
..... ,..

MULTICS TECHNICAL BUL~ETIN MTB-4.31

To: Distribution

From: C. D. Tavares

Date: Monday, December 3, 1979

Subject: Changes to Design of MRDS security

This MTB addresses planned changes to the design of the se-
..ouri ty features of the iilultics Relational Database System (MRDS)-,
and the rationale for the changes. Intimate understanding of the
organization of MRDS databases is not necessary for an under­
standing of the issues raised in this MTB.

Brief Description of the Problem Domain

Our problem is to protect information contained in MRDS data­
bases, and to protect it to a level finer than the segment level.
This finest level is not a physical entity (e.g., word or page)
but a logical entity called an attribute.

A ivIRDS database is a directory containing a
highly-structured configuration of files and subdirectories.
Many of these files and subdirectories hold no user data, but are
simply there to allow the MRDS to manage the information con­
tained in the database. Although MRDS security will be using
many of these ancillary branches, its main problem.is to protect
the user information. This is the problem we address.

Each iffiDS database (e.g., "phone book") contains one or more
relations (e.g., "customer"), which can be thought of as logical
groupings of data elements. Each relation contains two or more
attributes (e.g., "name", "address", and "phone number"), which
describe the classes_ of data to be logically grouped. Any single
instance of a relation (e.g., "V. Paoli", "745 Brunswick",
"555-7672") is called a tuple. Any single item in an attribute
(as well as any single element of a tuple) is called a datum.
Our task is to manage the access control for relations, attri­
butes, tuples, and data in a consistent manner.

Every datum belongs to one and only one attribute. However,
although attributes can only belong to one "real" relation, there
is a facility for constructing secondary relations (via submodels
and temporary relations) to the result that for all practical
purposes, attributes can appear to belong to more than one rela­
tion.

Those familiar with MTB-360 may notice that we have not men­
tioned "files" as part of the problem domain. . This is because

Multics Project internal working documentation. Not to be repro­
duced or distributed outside the Multics Project.

MTB-431 Page 2

their contribution to the is not as significant as MTB-360 would
imply, and we have ignored them for reasons that will be later
explained.

Brief Description of the Problem

There are several accessing operations to be controlled
within MRDS. Data at the lowest level must be protected dis­
cretely with respect to both read and write attempts. Knowledge
about the mere existence of attributes should be permittable or
deniable. Access to relations also needs to be controlled with
respect to certain operations, including the ability to know that
they exist; the ability to use them; permission to add tuples to
and delete tuples from the relation; permission to alter the
structure of the relation (add or delete attributes from its def­
inition), and permission to set access to the attributes making
up the relation.

It is also desirable to give the user the option of deliber­
ately limiting his access to an entity to which he would usually
have greater access than he temporarily desires (a "capability"
system of access). For example, even though a particular user
has access to change anything in the phone book database, he
eight like to access the "customer" relation using a mode in
which he is allowed to change the phone number but nothing else,
so that he may prevent himself from mistakenly modifying the
wrong item.

Corollaries and Deductions

The access allowed to various items at various levels must
follow certain necessary relationships. The first is that in
order to have a certain access to a lowe·r-level object (where the
database is considered the highest level and a datum the lowest)
a user must have at least that access to the object(s) above it.
For example, accesi""""to read an attribute is meaningless if the
user has no access to determine the existence of the containing
relation; and any access to relations or attributes is meaning­
less if the user can't access the database

The second is that in order for the previous constraint to
make semantic sense, we must be able to order accesses in some
manner so as to specif7 what accesses are subsets of what other
accesses, especially since the meanings of modes differ subtly at
different levels.

Design Problems with the Mechanism of MTB-360

It is advantageous for the MRDS to deliberately enforce
these access relationships between successive levels of data or­
ganization; that is, to make sure that it never leaves the data­
base in a state where a user has more access to a lower-level ob­
ject than to a higher-level one. The next problem concerns what
the MRDS does when it detects such an attempt. There are two

MTB-431 Page 3

choices: propagate the necessary access in the upward direction
(for access removals, propagate the revocation downwards); or re­
fuse and require the user to manualiy and deliberately set the
required accesses, starting from the proper end of the tree and
working towards the desired level. Obviously the question here
is not computability (anything the user can specify manually, the
program can figure out how to do itself) but is one of user in­
terface, and a balance between the law of intelligent defaults
and the law of least surprise (i.e., does the user know what
sweeping access changes may result from a simple, perhaps mis­
typed, request?) Since it does not affect the operation of access
control proper, I will not address it.

What is important, however, is the concept that additions to
access must be propagated (either automatically or manually)
upwards, and revocations of access must be propagated downwards.

However, the design promulgated in MTB-360 is primarily con­
cerned with minimizing the amount of space consumed by access
control additions inside MRDS databases. Because of this, cer­
tain design decisions were made that tend to interfere with the
basic security model outlined above.

Specifically, an "implied access control" facility is pro­
posed whereby if any entity has no specific access control list
of its own, it takes on the access control list of its superior
entity. For example, if a relation has no ACL, the AGL of the
database controls the access to the relation. It can be immedi­
ately seen that this runs counter to normal Multics convention,
where if a user is not on the ACL of an object (because the ob­
ject has no ACL) he has no access to it. This is actually a
variation on the old CACL, with all its attendant problems.

For example, consider a database containing four relations.
The ACL of the databa·se is set up so all users have read permis­
sion. None of the relations or attributes have their own AC~.
At some point, the data base administrator wishes to give Smith
access to update one of the relations. By setting this access, a
separate ACL is created for that relation, and it no longer
shares its parent's ACL. (Presumably the parent's ACL is copied
and becomes part of the relation's ACL.) Of course, Smith must
now obtain write access to the database, or else his update ac­
cess is worthless. The system automatically adds this ACL to the
database. Now, however, Smith has the necessary access to change
any relation in that database. Since none of the other relations
have ACLs of their own, they "inherit" the database ACL, and
Smith is now on that. Because of the implicit ACL references, we
have just effectively propagated an increase in access downward
by mistake. The alternative is for the software to detect this
condition and create a new ACL for all other relations in the
file, with the result that none of them now share the parent's
ACL. By induction, it can be seen that very few access changes
are required to force this process to reo·ccur to such an extent
as to make the entire implicit-AGL strategy counterproductive.

MTB-431 Page 4

Implementation Problems with the Mechanism ~ MTB-360

The concept of Access Control Segments (ACSs) being used to
control access to the data (although dear to my heart) is not op­
timal for the MRDS. When compared with the strategy of maintain­
ing internal software ACLs for relations and attributes inside
some MRDS segment, it exhibits several inef'ficiencies. First,
file system calls must be made each time an ACL must be read,
changed, or compared; or a segment (ACL) must be created or gar­
bage collected. Also, none of the standard reasons for using an
ACS are present. There is no sY111bolic correspondence between any
entity and its ACS, since all the ACSs have unique (shriek)
names. (One could replace the unique ·names with names that had
symbolic meaning, but given the ACS sharing and thus the need for
multiple names, and frequent name changes each time an ACL is
changed, we would quickly run into direct.cry size limitations,
implementation hair, and all sorts of other undesirable proper­
ties.) Even if one could identify a particular ACS as belonging
to a particular entity, one could not use the standard
ACL-manipulating commands to set ACLs (another standard reason
for using ACSs) because along with the sharing and propagation
requirements, the ACSs all reside in an inner ring.

It would s·eem more appropriate to maintain a software ACL
for each element, and perform reference count manipulation,
sharing, copying, garbage collection, and so on internal to the
~L~DS. The drawback to this plan is the high complexity of the
software necessary to maintain storage-efficient, shared ACLS a.nd
to duplicate almost all of the operation of hardcore ACL mainte­
nance code.

Unforseen Conflicts with Future Implementation Plans

Features planned for future versions of MRDS also invalidate
some of the original design constraints for attribute-level secu­
rity. The original design was based on the current property that
each attribute belongs to one and only one relation, and that
each relation belongs to one and only one file. Left unaddressed
is the current notion of relations in data submodels-- views (ac­
tually masking templates upon actual relations, with some attri­
butes hidden from the user and others rearranged) whose existence
makes it possible to arrive at a particular datum from multiple
paths. This means that an attribute no longer has only one su­
perior relation to answer to, but many. Also left unaddressed is
a planned future extension to MRDS whereby one of these views can
address attributes belonging to more than one actual relation.
This means that, short of all the attributes in an entire data­
base, we can no longer partition attributes into distinct grou~s
such that we can affirm that access control changes through any
relation or view superior to any attribute in this group will
have no affect on attributes outside the group. For example, if
we have two real relations, a and b, each with its own
(non-intersecting) group of attributes, we can construct a sub-

MTB-431 Page 5

model view c that uses some attributes from a and some from b.
Then when we perform any access control operation on "all the at­
tributes belonging to" a, b, or c, we are almost sure to ad­
versely affect the existing ACL setups of the other rel~tions or
views. Given these two properties of multiple-parent and
multiple-child, any strategy that requires propagation of access
in either direction is doomed to failure. (This conclusion is
the reason why files were eliminated from our original discussion
of· access control, above-- relations and views are sufficient to
show the problem, and the organization of the database into sepa­
rate files should be transparent, to all normal users.)

It could be argued convincingly that these views existing in
submodels can be considered as analogs of Multics directories,
with their references to other relations' attributes considered
as file system links to other segments. From this, the access
control requirement can be derived by analogy. However, users of
relational database management systems DO want to specify attri­
bute level access to attributes differently depending on what
submodel or view is used to access it; an added fillip not avail-~
able (or desirable!) in normal Multics access control. In fact,
it is much easier to think of access to attributes by imagining
that these attributes belong ONLY to this view, no matter how
they are in actuality shared-- especially when otherwise, the ad­
ministrator is tasked with arranging ACLs on attributes in such a
manner that all the access permissions and denials are as he de- ·
sires them, no matter what combinations of views referring to
what combinations of attributes are used to reference .them.

For instance, a submodel used to access an employee database
may contain a view describing an employee strictly in terms of
his administrative information. It may also contain a view des­
cribing him in terms of his status as a member of the employee's
credit union. Both these views might include his address. It is
reasonable to expect that the address would be a writeable attri­
bute when accessing the administrative view, but would be
read-only when accessing the credit-union view, REGARDLESS of who
is doing the accessing. This helps idiot-proof the database
against accidental changes, even by people who otherwise have ac­
cess. The views themselves would be access-controlled in the
normal manner (e.g., access to the credit union submodel and the
administrative submodel would be limited by the appropriate file
system ACLs).

The database administrator who creates these submodels must
realize that the user's maximum access to any attribute is the
maximum access granted him to that attribute by ANY view in the
submodel; and that other views in the same submodel that restrict
that capability limit the use.r only if he desires to be limited
by explicitly using that view (since once a user has access to a
submodel, he has access to all views in the submodel).

Proposed New Access Control Mechanism

MTB-431 Page 6

""'· A new syntax will be defined for submodels to be compiled "-
with the create mrds dam command. Each view will carry an access
control field that will state whether the user of this submode!
can add tuples to and/or delete tuples from the relation. via this
view. If both these access modes are missing, then users of this
view can only access tuples that already exist. (Null and status
access have no meaning in this framework, since it makes no sense
to include a view in a submode! if you then either assign null
access to it, or deny status access to it.)

In addition, each attribute field in the view· description
will also carry one of three modes: read, update, or null.
These will give the effective access to the attributes of every
view right in the definition of the submode! being used.

Certain constraints will be imposed by create mrds dsm, in
the initial implementation that will be removed as -im~rovements
to MRDS are implemented. For example, without "null." {nonexist­
ent) data values (not yet implemented in MRDS) it makes no· sense
to allow add permission to a submodel view that does not contain
EVERY attribute of the relation(s)' after which it is modeled
(since creating a tuple by storing some but not all of its mem­
bers cannot be done without null values). Similarly, cmdsm will
not allow add permission to be specified for any view for which
update permission is not also specified on all of its attributes.
As new features like null values become implemented, these re- ~
strictions will be relaxed in cmdsm.

The database itself must reside entirely in a protected en­
vironment. Gates will be created to allow varying degrees of ac­
cess into the protected environment by various people (database
administrators and arbitrary users). All submodels for a data­
base will also be contained in the protected environment. They
will be constrained to reside within the database directory it­
self, not because of security requirements, but as an aid to da­
tabase administrators who wish to keep track of existing submod­
els for their databases and perhaps be able to make wholesable
changes to them if the main model is restructured in a fashion
that would affect the submodels. Depending on the ultimate im­
plementation of submodels as objects, this may restrict creation
of submodels to database administrators; a limitation not now im­
posed.

The biggest change in the operation of current databases is
that all secure references MUST be made through a submodel. The
database model will contain no security information, nor will the
data. Many customers currently use the model to directly refer­
ence the database. Fortunately, it is relatively simple to cre­
ate a submodel that is isomorphic to the model, and to force all
references to the data to be through that submodel. Since refer­
ences through submodels are made exactly the same way as ref eren-
ces through models, it can be made practicall7 invisible to the 1·
user that the substitution has taken place. ""

Ref erencea through the model will be allowed by a special

MTB-431 Page 7

gate usable only by the database administrator and those he au­
__ orizes. Any user allowed to use this gate may completely by­
pass attribute-level security. Authorization to use this gate is
also necessary to restructure a relation; that is, to expand it
(make it include more attributes) or contract it (make it refer
to fewer attribute.s), since the actual data model must be changed
to accomplish this. The same gate must be used to set and delete
access to submodels in the database, as well as to create new
submodels and delete old ones.

Several procedures (e.g., dsl , dsmd , and so on) will have
to be changed in such a manner that they-can determine whether a
database is in a protected environment or not, and make the ap­
propriate call; directly to the proper procedure (in the
non-secure case) or to a gate which invokes the proper procedure
in the protected environment.

Finally, it should be noticed that nothing in this access
control mechanism precludes us later adding real ACLs to attri­
butes (only; not relations, files, or anything else that would
require propagation). · The ACLs of these attributes then would be.
the first line of defense-- the final definitive word as to who
can or cannot access any attribute. The access on attributes and
views defined in the submodel could then limit, but not extend,
the access defined by the attribute's AC~. This would be a con­
venience rather than a necessity; it would allow a DBA to feel
secure that he knows who can and cannot access anything, and that
he has not erroneously given someone access to a submodel that
contains a view possessing more "power" than he realized (or
rather, if he HAS done so, that no damage will actually be done).

And Now the Bad News

The suspicious reader has doubtless noticed by now that we
have been taking almost unnatural care to use the term "protected
environment" instead of "inner ring". There is indeed a reason
for this circumlocution.

If the protected environment chosen is an inner ring, all
databases sharing that inner ring share the same protected envi­
ronment. In the general case, they are not protected from each
other. For instance, suppose a person is authorized to use a da­
tabase in a restricted manner-- to read a couple of attributes
and update one, let's say, but nothing more. If he wishes to
circumvent security, he may decide to create a dummy database of
his own, ask the syste~ to secure it, and thus become (to coin a
phrase) a "banana republic database administrator". Now, since
he has rw physical access (in the inner ring) to the database he
wishes to subvert, an.d since he has access to perform database
administrator operations on his own database, all he has to do is
find some way to cause his database to somehow "indirect" various
requests into the other database. There are two entities he can
try to exploit: the database itself, and the associated.program­
ming. The use of an inner ring to enforce database security is

MTB-431 Page 8

thus dependent on the database being a known quantity, operated
upon by known programming. UIU'ortunately, this turns out not to
be the case.

For starters, it is definitely possible to make clever al­
terations to the structure of the database itself that would
cause indirection as described above. For example, a MRDS data­
base contains canned attach descriptions naming some of its own
subfiles. A clever user could patch these descriptions so that
they reference any other file sharing the protected environment
with the database. The patching would have to take place before
the database is transferred into the protected environment; mean­
ing that the command interface that transports a given MRDS data­
base into this protected environment would have to perform exten­
sive "gullibili.ty checks" upon the format of the databas.e, not
only for this case, but possibly tor others as well. It becomes
a problem then of the validator being cleverer than the perpetra­
tor; hardly a sound basis !or a security implementation.

Worse yet, we cannot even rely on the validity of the pro­
grams operating in the protected environment. A common feature
of database management systems (and one being added to MRDS pres­
ently as a customer requirement) is the ability for the database
administrator to specify "editing" or "validation" procedures
that can change or impose extra constraints on data elements.
For exa.r:iple, a field which holds an automobile registration may ~
be si::::iply "char (7)" to i"IRDS; but to the customer, it must con-
tain three letters, a dash, and three numbers or else it is in-
valid. As another example, perhaps the user wishes to log every
change ever made by anybody to a certain attribute. All such
programming must be executed within the protected environment.

Those who have ever been exposed to the classic "rings ver­
sus domains" argument will recognize this as a prime example.
For those who have not, we regret that a full explanation of do­
mains in this MTB is impractical. Very roughly explained, do­
mains are like rings but nonconcentric; and their properties of
intersection (or lack thereof) can be controlled by the creators
of the domains. Thus, each secure database would operate in its
own protected domain, separate from but equal to the domains in
which other databases were kept. Any Trojan Horse programming
thrown into a protected domain by a devious database adminis­
trator can then only subvert information within that domain-­
namely, the administrator's own database. Of course, database
administrators who trust each other could arrange to have their
private domains accessible from the other's. Thia would be the
ideal technical solution to the problem at hand. The drawback is
that, for the near future, no domain capability seems planned for
Multics.

Other halfway measures are pqssible. Access on secure data­
bases could be limited to one project only (like user-owned gates
are today). This begs the question of information sharing. lt
also makes data dictionaries irrelevant: who cares what data
items are available in other databases at your site when all the

.....
-:;-1

.- ..

MTB-431 Page 9

data elements you will ever be allowed to know about are limited
to the ones right there in front of you?

Alternatively, the System Administrator could issue database
administratorships only to known "good guys". This would be en­
forceable by requiring creation of a secure database and
ACL-setting thereon to be an exclusive power of the System Admin­
istrator. Also, the System Administrator would have to person­
ally audit and install all user editing procedures. This opera­
tion is similar to the current operation of Multics system li­
brary maintenance. However, there is a big differ~nce between
maintaining system libraries (of which there is only one set per
site) and user databases, which may run into the hundreds. The
System Administra~or's job in the latter case would be truly op­
pressive. This option actually does nothing but create a large
corps of System Administrators who are glorified Database Admin­
istrators, thus effectively removing most direct administrative
control over the database from the user who actually owns it (and
may have a proprietary interest in controlling it).

Either of the constrained solutions severely limit the op­
tions open to user database administrators. If either is imple­
mented, the implementation should be considered as at most a
temporary stopgap solution .

