment delimiters. The listing builtins may also be called
with no argument, in which case the present value of that listing
control is returned.

Line numbers always will refer to real locations in the storage
system. As a result, if a macro expansion requires several lines
of output, it will appear in the listing, and in the statement
map as part of the line in the real storage system from which
this macro activity was generated~

Examples:

Suppose lines 9-11 of the source contained:

if foo = %blag
then foo = foo + %bar;
else f oo = foo %bar;

Page 28.

Multics Technical Bulletin MTB-432

and the value of i.blag were 16384, and the value of %bar 1024,
then the result in the listing for mlist set to "source",
"expand", and "both" respectively would be:

9 if foo = %blag
1 0 then t 00 = foo + ~bar;
1 1 et s e t 00 = too - % bar:

9 if foo = 16384
10 then too = foo + 1 024;
1 1 else f 00 = foo - 1 024;

9 it foe = 16384 /%blag•/
10 then too = foo + 1 024 /•7.bar•/
11 else f oo = foo - 1 024 /•%bar*/

Further, let the macro COM_ERR be defined as:

%macro COM_ERR
%comment 1s~ param is condition, others are args of com_err_ %:
%comment defaults: param1-code·=o; param2-Q%;
i.loc cond=code·=oz; %Loe arg1=or.;
i.if %1-=%. i.then %let cond=%1%; %fi
%if %2-=%. %then %let arg1=%2%; i.fi
if i.cond
then do:

call com_err_ C%arg1,"mpxy", &{3:7.•; ,});
return;

end;
%mend

then, if lines 20-22 of the source contained:

call xxx_$yyyCname, age, soc_sec_num)
%COM_ERR < ,code, "·a", soc_sec_num>
call get_data <soc_sec_num>;

then the result in the listing for mlist
" e x pa n d ", an d "b o t h " respectively would be:

set

20 call xxx_$yyy(name, age, soc_sec_num);
21 %COM_ERR (,code, "-a", soc_sec_num)
22 call get_ data <soc_sec_num);

20 call xxx_$yyyCname, age, soc_sec_num);
21 if code·=o

then do;

to "source",

call com_err_ <code, "mpxy","-·a",soc_sec_num);
return:

end;

Page 29.

MTB-432 Multics Technical Bulle~in

22 call get_data Csoc_sec_num>;

20 call ~xx_$yyy(name, age, soc_sec_numl;
21 if code ·= 0

then d oi
call com_err_ <code, "mpxy", "-a", soc_sec_num);
return;

endi /* XCOM_ERR C ,code, ,,_a", soc_sec_num) •/
22 call get_data Csoc_sec_num>.i

For %ilist set to "source", "e~pand" and "both" respectively, the
listing would show the %include statement, the contents of the
include file, and first the %include statement and then the
contents of the include file.

The default value for Xi list is "expand" and for %mtist "source".

Calls to Xilist and %mlist with no argument can be helpful in
saving and restoring expansion parameters in macro library usage,
macro debugging, etc.

EFFECTS UPON PROBE

The results of macro activity can depend upon the compile time
environment in. a manner that can not easily be duplicated at run
time. As a result, it is unreasonable to expect probe <and other
run time tools> to be able to recreate that environment.

It might be po~sible to include in the object segment some sort
of tool for the reconstruction of this environment, but the costs
of this could be enormous. Therefore, what probe will know about
is the PL/I program as seen by the compiler after macroprocessing
h a s o c c u r r ed •

The first implication of this scheme is that probe will not be
able to expand macro constructs. If it is expected that probe is
possibly necessary, then a su·itable listing should be obtained.

The other implication of th·is strategy is that all line numbers
re f e r t o r ea l e n ti t i e s i n t h e s t or age s y s t em. !iii h en probe i s
asked to display source segment statements, it will refer to the
Pl/I source segment and relevant include files. When probe is
~sked to ~et break points, it refers to the statement map, which
a l way s u s e s re a l st or ag e s y s t em l o c a t ·ions •

Therefore, should a macro on line n of the source generate m PL/I
statements, probe will know these as statements Q, 1, 2, m-1 of
line n.

Page 30.

Multics Technical Bulletin MTB-432

EFFECTS UPON FORMATTING PROGRAMS

There are no plans at this time to alter indent. Some t·ime in
t he fut u r e, i t w o u l d be u s e f u l to a l l ow f or ma t _ p l 1 to rec o gn i z e
macro constructs, but it is unclear whether it would format them
as well. At the present time format_pl1 only understands the
'4include statement.

MA C R 0 L I B R AR I E S

Macro libraries will not be present in the initial implementation
of the macro processor. In the future, if a macro is invoked and
has not been defined in the source segment or an include file, or
defined dynamially, then relevant macro libraries will be
searched. These will be found using the translator search rules.
Tools for library management will include listing the table of
contents, adding macros, deleteing macros, updating macros, and
editing macros. It may be the case that macros in libraries be
kept in a semi-comp·i led form, as an ef·fic·iency measure. In this
case, the macro library would perform syntax checking when -macros
were placed in the library.

CONTROL ARGUMENT ADDITIONS TO THE PL1 COMMAND

-mlist STR

change the default value of mlist to STR, which must be
either "source", "exparrdn, or "both".

-ilist STR

change the default value of ilist to STR1 which must be
either "source", "expand", or "both".

- a rg ume n t
-ag

indicates that the following strings are to be taken as
command line arguments to the macro processor. If present,
t h i s mu s t b e t h e f i n a l con t r o l a r g u m en t •

IMPLEMENTATION SCHEDULE

Before the macro processor is
compiler it will be available in a
occur by the first of the year,
language. An announcement will be
w i l l be ma de sh o r t t y • s h o r t l y ..

fully integrated into the PL/I
stand-alone form. This should
with a subset of the full
made shortly. An .announcement

Sometime in the early part of

Page 31.

MTB.:.432

next year, the macro
the pl1 compiler.
%print, and %noprint
ti me .•

processor should be fully integrated into
Those who use only Xinclude, %skip, %page,

should not expect any increase in compile

THE STANO ALONE MACRO PROCESSOR

Until such time as the macro processor is integrated into the
PL/I compiler, it can be used in a ·stand alone fashion with the
command "macro".

~am~: macro

The macro command invokes the stand alone macro processor t~
translate a segment with macro constructs in accordance with the
defined macro language. This command can not be called as an
active function.

macro inpath (outpath} (-control_args}

where;

1. path
is the pathname o·f a PL/I source segment with macro
constructs. If the path doe.snot have a suffix of pl11
then one is assumed. The use of a source segment is
incompatible with the -ia control argument.

2. out path

is the pathname of the macro processed source segment.
The suffix pl1 is assumed if not given. If outpath is
omitted and there are no errors and the -pr or -ia
control arguments are not used, then inpath is
overwritten. If there are errors and outpath is
omitted, a version of the mac.ro processed segment is
left in the process directory.

3. cont r o l_ a r g s
can be chosen from the following list:

- i n c l ud e, - i n c
removes all %include statements and replaces them by
the contents of the include file, expanding that as
well. The default is to leave the %include statements
intact.

Page 32.

Multics Technical Bulletin MTB-432

-no_include, -nine
does not process ~include statements, but leaves them
intact. (DEFAULT)

-print, -pr
indicates that the macro processed output is printed on
user_output rather than placed in a segment. This
cont r o l a r gum e nt i s i n comp at i bl e w i t h the use of an
outpath segment name, and is assumed when the -ia
co n t r o l a r gum e n t i s us e d •

-version, -ver
wilt print the version number of macro.

-no_version , -nver
will not print the version number. (DEFAULT).

-list, -ls
produces a line-numbered listing of the macro processed
result with a cross reference table in a segment with
suffix mac l st.

-call STR
will call STR as a command after the translation is
complete, if the macro proce~sor does not discover an
error.

-argument STR's, -ag STR's
indicates that the following
as command-tine-arguments. If
present, it must be the last
argument must follow.

-interactive, -ia

strings are to be passed
this control argument is
one and at t east one

indicates that the input is to come from user_input
rather than a segment. This control argument is
incompatible with either an input or output path name,
the -call control argument, and the -list control
argument.

When interactive mode is entered, macro promts for
input when ready and accepts everyting until a line
consisting solely of a period. At this point the input
is processed and the result delivered to user_output
fo l l ow e d by t h e p r om pt • A l i n e co n s i s t in g so l e l y of
the five characters "%Quit., terminates the interactive
session.

Interactive mode operates as though the
control argument were specified.

Page 33.

- inc t ude

MTB-432 Multics Technical Bulletin

In the stand-alone macro processor, the list·ing control
statements %print, Xnoprint, Xmlist, %page, %skip and
%ilist are replaced verbatim, because they are intended
as directions to that section of the PL/I compiler
res po n s i b le f or l i st in gs.

Please send comments to:

MPresser.Multics,

or

Marshall Presser
Honeywell Information Systems
5 75 Tech Square
Cambridge, Mass. 02139

Or cat l:

c 617) 492-9320
HVN 261-9320

Page 34.

Multics Technical Bulletin MTB-432

APPENDIX A

At the time of this writing, the following words are reserved and
can not be used as the names o·f macros or variables .. The list is
subject to expansion, but observes the convention that all
reserved words will contain only lower case letters.

comment
do while break od
de·fi ne dend
if th en else elseif fi
error
ext external
include
int internal
let
loc local
macro mend
print nop r int
page
rescan
return
skip
Quit

,,.. At the time of this wdting, the following built;n functions have
been defined. It is not permissable to redefine them, as either
macros or variables.

arg clarg
hbound lb ound
empty delete
member
il is t ml is t
ltrim rt rim
count
index verify search
subs tr
length
htab vt ab space newline newpage
unique

Page 35.

