Multics Technical Bulletin MTB=432

To: Distribution

From: Marshall Presser

Date: 12727779

Subject: PL/I Macro Language Facilities

INTRODUCTION

This MTB proposes macro Llanguage facilities to be included in
Multics PL/I., The primary purpose of these facilities is as a
tool for systems programmers attempting to maintain software
intended to operate on a variety of hardware. This MTB does not
address the questions of compatibility with other macro
processors and customer desires,

The facilities proprosed here have their origin in a macro
processor described by Jim Falksen in MTB 345, "GENERALIZED MACRO
PROCESSOR",» and from other considerations discussed in MTB 426,
"A Multics Macro Processor". What follows here is a semi-formal
description of the language itself, some examples, a discussion
of the effects upon Llistings, the integration into the PL/I
compiler, the interactions with probe and the formatting
programs, and a brief discussion of macro libraries.

This MTB is not intended as a final description of the macro
language, but as a working document,

PRELIMINARIES

ALl PL/1 macro language constructs will begin with a lexeme whose
first character 1is the percent-sign, i.e, "%", called the trigger

character. This trigger character is used for these reasons:

(1) compatibility with the %include macro and the %page and
“skip listing control statements presently in Multics PL/I,

(2) clear demarcation of macro language constructs from PL/I
constructs,

(3 desirability of insuring that only wusers of macro
facilities pay any signifigant penalty for them.

Multics project internal working <documentation. Not to be
reproduced or distributed outside the Multics project.

Page 1.

MTB=-432 . Multics Technical Bulletin

3

The macro language is an interpreted set of macro constructs that
perform text manipulation at compile-time and whose "natural”
operations are the replacement of one text string by another and
the concatenation of strings. Various built=inss pseudo—ops.,
structured data typess, and control structures have been included
to allow for ease of expression.

The language is designed to be insensitive to white space within
the syntax of macro constructs, but to preserve white space
within non-macro constructs and within macro guoted strings.

As the only data recognized by the macro processor 1is the,
character stringes <c¢learly white space control is. an important
part of macro construct input and output and a fuller explanation
may be valuable., The important white space rules are:

(1) Where white space is explicitly required by the syntax
ruless, all such white space so included is irretevant to the
output.

“macro foo %,
is equivalent to:

Amacrcro i foo
%

(2) Where white space is used to seperate lexemes and is not
explicitly required by the syntax rules, it is signifigant
to the output, except when noted.

(a) -%x Zy -, if x is a variable whose value is the
string "abc" and y is one with value '"def", yields
"-abc def -".

(b) "%ecall(X s y)" dis an dinvocation of

the macro named call with 2 arguments, each of which is
one character long. To generate the white space in the
argument Llist, one must macro—quote it., . I8

Zcall ¢ x" xZ", %" y i)
(3) The macro construct "%Z.” is the null seperator. It
causes no output and 1is used to terminate lexemes

unambiguously. For example "%x%.y" causes the concatenation
of the macro variable x with the character y, while %xy
causes the output of the macro variable xy.

(4) The macro construct "Z+" s called the gobbler., It
absorbs all trailing white space and is useful in
formatting macro constructs.

Page 2.

Multics Technical Bulletin ' MTB=-432

(5) The %Zskip and Z%page macros only generate white space 1in

the listing and do not affect any strings seen by the
compiler,

Finally, as the macro activity procedes within the confines of
the PL/I lex, macro constructs in PL/1 comments and PL/I quoted

strings are ignored, since these are the fundamental lexemes of

PL/1. The macro languages can easily generate all such intents
with ease,

The following terms occur frequently in the language description
following:

<space>::= <blank> | <newline> | <fab> | <formfeed>

<blank>t::= ascii blank character (octal 40)

<newline>z:2:= ascii newline character (octal 12)

<tab>::= ascii tab characters (octal 11 and 13)

<formfeed>::= ascii formfeed character (octal 14)

<trigger>::= ascii percent-sign (octal 45)

<macro-terhinator>::= %

<text>::= a string of ascii characters (possibly null) not
containing a trigger character. It is the largest such string in

a left to right scan.

<macro-integer>::= any macro construct that evaluates to a
decimal integer,

<macro-positive-integer>::= any macro construct that evaluates to
a positive decimal integer

<macro=-identifier>:z:= <identifier>
<identifier>:z:= a PL/I identifier
<macro-input>::= <macro-construct> | <text><macro—-input><text>

<macro-construct>::= <macro-declaration> | <macro~-referance> |
<macro-statement>

<macro-declaration>s:= <macro—-definition> 1
<macro-variable~declaration>

<macro-reference>::= <macro-call> | <macro-scalar-reference> |
<macro-array-reference> | <macro~numbered—-parameter—reference> |
<macro-variable—-parameter~-reference> I

Page 3c

MTB=432 Multics Technical Bulletin

<macro-command-l ine-argument—reference> |
<macro-multiple-command-~line-argument-reference> |
<macro-active-function-call> | <macro-arithmetic—-evaluation> |
|
1

<macro-literal-percent> I <macro-protected=string>
<macro~builtin> i <macro~command-{ine-argument=-count>

<macro-numbered-parameter-count>

<macro-statement>Ii:= <macro—-scalar-assignment> |
<macro—-array-assignmnet> | <macro—-if> | <mac ro—-do> |
<macro-return> | <macro—-rescan> | <macro—error> | <macro-comment>

| <macro-white-space—-control>

INCLUDE, PAGE, SKIP,» PRINT, AND NOPRINT MACROS
The include macro is discussed in the PL/I Language Manual AG94,

The page and skip macros are discussed in the pli_new_features
info seg on system M and will not be discussed here.

<print=-macro>::= Jprint<spaced...-
<noprint=-macro>::= Znoprint<space>...’s

The %print and Znoprint statements act as global switches to
control the contents of a-listing segment. When a Znoprint is
encountered, it will inhibit further listing of the program until
a %print statement is encountered. Both these constructs produce
no replacement activity. The default value for listing control
is Jprint,

If no Llisting is requested in the pl1 command, these statements
are irrelevant. These macros are terminated with a semicolon for
compatibil ity with Xpage and %skip.

MACRO DEFINITION AND INVOCATION
<macro-definition>::=
Zmacro<spaced..s<macro—identifier>[{<named-parameter-list>]

<macro=-terminator><macro-input>imend

<named-parameter—lList>s:=
(<macro-formal-parameter>{,<macro-formal-parameter>],..)

<macro-formal-parameter>::= <macro~identifier>
When a macro definition is encountered, its definition is stored
verbatim, i.e. no evaluation is done at define time, only at

expansion time, A further explanation of macro expansion 1is
given below.

Page 4,

Multics Technical Bulletin MTB=-4 32

Example:

“macro greetings(name)’’
Hello there, Z%name Zmend

when invoked at Xgreetings(fred) will yield the string:
Hello there, fred

Notes:

(1) In eidther a named parameter list or the corresponding
argument list in the <call, white space between the argument
serarator's, (i,e, comma's) and the argument character strings is
ignored.

(2) Macros may be rédefined' in which case the mostly recently
encountered definition holds. There is no method of undefining a
macro to retrieve its previous definition,

(3 The definition of macros within macros is permitted, with a
choice of syntax. This is discussed in the section on Zdefine
below and in the example section.

(4) There 1is no restriction on the invocation of macros within
macro definitions, even recursively, The recursive nesting of
include files will not be permitted.

(5) To facilitate legibility, there is an implied "gobbler”" after
the "%:;" in the macro definition header. No white space before
the start of the macro body is relevant, If some is required, it
can be macro-quoted or inserted with one of the white space
builtins.

(6) Macro names, as well as variable names, are not allowed to
conflict with the macro reserved words. A list of reserved words
appears in appendix A,

(7) ALL macros are global in scope. There are no objects akin to
internal procedures in PL/I1.

(8) The preceeding two points lead to the following naming
conventions:

(a) Reserved words will always contain only lower case
alphabetics.

(b) Macro libraries should adopt a convention Llike that of

entry points in a single segment., €ePa
libraryname_entryname.,

Page 5.

MTB=432 Multics Technical Bulletin

(¢c) User defined macros are encouraged to consist of upper
case letters, numbers, and the underscore character, This
makes then easily visable in source segments.

(9) Depending upon interest and available time, a named argument
default magy be added.

<macro-formal—-parameter>::=
<macro~identifier>(s<default-value>]

<default-value>::= <macro-construct>

where the default value is computed at define time.
When the macro is invoked, if the corresponding argument 1is the
null string, the default value is supplied.
<macro-call>s:= Y%<macro-identifier>(<macro-argument=Llist>)
<macro~argument-list>z:= [<macro—-argument>[,<macro-argument>]]
<macro-argument>::= <macro-input>
When a macro call (or invocation) is encountered, the text of the
call s replaced by the text stream produced by the invocation.,
Macros must be defined before use, either in the source segment.,
an include file, or in a macro library. See below for a further
description of macro libraries and search rules for Llocating
Mmacros.
Examples:
Zfthu(fred,%hiya,%Xfhu(Zbahr(sam)))
is an 1invocation of the macro “fhu" with three parameters, the
first being the character string "fred”, the second the value of

the wvariable "hiya'", and the third the result of the macro "fhu"

invoked with argument the result of the macro "bahr" called with
argument "sam".

Notes:

1) The order of evaluation of parameters is from left to right,
Those who use this knowledge to take advantage of side effects
should be wary.

(2) Leading and trailing white space between delimiters, i.e.
"(", ","s and ")", is ignored.

Page 6.

Multics Technical Bulletin MTB-432

(3) Unspecified arguments are passed as a null string so that
Zxxx(arss%a) is a call to macro "xxx"™ with three arguments, the
first the single character "a", the second the null string, and
the third the value of the macro variable "a".

(4) The number of arguments in an invocation can be either lLess
than, equal to, or greater than the number of named parameters in
the definition. If Less than, the wunspecified parameters are
considered to be the null string, and if greater than, the excess

arguments are referenced as numbered parameters, a description of
which is given belowe

MACRO VARIABLES

Declarations

<macro=-variable-declaration>z:=
<macro-scope><spaced,..<macro-identifier> <spacedeea
[<macro-variable-type>l<macro-terminator>

<macro scope>::= <macro-external-scope> | <macro-internal-scope>
| <macro-local-scope> :

<macro-external~scope>::= Xexternal | Yext
<macro-internal-scope>::= Zinternal | %int
<macro-ldcal-scope>::= Zlocalt t %loc

<macro-variable-type>3:= <macro-scalar> | <macro-stack> |
<macro-queue> | <macro-set> | <macro—-array>

<macro-scalar>:1:= [[scalarll<macro-initializer>1]
<macro-initializer>::= =<macro-input>

<macro=-stack>::= [{<macro-positive-integer>}] stack
<macro-queue>::= [{<macro-positive-integer>}] queue
<macro-set>::= [jmacro-positiye*integerl] set

<macro-array>::= {<macro—-array-bounds>}larray]l
<macro-array—bounds>;:= [<macro-lower-bound>:J<macro-upper-bound>
<macro~lower-bound>::= <macro-integer>

<mac¢ro-upper~-bound>::= <macro-integer>

Page 7.

MTB=-432 Multics Technical Bulletin

Before a macro variable can be used it must be declared in a
macro variable declaration statement. All macro variables are
character strings. They have both scope and type.

The scope rules determine where the names of these variables are
known within an invocation of the macro processore.

External variables are known through the entire compilation after
the point at which they are declared. If the declaration occurs
within a macro definition, that macro must be invoked before the
declaration is considered to have occurred. Once declared, any
further declaration of an external variable of the same name 1is
ignored. External variables retain their values 1in the same
fashion as PL/1 static variables.

Internal and Llocal variables are known only within the macro in
which they are declared. Internal variables retain their values
from 1invocation to invocation, while lLocal variables are known
only during the invocation of the macro 1in which they are
imbedded. Internal variables declared outside a macro
definition, i.e. in loose text are deemed to belong to a macro
whose name is the null strings, and are not known within the
invocation of any macro.

The use of lLocal variables outside macros is not defined. The

macro processor may or may not indicate an error and the results
can not be guaranteed.

When a macro variable 1s assigned or referenced, the scope rules
for finding that reference are first local, parametersor
internal, then external. Variable names must not conflict with
macro names nor with reserved words., Furthermore, there can be
no conflict of parameter names with local or internal variable
names.

Macro variables <c¢can either be scalars or one of a variety of
aggregate types. The scalars are much Llike scalars 1in other
languages. They may be assigned or referenced.

If "xxx" s the name of a scalar which is accessible via the
scope rules, then the macro processor replaces the string "Zxxx"
by the <current wvalue of that scalar wvariable., Scalars not
explicitly initialized are implicitly dnitialized to the null
string.

Scalars may be initialized at declaration time to any input the
macro processor 1is capable of exaluating at the time the
declaratiaon actually occurs., For internal and external
variables, this initalization only occurs the first time the
declaration is seen by the macro processor. For local variables,
this initialization occurs each time the macro containing it 1is
invoked,

Page 8.

Multics Technical Bulletin _ MTB=432

;f scalars are initialized, all leading and trailing white space
in the initialization is irrelevanta. Required white space can be
obtained with the white space builtins or through macro-quoting.

Examples

Zexternal TIME scalar = MONEY %
Zloc HO scalar %,

Zint FU=Xbar(%Zflu)¥%.

ihe syntax of aggregate type declaration is very similar to that
for scalarss, but the semantics are much different.

A macro array is an ordered collection of character strings. If
in the declaration a single bound 1is declared, the array is
assumed to have subscripts beginning at 1 and continuing to 1ts
-upper bound., If bounds are declared they are the lower and upper
bounds. At this time arrays are one dimensional. Future releases
may provide for multi~dimensional arrays _as well as for the
initialization of arrays.

Examples:
“local FOO (20} %:
%Yext GORGONZOLA {%1:%2) array%;

The array F0O0 has 20 elements, referenced as ZF00{1},...%F00
{20) respectively. The array GORGONZOLA will have bounds given
by the first and second wunnamed arguments in the call to the
macro in which it is Llocated, 1f either of these does not
evaluate to an integer or the upper bound is less than the lower
bound, it 1is an error,

Assigpments

<macro-scalar-assignment>::= %Zlet<spaced...<macro-identifier> =
<space,..<macro~input><spacedea.%s

<macro-array-assignment>:: %let<spaced...<macro-identifier>
<macro-array-designator>=<spaced>...<macro-input> %’

<macro~array—-designator>::= {[<macro_integer>](:<macro-integer>]}

An assignment to a macro scalar variables causes the value of the
right hand side of the assignment statement to be assigned to the
macro variable whose name is indicated on the left hand side of
the assignment. Variables must be declared before being
assigned.

Page 9.

MTB-432 ’ Multics Technical Bulletin

An array assignment is similar but assignment can either be done
to- a single element or to a slicesr, i.e. a set of consecutive

members of the array. In this latter form of multiple
assignment, all elements are assigned the same value. Future
refinements may allow component-wise assignment to a slice. In

both cases the macro—input on the right hand side is evaluated
and the resultant .string assigned to the variable.

Leading and trailing white space is insignifigant on the right
hand side of the assignment statement.

Examples:
“let foo = %1 %,
%let name = Zmac22(arbsc) %;
Zlet mung_Llist{%foob(barb)} = Zmung_Llist {(Ynumb_of_blots} X%’
Ylet mung_Llist{2:6} = %mung_Llist{3} %’

In the next to last example above, the bound for the assigned

elements are first computed, 1i.e. Zfoob(barb). This must
evaluate to an appropriate array elements designator, 1t may, as
a side effect, alter the value of the macro wvariable .

"number_of_blots", This must be kept in mind.

Vacriable Reference

<macro-scalar-reference>s:= J<macro-identifier>
<macro-array~-reference>::= %<macro-identifier><macro-ref-designator>
<macro-ref-designator>:z:= {{<macro-bounds>l[;<macro-input>]}
<macro-bounds>::= <macro-integer>[:<macro-integer>]

The semantics of variable reference are fairly simple. Only
previously declared variables may be referenced, Scalar

references are replaced by their values, whereas array references
are of one of three types:

(1) A single element. If one subscript 1is given and no
optional semi-colon and macro—input., the value of that
element of the array is produced. E.g.

ZABC{20}

returns the value of the 20'th elelemnt of the array ABC.

Page 10.

Multics Technical Bulletin " MTB-432

(2) The entire array. If no bounds are given, the entire
array is returned, each element separated by a single blank.
I1f the semi-colon is present, the string following it,
trimmed of leading and trailing white space, is used to
seperate the elements of the array.

“powers_of_array{(,*+*} might produce something like:

alphax+*betat**xgammaxxdelta

(3) A slice. If two subscripts of the array are given, and
the first is less than or eqgual to the seconds, those
elements of the array will be returned, seperated by a
single blank, or if the semi-colon form 1is wuse, the
seperator string indicated after the semi-colon.

Zframmel{Znumer?! :%numer?2;%Zmy_seperator)

tructured Data ITyxpes

A macro stack has the property that it is assigned like a scalar
but referenced like either an array or a scalar. An assignment
is equivalent to pushing an element on the top of the stack and a
scalar reference is equivalent to popping the top element off the
stack. An array reference can be use to examine elements in the

stacke. The subscript 1 refers to the top of stack element, the
subscript 2 to the second element to be popped off the stacke.
etc. It 1is invalid to attempt to examine a stack element not

present in the stack. Stacks are considered to be wunlimited 1in
size wunless an upper bound is explicitly given at declaration
time. In this case, the evaluated positive integer s the
maximal number of elements in the stack. It is an error to push
more than that number of elements onto the stack. Stacks may not
be initialized,

Examples:

Zexternal STAK stack?%;
%“loc OPTOR_STACK {%STACK_SIZEY %’

STAK is a macro stack of external scope that is unlimited 1in
size, but OPTOR_STACK is a local stack whose size is computed (on
each 1invocation of the macro in which it 1s contained) to be
equal to the value of the macro varible STACK_SIZE.

A macro queue is much Llike a macro stack, except the discipline
for removal is first in-first out whereas for a stack it is last
in-first out. In all other respects they are egquivalent, An
array reference, with subscript n, to a queue returns the n'th

Page 11,

MTB=432 _ Multics Technical Bulletin

element that will be removed.

A macro set is a an aggregate type composed of elements which are
distinct character strings. Assignments are made in the scalar
fashion. At the time of assignment a check is made to see if the
character string assigned to the set is already an element, If
sos the assignment has no effect; otherwise the string is made an
element of the set and the number of elements 1in the set
incremented by one, Like queues and stacks, the maximal number
of elements can be established at declaration time or if no such
Limit is placed, an unlimited number of elements 1is allowed.
Initialization of sets 1is not permitted. The only permissible
reference to a set is an array reference to all its elements, as
neither a scalar nor an array reference to a single element by
position is meaningful.

In a later implementation, the set operations union, intersection
and difference may be added,. '

Example:

Zint Fixed_bins set%;

%let Fixed_bins=arg_count¥%’;

%let Fixed_bins=bat_index¥%’

%“let Fixed_bins = arg_count¥%’;

declare (XFixed_bins{’,}) fixed bin,

produces the string:

declare (arg_countr,bat_index) fixed bin;

PARAMETER REFERENCE

In the following discussion it is assumed that there are m
parameters 1in the named parameter Llist of the macro being
invoked, that there were n arguments is the invocation of this
macror, and that m and n are non-negative.

Parameters are of two kinds, named and numbered. Neither can be
declared, but both are implicitly of type scalar and of Llocal

ScCope. Named parameters are indicated in the head of a macro
declaration, e.g.

Amacro xyz (fool, bar23) %,

A reference to named parameter has the same syntax and semantics

as a scalar reference, If the macro 1s called with fewer
arguments than parameters (i.e. n < m)» those parameters with no
corresponding argument are assumed to be the null string. of

Page 12.

Multics Technical Bulletin MTB=-4 32

courser, the first argument corresponds to the first parameter,
etc. until the m'th argument.

<macro-numbered-parameter-reference>::= %<positive~integer>

There can be no white-space between the percent-sign and the
positive-integer. It should be noted that the positive-integer
is not a macro-construct whose result is a positive integer. A

variable reference to a parameter can be achieved 1in a manner
described below.

If k 1is a positive 1integer, then Zk 1is a reference to the
(k+m)'th argument in the invocation of the macro. References to
Zk when k > n - ms, i.8. a Nnumbered parameter reference to an
argument that does not exist, are treated as null strings. .

<%macro-numbered—parameter—count>z::= ’*

The macro-numbered-parameter—count is the character string
representation of the number of optional (numbered) arguments
passed in the invocation of the macro. 1In the terminology given
above it is the maximum of 0 and n - m. All such system supplied

numbers are trimmed of leading zero's.
Examples:
The following table may be illuminating:

The asterisk indicates that the named parameter does not exist in
that row of the table,

Macrgo Header Macro call ix 4y 1 Z2 43 ix
Zmacro z() %2z20) * * 0
%macro z() “Z2Ca)d * * a

Zmacro z() %Zz(a.b) * * a b

“Zmacro z() %“2Carbsc) * + a b c
Ymacro z(x) %220) *

“macro z(x) “z(a) a * 0
%macro z{x) %z(ar,b) a * b 1
Zmacro z(x»,y) 220)

Zmacro z2(xs,y) Zz(a)d a

Page 13.

MTB=432 Multics Technical Bulletin

%“macro z(x.,y) %2(arb) a b
%“macro zZ(xsysrw) ‘ %2z2()

Zmacro z(xosy,w) Zz(a) a

%“macro zZ{xsy,w) %2Ca,b) a b
%macro 2(xsys,w) Xz(arsbrc) a b
%macro z(xs,ys2) %“2(asbsc,d) a b d

<macro-variable-parameter-reference>::= %{<macro-ref-designator>}

Macro multiple parameter reference works by analogy to multiple
array referencing., For positive integers n1 and nZ2 with n1 <=
nZ2s, the macro construct

%{n1:n2;<stuff>)
is equivalent to :
Z{Nn1I<stuffo4{n1+1)I<stuff e {nd=13<stuff>%{n2>.

With n2 < nl1 the construct yields the null string and with nl1 =
n2 or n?2 absent, the construct is equivalent to %{n1}.

In this context, macro-constructs may be used to designate both
n1 and nl. 1f this is done, it is an error if either construct
does not evaluate to a positive integer.

Example:
Amacro boo %’
%local bal1=2%; %Zlocal ba2’2=4%;
Z{%bal1:%ba’2’;%1) Xmend
%boo (**,wombat raardvark.flea_bag)

will produce:

wombat**xgardvark**flea_bag

Copmand Lipe Arguments

Command Line argument passing permits a command Lline interface
with the macro processor environment. The syntax of command line
argument input is like that for the alm command (SWG p 6-5)

As there are no equivalens to named parameters to correspond to
command line arguments, all such arguments are interpreted as

Page 14,

Multics Technical Bulletin MTB=432

numbered arguments. There is an exact equivalnce between command
lLine argument reference and macro numbered parameter reference
with the understanding that the command line arguments are known
throughout the entire compilation.

<macro-¢ommand-line-argument—-reference>::= %$<positive~integer>
<macro~command=-line-argument—count>s:= %%+

<macro-multiple-command-line-argument-reference>::=
%2%{<macro-ref-designator>}

Example:

%Zext count=1%;
%do %while Ycount<=%3%x %, %+
Zinclude X${%count)_traps 7 %let count=X{(%count+1)%, %od

If the compiler is 1invoked with the three command Lline
arguments, e.,g.

pl1 trap_handler -map -table -arg cpx fpx mpxr

the segments "cpx_trapse.incl.pl1”, "fpx_traps.incl.plt1”, and
"mpxr_traps.incl.pl1” will be included 1in the wususal
fashion,

As the commangd Lline arguments wusually come in no particular
order, it is sometimes easier to use the builtin function Xclarg
to test for expected arguments, This s described elsewhere,

FLOW OF CONTROL

The “natural™ macro operations are text replacement and
concatenation. Hence the wvast body of macro activity will
consist of argument replacement and the construction of text
strings by <concatenating such replacements with non-macro text.
This i1s much like sequential execution of instructions 1in a
normal programming language and is clearly dinsufficient. As a
result some control structures have been provided. One such, the
macro invocation, is discussed above. Others follow below.

<macro—-if>s:= %if <space>...<macro-condition> <macro-then-clause>
{<macro—-else-clause>] %Zfi

<macro-then-clause>::= %then <spaced>...<macro-input>

<macro—-else-clause>::= [Zelseif <space>,..<macro-condition>
<macro—-then-clause>l... Z%else <space>...<macro—-input>

Page 15.

MTB=432 Multics Technical Bulletin

<macro~-condition>::= <macro-expression>]
<macro-input><macro-relop><macro-input> | <macro-input>
<macro-relop>z:= < | <= 1 > |} >= | = | °=

The macro-condition evaluated in %Zif's and %while's can be one of
the following forms: .

(1) 1f it is of the form %Z{(<macro-expression>), the macro-
express ion is evaluated arithmetically. If it evaluates to
zero, the. condition is false, otherwise it is true,

(2) If it is of form <macro—-inputd><macro~relop><macro-input>
the comparison is lexicographic. Either of the
macro-input's may be generated by macro activity.

(3) 1f neither of the above forms hold, the text is
evaluated as a <character string {(with macro replacement

activity). In this case, the strings "0", "f", "no", and
"false" cause the condition to be false, otherwise it s
true.

Examples:
Zif L(%*x+%%*=-6) Xt hen ...
%“if %[day_namel=Sunday Xthen ...

Zdo Zwhile Z%namel =%name2 %’ eee.

When an %if is encountered, the macro condition immediately
following is evaluated. If this string does not evaluate to
either "0", "f", "false”", or "no" <(ignoring <casel), the
macro=input immediately following the first Zthen is
executed and the rest of the construct, to the matching %fi,
is ignored., If the macro-condition is equal to one of t he
aforementioned false values, then

(a) The macro—conditions of the Zelseif's are evaluated
sequentially wuntil one does not evaluate to a false
string. The macro—input of dits %Zthen <clause is
executed and the rest of the macro-if statement is
ignored.

(b) Else, if none of the Zelseif's evaluates to true.,
then the macro-~input belonging to the ZXelse clause 1is
executed.

(c) Else, 1if there is no Yelse clause., then no macro
activity occurs as a result of this macro-if.

Page 16.

Multics Technical Bulletin : MTB=432

In short., the macro-if behaves exactly Like the
garden-variety programming language
ifoeeethen,..elseifo.eathen.,.else... construct. Macro=-if's

may be imbedded within macro-if's.,
Examples:

Zif Zxx Xthen Xlet name=pheu¥’; %fi

%1f %day=Monday
“then XZinclude hugga’
%Zelse Zinclude mugga:;
%fi

Zif %Zclarg{ver1) :
Zthen Zlet size=10247%,
Yelseif Zclarg(ver?2)
Zthen Zlet size=2048%;
Zelse Zlet size=4096%;
A

Notes: There is no multiple closure of macro-if's by a
single %fi,

<macro-return>t:= Jreturn

The effect of a %return within a macro is to halt processing
of the macro at that point. No further activity occurs
within that invocation of the macro. There is an implied
Zreturn at the Xmend or %dend of a macro definition.

If the macro-return is encountered outside a macro
definitions, but within an include file, no further <contents
of the 1dinclude file are seen by the compiler {(in this
instance of the Zinclude). If the macro=-return is
encountered 1in Loose text 1in the source segment, then no
more of the source segment is seen by the compiler,

The macro—~return is purely a control statement and produces
no resultant text replacement activity.

If the Zreturn is imbedded in another macro-construct, €.Q.
a macro-if or a macro~do, then the syntax of that statement
must be corrects, even if it is the case that the remainder
can never be executed under any circumstances. As a result
the following statement is in error:

%1f TRUE %then Zreturn

Page 17.

MTB=432 Multics Technical Bulletin

<macro-do>: := Ydo<spaced...<macro=input> Zwhile<spaced,..
<macro-condition>%; <macro~-input> X%od
<macro-break>::= Zbreak

The macro—-input following the %do is performed. The
macro—-condition following the Xwhile 1s tested. If it
evaluates to a false string, no further processing takes
place as part of this construct., Otherwise, the macro-input
following the %, after the macro-condition is performed.
This cycle of performance of the preceeding input, testing,
and performance of the trailing input <continues wuntil the
macro-condition evaluates false or a macro-break s
encountered. this latter construct causes an immediate exit
from the Lloop. :

Examples:

%loc name=%1%;

%do Zwhile %Zname~=Z%lactive_func JXgorpl %;
%let gorp = %next (Xgorp) %,

%1t Jgorp=%then %Zlet name=%2%; %break %fi %od

dlet var_num=0%’
%“do Xlet var_num=%(Z%Zvar_num+1) ZXwhile XZ(%Zvar_num<=%«x) %’ -
ARG, NO Z%var_num = %Z{Zvar_num) Znewline(1) ZXod

In the first example, the Lloop is executed until the
variable '"name" is wequal to the value of the active
function, or until the variable '"gorp" is equal to the null
string. In the first instances, "name”™ will be set to the
first numbered parameter, while in the second instance, it
will be set to the value of the second numbered parameter,
The second example cycles through the unnamed arguments in a

call to a macro printing out an identifying string and the
value of the argument.

Notes: T he position of the test between the two
macro_inputs allows for either leading or trailing decision
within one convenient syntax for looping. If the first
input is null, the condition is tested before any execution
of t he trailing macro-input. This corresponds to WHILE
condition DO statements ENDs, whereas if the second
macro—-input is nulls, the <construct corresponds to DO
statements UNTIL condition END,.

Nesting of macro-do's is possible, but possibly confusing to
readers. Multiple closures of macro-do's is not supported.

Page 18.

Multics Technical Bulletin _ MTB=-432

EXPRESSION EVALUATION
<macro-arithmetic-evaluation>::= %(<macro=input>)

The =effect of the arithmetic evaluator is to perform arithmetic,
relational, and logical evaluation of character strings. Since

macro language s string manipulative and not arithmetically
orientated, the statments:

“local foo=5%.
“let foo=%foo+1%;

assigns to foo the string "5+1", not "6". As a result, if
arithmetic eva luation is required, it .must be explicitly
demanded. The macro-input is expanded in a left to right scan
and the resultant character string treated as though it were an
arithmetic expression, The operators available are the four
arithmetic operators ("+", "=", """, and "/"), left and right
parenthesis for grouping., and relational operators ("=", ""=",
"<, ">", "<=", and ">="). Normal PL/] precedence rules apply
with relational operators having lower precedence than "+", The
relational operators return a value of "1" if the relation holds
and "0" otherwise. As a result, AND'ing and OR'ing <can be
accomplished with "#*" and "+" respectively. All arithmetic 1is
done as fixed bin(35). It is an error if the macro—input is not
capable of being evaluated due to the inclusion of non-numeric
items or arithmetic overflow. :

Examples:
%“let fugue=%(X%fuguex*2)X,

Zif %C (%drink=MILK_SHAKE) » (%sandwich=ROAST_BEEF))
Zthen Xtraf %Zfi

%Zlocal x_ok=07%>
%local var=1%;
“do %while Xvar<=Xs$+ %; X+
%“if %looks_reasonable(%3%{%var})
%“then %let x_ok=%(%x_ok+1)%; X%Xfi %+
“Zlet var=%(%var+1)7%, %od

In the first example the value of the macro variable fugue s
doubled, In the second example, if both conditions are met, the
macro variable traf is output. In the third example, each of the
command Line arguments, if any, is used as an argument to the
macro "looks_reasonable”. Fach time the macro returns a
non-false value, the variable x_ok is incremented. This wexample
illustrates the wuse of a variable reference to a command line
argument,

Page 19.

MTB=-432 Myultics Technical Bulletin

COMMENTS AND ERROR REPORTING

<macro-comment>::= Xcomment <text> %/

<comment-text>::= any string of <characters not containing the
<macro-terminator> :

This construct has no effect on the semantics of macro
processing, yields no resulting stringr and allows the dnclusion
of comments in macro constructs,

<macro-error-statement>::= %error <space>...<macro-integer>
e<macro=-input> %,

When a macro-error-statement 1is encountered, the macro-integer
and the macro-input are evaluated. The macro-integer must be a
positive integer less than 5. This construct yields no resulting
string, but is used to generate a macro—~error message at lex time
in the compiler. The error is passed on the the compiler and is
used to generate a PL/l error message with séverity equal to the
value of the macro-integer, The purpose of this construct is to
allow the authors of macro libraries to report +dncorrect macro
usage.

Example:

%macro frob ()
%“comment construct a call to the frob function and returns %’
Zif %#*<=3 Ythen Yerror 2, "frob calied with too few arguments” Z%;

- o @&

%“mend

MACRO BUILTIN FUNCTIONS

Macro builtin fuctions provide useful functions that either can
not be performed directly in macro language or can be performed
much more efficiently than if <constructed in macro language.
They all have the syntax of macro callss, except that unlike some
user defined macroses all builtins that take a fixed number(s) of
arguments, These calls will result in errors if the argument
count is unsatisfactory.

String Handling Builtins

The following alt have the same semantics as the corresponding
pl/I builtins,

%substr() ZltrimO Averify () | A
%length () srterim() %“search()

Page 20.

MulticsrTechnicaL Bulletin MTB=-432

Zindex() Zreverse ()
Zcount(<macro_input>,<macro_input>)
Zcount returns a macro integer and has the following semantics:

(1) If the length of the first argument
0.

0, %count returns

(2) If the length of the second argument
the lLength of the first argument.,

0, %count returns

(3) Otherwise the value returned by Zcount is the number of
characters in the first argument before the first character
in the first argument not present in the second,

(4) 1f the second argument is omittedr, a single blank is
assumed.

Examples:
%Zlet R=%count (<stuffl1>, <stuff2>)
is equivalent to:

Zlet R=%(%verify(<stuffi1>,<stuff2>)-1) ¥%;
Zif %R=-=1 Zthen %let R=%length(<stuff2>)%’;

1f the value of XZname is the 7 character string "abc+def"”,
then

H
W

Zcount(iZname,abcdef)
“count{(Zname,+*x/=) = (0

“Zcount (xy, wxyzab) = 2

Aryament Handling Builtins

Zarg(<macro-input>)

When encountered in a macro, the value of the arg builtin is ™1"
if the <macro-input> is equal to any of the arguments in the call
corresponding to numbered, i.e. optional, parameters. Otherwise,
this builtin returns "0". Named parameters must be tested
explicitly.

%clarg(<macro-input>)

Page 21.

MTB=~432 Multics Technical Bulletin

If any of the command~line-arguments is equal to the
<macro-input> this builtin returns "1", otherwise it returns "Q",

Both constructs should be used instead of explicit iteration
through the argument list.

Aggregate Hapndlipg Builtips

%Zlbound(<macro—-input>) %Zhbound {<macro-input>)
Zempty(<macro—-input>)

%“delete(<macro-input>,<macro-input>)
“member(<macro=-input>,<macro-input>)

For all the abover, the first argument must expand to the name of
a macro aggregate type. Scope rules applys When a second
argument appears, 1t may be a arbitrary character string.

%lbound() returns the lower bound of an array and the value "™1"
for all other aggregate types, .
%hbound returns the wupper bound for an array. fFor other
aggregate typess, the returned value is the number of elements
currently held in that aggregate. For empty queues, stacks, and
sets, this is "0", otherwise it will be a positive integer, less
than or equal to the declared maximal size, if any.

%Zempty does not return a value. It has the effect of removing
all elements from an non-array aggregate, For an array, all
elements are set to the null string.

%“delete does not return a value, For an array. if the second
argument as a character string is equal to any element of the
arrays, that element is set to the null string, For sets it

removes the element from the set, For queues and stacks, the
element is removed and the queue or stack is appropriately
adjusted. It is not permitted to delete a non-existant element
nor to delete an element by position rather than by value.,

“Zmember returns a "1" if the second argument 1is equal to any
element of the aggregate type. Otherwise it returns a "0".

Wbite Space Builtins

“Znewline(<macro-positive-integer>)
%“htab(<macro-positive-integer>)
Zvtab(<macro-positive-integer>)
%space(<macro-positive—integer>)
Znewpage(<macro-positive—integer)

These builtins generate white space as a result. If invoked with

an argument, that argument must evaluate to a positive integer,
which is the number of such white space characters produced., If

Page 22.

Multics Technical Bulletin . MTB=432

no argument is present, the number one is assumed.
Qther Builtips

%unique ()

Zunique takes no arguments and returns a positive integer in the
range 1 to 2+=*x35-1, The first 2**17-1 such integers are

guaranteed to 'be unigue. It may be that these numbers will be
produced by a random numer generator.

Znumber (<macro=1input>)

I1f the expansion of the macro=input yields a character string
capable of being evaluated as a macro-integer in an arithemtic
expression, the value returned is "1", otherwise it is "0".

ACTIVE FUNCTION CALLING

<macro-active-function-call>z2:= XI{<macro-input>]
The expanded macro-input is processed as as active function and
the result of the active function call returned. Ffor nested
active functions, only the outermost left square bracket need be
preceeded by a percent-sign. There will be a handler for active
function errors, but erroneous active function calls will vyield
macro and pll1 lex errors. In the best of circumstances an error
will be noted and the null string returned. Active functions are
found according to the usual search strategy.
Examples:

if reg_value = %Chexadecimal %Zfrobl

%let label = %[ltrim Cuniquel ' 1 %,

call xx_Syy (fnp, %Cmy_ac_fn bac let toml, code):
WHITE SPACE CONTROL

<macro-null-separator>z:= %.
<macro-gobbler>zs:= %+
The null=separator causes no output, but serves as an delimiter

to separate macro lexemes from adjoining text, The gobbler
absorbs all trailing white space and is usefull in formatting.

Page 23.

MTB=432 Multics Technical Bulletin

Examples:
%macro hi_there
hi there %+
bozo % mend
Yhi_there()
returns the string:
hi there bozo
More usefulsperhaps is the distinction:

%Xfookae(xsy)

which is a concatenation of the value of the macro variable foo
with the string "(x,y)", whereas:

-

“foo(x,y)d

returns the value of the macro foo called with arguments "x", and
” "

Y .

OTHER MACRO FACfLITIES

Magro Protection

<macro-protected=-string>::= %"<macro-protected—text>%"

The macro processor does not expand any macro constructs in the

macro-protected-text, It does remove both the leading and
trailing %" and converts internal double=%"'s to a single %",

Examples,

let delim = A"%;%"%;
%let quoter = %L"ATUTI"YS

assigns the string "%;" to delim and the string "%"" to quoter,

Litecal Bergent

<macro-literal-percent>z::= %%

The result of the Literal-percent is to produce a single percent
in the output. This is used in defining macros within macros and
for rescanning purposes.

Page 24.

Multics Technical Bulletin MTB;432

Examples:
Zlet percent = %% %’
assigns to the variable percent the character "%".
The following example shows nested macro definition:
Zmacro define_mac
ZZmacro %1
AAL%2 %%{ Y] %%mend
‘mend
Zdefine_mac (ADD,my_add)

will generate the following macro definition:

%macro ADD
“Cmy_add %Z{ }] %mend

The macro invocation
ZJADD(fred, sam, joe)
will return the string returned by the active funcion call

[my_add fred sam joel

Macro Rescanning

<macro-rescan>::= Zrescan<macro—-input>¥%;

The macro—input is evaluated and the resultant text is rescanned
for further macro-activity, Under normal circumstances macro
activity 1is not rescanned for subsequent macro activity. One
such special case is that of include files.

Example:

Amacro maclt
%rescan X%Zfoob(%1)%; Zmend

Zmacro foob
%{ +==) Xmend

“mac1(X"hey,hor,tiddlys,i»pom%™)
will procduce:

hey~=ho=-tiddly=-=-i-=pom

Page 25.

MTB-432 Multics Technical Bulletin

NESTED MACRO DEFINITION

The ability to define a macro which can be used to further define
other macros is often useful, There are two methods for doing
this which are best demonstrated by example.

Ymacro declare (namesattirbute) %’
%rescan %%macro %Zname X"%A:;U" .
declare (Z%{:,}) %“attribute ; Zimend %?
%“mend
If the macro "declare™ is invoked as:
%declare (FB,fixed binary)

the expansion of "declare” before rescanning produces:

%rescan %macro FB X%; _
declare (%{;»}) fixed binary, Zmend %:

The rescanning defines FB as a macro.

I1f FB is then invoked as:

%fFB(bat_snouts,liver_wort, old_sox)
the resultant string 1is:
declare (bat_snouts,liver_wortsold_sox) fixed binary’

The alternate form of nested macro definition wuses the
%define,.,%dend construct and produces more legible output and
automatically causes rescanning. With the Zdefine statement, the
macro '""declare" 1is:

“macro define (namesattribute) %,
“define “Zname %J

declare (XZ%{;,}) fixed binary, Zdend
“mend

It is important to note that Z%define replace XZ%macro, %dend

replaces ZZmend. Rescanning 1is automatic, so it is not
specified, This yields the winnage that the %7 in the header of
the nested macro definition need not be protected. It was

required in the previous example because it would terminate the
“rescan prematurely. The double percent's are still required

because they refer to the numbered parameters of the defined
macros, not the defining macro.

Page 26.

Multics Technical Bulletin MTB-432

The macro "declare" can be imbedded 4in other macros., so for
example:

“macro fixed_bins %’
Zlocal 1 = 1 %2
“do Zwhile %i <= % %;
Xdeclare(fB%{%Zi),fixed binary(%{%Zi}))
dlet i = %C %1 + 1) %; %od
“mend
When invoked as:

Zfixed_bins(8,17,21,24,30,35)

produces the declaration macros "FBB","FB17",s ... "FB35", .Thus the
invocation:

%FB8(adasotto,madam)
produces the desired result:

declare (adasottor.madam) fixed binary (8):;
<macro;nested-definition>::= %“define<space>...<macro—-input> Zdend

The macro input must evaluate to the form required 1in a
macro-definition, i.e..,

(1) the name of the defined macro mus t be a
macro-identifier;

(2) there may be an optional named-parameter-list’

(3) t he macro terminator must be dincluded 1in the
macro—-header.,

Macro-nested definitions may ‘only appear within
macro-definitions.

MACRO CROSS REFERENCE

The macro processor will generate a cross reference listing of
all macro variables, builtins, pseudo-ops., and macro calls used
in the compiled program. This will include such items as name of
the item, <class of item (e.g. macro, ext stack {20}, parameter,
builtin, etc), and locations of declarations and wuse. As 1in
other line numbering schemes, all line numbers refer to real
locations in the storage system, Use of macros with macros will
be designated in a manner analagous to the present listing of
include files.

Page 27.

MTB=-4 32 Multics Technical Bultetin

Example:

MACRO ACTIVITY IN THIS COMPILATION

NO. IDENTIFIER TYPE DECLARATION/USAGE
0 comm_err_ macro 15719 9=11 Mé
1 epugoms _ ext array 9-11/Mm4 22
LISTINGS

Macro activity in the compiler introduces two problems in the
general area of listings: what should the compiler produce and
how should it number its lines.

In many cases, the programmer Wwill wish to see only the macros
€.g. in the case of macro use of named constants. 1In others, the
expansion 1is more retevant, especially when debugging. What
holds for macro activity alsc holds for include file content.To
solve this problems, expansion control will be controlled by two
macro builtin functions, Zilist to control incl ude file
expansion, and Zmlist to control macro expansion listing.

Both builtins are called with either no arguments or one argument
which may be either "source", "expand”, or "both". 1If the
argument is "source", the listing will show only the source of
all macro <constructs. If the argument is "expand”, the listing
will show only the expansion of macro constructse. If the
argument is "both", both the source and the expansion is shownh,
with the expansion first, followed by the source, delimited by
PL/1 comment delimiters. The listing builtins may also be called
with no argument, in which case the present value of that listing
control is returned.

Line numbers always will refer to real locations in the storage
system, As a result, if a macro expansion requires several lines
of output, it will appear in the listing, and in the statement
map as part of the Line in the real storage system from which
this macro activity was generated.

Examples:

Suppose lLlines 9-11 of the source contained:

if foo = Zblag
then foo = foo + Ybar:
else foo = foo - %“bar:

Page 28.

Multics Technical Bulletin

and the value of %Zblag were 16384, and the value of %b
then the result in the Llisting for mlist set to
"expand", and "both'" respectively would be:

9 if foo = Xblag
10 then foo = foo + %bar:’
11 else foo = foo - %bar,
9 if foo = 16384
10 then foo = foo + 1024;
11 else foo = foo - 1024;
9 if foo = 16384 /%blagx/
10 then foo = foo + 1024 /*%barx/
1M1 else foo = foo -~ 1024 /*%bar=*/

Further, let the macro COM_ERR be defined as:

Zmacro COM_ERR

“comment 1st param is condition, others are args of com_
%comment defaults: parami-code™=0; param2-0%.;

Zloc cond=code~=0%,; %loc arg1=0%’;

%if %1°=%. %then Zlet cond=%1%, 7%fi

Zif %2°=%. %then %Zlet argl1=%2%; % fi

if %cond
then do-
call com_err_ (Xargl,"mpxy"”, &{3:7%%x.; ,3}):
return;,
end’
% mend

then, if Lines 20-22 of the source contained:

call xxx_%yyy(name, ages, soc_sec_num)
%ZCOM_ERR (,code, ""a", soc_sec_num)
call get_data (soc_sec_num)’

then the result in the Llisting for mlist set to
"expand”, and "both" respectively would be:

20 call xxx_3yyy(name, age, soc_sec_num)’;
21 %ZCOM_ERR (,code, ""a", soc_sec_num)
22 call get_data (soc_sec_num),
20 call xxx_%yyy(name, age, soc_sec_num)d’,
21 if code*=0

then do-,

call com_err_ (code, "mpxy",""a",soc
return,
end.,

Page 29.

MTB~432

ar 1024,
"source",

err_ 7%

"source",

_sec_num);

MTB=432 Multics Technical Bulletin

22 call get_data (soc_sec_num),;
20 call xxx_3%yyy(name, age, soc_sec_num);
21 if code "= 0
then do-s
call com_err_ (codes, "mpxy", ""a", soc_sec_num);
return; ’
end; /* ZCOM_ERR (,code, '"a", soc_sec_num) */
22 call get_data (soc_sec_num).

For ¥ilist set to "source”, "expand” and "both" respectively, the
Listing would show the %include statement, the contents of the
include files and first the Y%include statement and then t he
contents of the include file,

The default value for Zilist is "expand” and for Z%mlist "source',

Calls to Z%Zilist and Zmlist with no argument can be helpful in
saving and restoring expansion parameters in macro library usages
macro debugging, etc.

EFFECTS UPON PROBE

The results of macro activity can depend upon the compile time
environment 1in a manner that can not easily be duplicated at run
time. As a result, it is unreasonable to expect probe (and other
run time tools) to be able to recreate that environment,

It might be possible to include in the object segment some sort
of tool for the reconstruction of this environment, but the costs
of this could be enormous. Therefore, what probe will know about
is the PL/! program as seen by the compiler after macroprocessing
has occurred,

The first 1dimplication of this scheme is that probe will not be
able to expand macro constructs. If it is expected that probe is
possibly necessary, then a3 suitable listing should be obtained.

The other implication of this strategy is that all line numbers

refer to real entities in the storage system. Wwhen probe is
asked to display source segment statements, it will refer to the
PL/I source segment and relevant include files. Wwhen probe 1is

asked to set break points, it refers to the statement map, which
always uses real storage system locations.

Therefore, should a macro on Line n of the source generate m PL/I

statements, probe will know these as statements 0, 1+ 2s...m=1 of
line n.

Page 30,

Multics Technical Bulletin) MTB-432

EFFECTS UPON FORMATTING PROGRAMS

There are no plans at this time to alter indent. Some time in
the future, it would be useful to allow format_pl1 to recognize
macro constructs, but 1t is unclear whether it woutd format them

as well, At the present time format_pl1 only understands the
%include statement. :

MACRO LIBRARIES

Macro libraries will not be present in the initial implementation
of the macro processor. In the future, if a macro is invoked and
has not been defined in the source segment or an include file, or
defined dynamially, then relevant macro Llibraries will be
searched, These will be found using the translator search rules.
Tools for Llibrary management will dinclude listing the table of
contents, adding macros, deleteing macros, updating macrose., and
editing macros. It may be the case that macros in libraries be
kept in a semi-compiled forms, as an efficiency measure. In this
cases the macro library would perform syntax checking when macros
were placed in the library.

CONTROL ARGUMENT ADDITIONS TO THE PL1 COMMAND

-mlist STR

change the default value of mlist to STR, which must be
either "source'", "expand”, or "both".

-ilist STR

change the default value of ilist to STR, which must be
either "source", "expand”, or "both".

—arqument

indicates that the following strings are to be taken as
command line arguments to the macro processor. If present.,
this must be the final control argument.

IMPLEMENTATION SCHEDULE

Before the macro processor is fully integrated into the PL/I
compiler it will be available in a stand-alone form, This should
occur by the first of the year, with a subset of the full
language. An announcement will be made shortly. An announcement
will be made shortly. shortly. Sometime in the early part of

Page 31.

MTB-432 Multics Technical Bulletin

next year, the macro processor should be fully integrated into
the pl1 compiler. Those who use only %include, Zskips, %page.
Yprint, and %noprint should not expect any increase in compile
time, ’

THE STAND ALONE MACRO PROCESSOR

Until such time as the macro processor is integrated into the
PL/I compilers, it can be used in a stand alone fashion with the
command "macro”. :

Name: mac ro

The macro command invokes the stand alone macro processor to
translate a segment with macro constructs in accordance with the
defined macro language. This command can not be <called as an
active function.

Usags
macro inpath {outpath} {-control_args)
where’

1. path :
is the pathname of a PL/Il source segment with macro
constructs. If the path does not have a suffix of ptli,
then one is assumed. The use of a source segment is
incompatible with the -ia control argument,

2. outpath

is the pathname of the macro processed source segment,
The suffix pl1 is assumed if not given., If outpath s
omitted and there are no errors and the =-pr or =-ia
control arguments are not used, then inpath is
overwritten, If there are errors and outpath s
omitteds, a version of the macro processed segment 1is
left in the process directory.

3. <control_args
can be chosen from the following list:

-include, =-1nc
removes all %inc Lude statements and replaces them by
the contents of the include file., expanding that as
well. The default is to leave the Yinclude statements
intact.

Page 32.

Multics Technical Bulletin MTB=-432

-no_include, =-ninc
does not process Zinclude statements, but Leaves them
intacte,. (DEFAULT)

-print, =-pr ;
indicates that the macro processed output is printed on
user_output rather than placed in a segment, This
control argument is incompatible with the wuse of an

outpath segment name, and is assumed when the =ia
control argument is used,

-version, —ver
will print the version number of macro.

-no_version , =nver
will not print the version number. (DEFAULT) .

-lists, =-1ls
produces a line-numbered listing of the macro processed
result with a cross reference table in a segment with
suffix maclst.,

-calt STR
will call STR as a command after the transiation is
complete, if the macro processor does not discover an
error.

-argument STR's, -ag STR's
indicates that the following strings are to be passed
as command-line-arguments. If this control argument 1is
present, i1t must be the last one and at least one
argument must follow.

~interactive, —-ia
indicates that the input 1is to come from user_input
rather than a segment. This control argument is
incompatible with either an input or ocutput path name.,
the -call control argument, and the =-Llist <control
argument., :

When dinteractive mode 1is entered, macro promts for
input when ready and accepts everyting until a Lline
consisting solely of a period. At this point the input
is processed and the result delivered to user_output
followed by the prompt. A line <consisting solely of
the five characters "Xquit" terminates the interactive
session,

Interactive mode operates as though the -include
control argument were specified,

Page 33.

MTB=432

Multics Technical Bulletin

In the stand—-alone macro processor, the listing control
statements Xprint, Znoprint, Zmlist, Xpage, ¥skip and
“ilist are replaced verbatims, because they are intended
as directions to that section of the PL/I compiler
responsible for listings.

Please send comments to:
MPresser Multics,
or
Marshall Presser
Honeywell Information Systems
575 Tech Square
Cambridge, Mass., 02139
Or call:

(617) 492-9320
HUN 261-9320

Page 34.

Multics Technical Bulletin MTB=432

APPENDIX A

At the time of this writings, the following words are reserved and
tan not be used as the names of macros or variables, The list is
subject to expansion, but observes the <convention that all
reserved words will contain only lower case letters. '

comment

do while break od
define dend

if then else) elseif fi
error

ext external

include

int internal

let .

loc local

macro me nd

print noprint

page

rescan

return

skip

quit

At the time of this writing, the following builtin functions have
been defined, It is not permissable to redefine them as either
macros or variables.

arg clarg

hbound lbound

empty delete

member

ilist mlist

ltrim rtrim

count

inde x verify search
substr

length

htab vtab space newline newpage
unique

Page 35.

