Multics Technical Bulletin MTB=-423

To: Distribution
From: Richard A. 3arnes

Dates:s Q8717779

Subject: FORTRAN REGISTER OPTIMIIZER

1. Ingroduction

This paper describes the general design of register
optimization for the Multics Fortran compiler, The reader is
assumed to be familiar with the terminology wused in.discussing
optimization and to have some knowledge of the design of the
present Multics Fortran Loop optimizer, An obsolete document
which contains early design notes for a PL/I loop opotimizer and a
glossary of optimization terminology can be found in
>udd>m>rab>loop>o0pt.runout. A short glossary also appears at the
end of this paper.

2. Goals

The goal of the Fortran register optimizer is to improve the
efficiency of object code by loading frequently wused loop
invariant pointer and index values into registers before the
beginning of the loop rather than on each iteration of the loope.
and by keeping freguently wused induction variables 1in inde x
registers rather than in storage if they are only used for
subscrioting and loop testing. An induction variable is defined
to be a scalar local integer variable that is updated once in a
loop in one of the following ways:

o) by incrementing it by a loop invariant value
o by assigniny to it another induction variable
Besides the wvariables coded by the user, the register optimizer

must consider induction variablas created by the loop optimizer
during strength reduction.

- . e e e e . e

Multics Project internal working documentation. Yot to be
reproduced or distributed outside the Multics project.

Page ¢ MTB=-423

2.7 16K _Problem

One problem with the code generated by present compilers is
the inefficiency of access code for variabtes more than 16384
words away from the beginning of a storage region. Consider the
following storage fragment:

common /foo/ dummy(16385),iarray(16384),jarray(16384)
do 10 3 = 1,163384

iarray(i) = jarray(i)
10 continue

The code generated by today's compiler looks something lLike this:

qu 1,dlL
stq i
loop: lLdg i
adgqg 16384 ,dlL
eax? Dr,ql
ldg 1
adg 32768.,dl
epp? pr4ld,% foo
ldq pr710s,qgl jarray
stq pr710.,2 ijarray
aos i
ldg i
cmpQq 15384 ,4dl
tmoz loop

Note that each iteration executes 12 instructions. With the
register coptimizer I hope to get a sequence like this:

epp? or 4] 8,x foo
adwp? 16384 ,du
eppsS or4l 8,% foo
adwps 32768,du
LXLZ 1’dL

loop: ldq orS10,2 jarray
stg pr710,2 iarray
adlx? 1,du
cmpx? 15384 ,cu
tmoz loop

for a cost of 5 instructions per iteration. (A possible future
imgrovement for this particular example of array assignment might
be the replacement of the entire loop by an MLR instruction!)

2.2 Lzap_Coantrol

Since mos t Looos that appear in FORTRAN programs are
do-loops, these loops are controlled by induction variables, 1f
the teast that =2nds a loop involves an induction variable that 1is
being kept in an index register, it would be nice if the test
were made using a cnpxn instruction, Unfortunately, this has

MTB=423 Page 3

several problems. An index register 1is treated by the hardaJare
as a siyned 17-pit integer when used with <compare instructions
while we normally reoresent integers in storage as signed 35-bit
integers. Yet we could easily generate index values greater than
131071, so it is not clear which transfer instruction to use
after a compare. Also, the cmpxn instruction compares an index

register with an upper halfword in storage while we normally
store integers in full words.

In order to deal with this problem, if an induction variable
is to be kept in an index register and used in a comparisons the
optimizer must figure out 1its range. As a example, for the loop

do 100 index = start, finish, by
body '
100 continue

where "by" is a positive constant and "start" and "finish" are
integers, the following cases apply:

Case_1: =-131372 <= index <= 131071, finish is a constant
Lxln start
Loop: body
adlxg by rdu
cmpxqn finishs,du
tmoz loop
Case_2: -131072 <= index <= 131071, finish is a variable
ldg finish
als 13
stg ftemp
Lxlp start
Loop: body
adlxn by »du
cmpxn ftemp
tmoz loop

Case_3: index >= 0, finish is a constant

lxlp start
loop: body
’ adlxn by »du
cmpxn finish,du
tnc loop
tze loop

OR

Page 4 MTB=-423

Ixlp start
loop: pody

adlxn by r4du

cmpxn finish+1,du

tnec loop
Case_4: index >= 0, finish is a variable

ldq finish

gls’ 18

stg ftemp

Lxln start
loop: body

adlxp by »du

cmpxn ftemp

tnec loop

tze loop

OR

ldq - finish

adg 1,dl

gls 13

stq ftemp

Lxln start
Loop: body

adlxn by »du

cmpxn ftemp

tne loop

Case_5: index randge Jnknown

For nows, we'll nandle this as (Case 6. However, if we were
to change the <converter to either provide information about do
statements or to produce a different quadruple set from that
generated now for do loops, we could generate code similar to
that of the GCOS Fortran Y compiler, where the trip count 1s kept
in a seperate rejister and is adjusted so as to complete when the
register has a zero value:

{xlm -nax{(ntrips,1)
Lxlp start
loop: body
adlxn by »du
adlxm 1,du
tze Loop

OR

MTB-423

Page 5
leg ntrips
tmi 2r13cC
“leaq 1,4l
eaxn Or,ql
Lxln start
loop: body
adlxn by »du
adlkm 1,du
tze {200

This can be done by a form of test replacement as long as the
adjustment for a mininum of 1 test is made.

Case. $: index is used for something other than subscripting or
loop testing

(We don't k2ep index in an index register.)

ldq start
stgqg 1inde x
loop: body

qu bYrdL
asg index
Ldq inde x
cmpg finish
tmoz loop

OR if index is not busy on exit from the loop, and the loop is a do-loop:

ldg start
loop: stq index

body

ldg inde x

adqg oy #dl

cmpg tinish

tmoz loop

(This latter case will probably not be tried in initial releases
of the
register optimizer,)

3. Index_¥alus_Analysis

The code jenerator puts twe types of nodes into its machine
state model's index registers: temporary nodes and symbol nodes.
A temporary node reoresents the value of an expression that 1is
not just a reference to a variable or constant. Wherever 3
particular temporary node appears in the internal representation,
it always represents the sgme valuye. The compiler distinguishes
between temporaries that are to De used as input to other

Page 6 MTB=423

operators and those that are to be used for indexing, converting
the former to the Latter by use of the SUBINDEX operator.
Because of this, a temporary that represents an index value will
not be an input to a comparison, and thus analysis of its range
or use 1S unnecessary.

A symbol node represents a reference to a variable. Each

time a particular symbaol node appears in the internal
representation, it may represent a different value. A symbol
node may be wused for subscripting if it represents a scalar

integer variable. If we want to keep the value of a wvariable 1in
an index register throughout a loop wWwithout storing it in the
Loops, one of two conditions must be satisfied:

o the variable's value must not change Wwithin the loop
OR
o] the variable must be an induction variable for the Lloop

whose value 1is not needed upon Lloop exit and its only
use must be for subscripting, 1its own incrementing,
comparison against a Loop invariant, and assignment to
other wvariables that satisfy this condition. This
condition ensures that the high-order 18 bits of the
induction variable are not needed for any calculation.

For each variable that is supposed to satisfy the second
condition and this is used in a comparison, the range of the
variable must be calculated. I1f the wvariable's range does not
satisfy one of cases 1 -4 mentioned in Section 2.2, that

variable is not considered to satisfy the condition.

HOow do we gather the information to make these
determinations? For each Loop we will have 2 bit strings:
USED_AS_SUBSCRIPT and ALWAYS_USED_AS_SUBSCRIPT, with one bit per
variable. The Loops are scanned one at 3 time in an order such
that the most deeply nested ones are scannea first. At the start
of each loop's scan the USED_AS_SUBSCRIPT string is initialized
tc all zeroes and the ALNAYS_USED_AS_SUBSCRIPT string 1s
initialized to ones for those scalar integer variables that are
elther invariant or induction wvariables and to zeroces for all
other wvarijables. 1f the Locop contains any 1inner loopss, the
USED_AS_SUB3SCRIPT strings of the inner loops are OR'd to the
USED_AS_SUBSCRIPT string of this Loop. and the
ALWAYS_USED_AS_SUBSCRIPT strings of the inner locops are AND'd to
the ALWSAYS_USED_AS_SU3SCRIPT string of this loop. The operators
in the flow units belonging to this loop but not to inner Lloops
are scanned. for each operator the inputss, if they are symbols.,
are processed as follows:

MTB=-423

Page 7
o} OPT_SUBSCRIPT, SUBSTR == the bit corresponding to
operand(3) . (the variable offset) 1is turned on in

USED_AS_SU3SCRIPT. If operand(1) is a string which
might reguire an offset greater than 262143, turn off
operand(3)'s bit in ALWAYS_USED_AS_SU3SCRIPT.

o} incrementing oOperators -- if the increment is not a3
constant, turn of f the bit corresponding to the
incremented variable in ALWAYS_USED_AS__SUBSCRIPT,

o] RELATIONAL OQOPERATOR OR JUMP_ARITHMETIC -- if neijther
operand is an induction variable, do nothing.
Otherwise, for each induction variable, if the operand
being compared against is not loop invariant, turn off
the bit <corresponding to the induction wvariable in
ALWAYS _USED_AS_SuUSSCRIPT, i f the operand being
compared against is Lloop invariant ,» then add this
operator to the COMPARISON Llist for this loop.

o} ASSIGN - if the target does not have its bit on in
ALWAYS _USED_AS_SUBSCRIPT, turn off the Dbit of the
source in ALWAYS_USED_AS_SUBSCRIPT, otherwise, add this
operator to the ASSIGNMENT List for this loop.

o} other operators =-—- turn off the bits of all inputs in
ALWAYS _USED_AS_SUBSCRIPT,

Once all the ooberators have been scanned, the CO0MPARISON
list must be processed, Processing the COMPARISON list means
finding the range of e2ach induction variable in the Llist., If the
induction variable 1s neither known to be always nonnegative nor
xNown to be between =131072 and +131071, the wvariable's bit in
ALWAYS_USED_AS_SUBSCRIPT must be turned off,

Deducing the range of 2ach induction wvariable in the
COMPARISON lList is one of the trickiest tasks of the register
optimizer. For now I have chosen a scheme that errs on the side
of safety =- that is, it doesn't always succeed in calculating a
range, but it never calculates a range incorrectly. This scheme
only works for valid FORTRAN programs, however, It requires that
subscriptrange never occurs within a loop. Basically, the scheme
is this: all subscripting uses of the induction variable in the
ftow unit of the comparison and in the flow wunits in the
dominator chain back to and including the loop entry unit are
examined, Each subscripted reference gives us a range, thusly:

lower_Llimit = - constant_offset [+ increment, if increment is negativel

if array has constant extents

then wupper_Llimit = array_size - constant_offset - 1
{+ increment, if increment is positivel
else upper_Limit = 262143 - constant_offset

[+ increment, if increment 1s positive]

Page 3 MTB=-423

(Each subscripted reference is represented as an OPT_SUBSCRIPT
operator with operand (1) as the array name» operand(2) the
constant offsets, and operand(3) as the wvariable offsat, that is
the induction wvariable, Some adjustment might have to be made
when SUBSTR is implemented.)

If more than one subscripted reference of the induction variable
is found in the backward scans, the resulting lower limit is the
maximum of all lower limits calculated, and the resulting upper
limit is the minimun of all upper limits found. This works
because all subscripted references found gust be evaluated before
the comparison is reached on every iteration of the loop. Once
the range nas been calculated, 1t is remembered for use by the
code generator and for use by the next phase of ranye analysis.

After the COMPARISON list has been processed., the
ASSIGNMENT Llist must be processed, The object of this processing
is to ensure that no variable with a bit on in
ALWAYS_USED_AS_SUBSCRIPT 1is assigned to a variable with a bit off
in that string. Thuses we won't have 3 problem with the missing
18 high-order bits «~hile keeping an induction variable in an
index register. A secondary consideration is tnhat we wWwant to
pass on any range data calculated during COMPARISON List
orocessing, so that all variables that assign to variables used
in comparisonss, have range data. To process the ASSIGNMENT Llist

each assignment on the (ist must be scanned. If the source of
the assignment is a variable whose bit in the
ALWAYS _USED _AS_SUBSCRIPT string is off., that assignment is
removed from the list. If the source is a wvariable whose

ALWAYS _USED_AS_SUBSCRIPT bit is on, but the target is a variable
whose ALWAYS_USED_AS_SUBSCRIPT bit is off, the source variable's
bit is turned off, the fact that a change has occurred on this
scan of the list is remembered, and the assignhment is removed
from the {(ist, If both the source and target are variable whose
ALWAYS _USED_AS_SUESCRIPT bits are on and the target has range
information calculated for it while the source does not, range
information is ©propazated to the source variable, and the fact
that a2 c¢change has occurred on this scan of the list 1s

remembered. Scanring of the list repeats until no change occurs
during a scan,

Once ASSIGNMENT list processing completes, we can derive a
list of candidates for index register assignment by intersacting
the USED_AS_SUBSCRI®T and ALWAYS_USED_AS_SUBSCRIPT strings.
These strinys are made available for analyzing outer loops and
for the register assignment phase.

4. Storage_Allggatign

MTB=6423 .Page 9

Storage allocation must be done before globpal register
allocation because the locations assigned to variables may affect
register usage. This is especially important in the case of
variables that are located at an offset of more than 16384 words
from the beginning of their storage regions. No changes need to
be made to the current FORTKAN code gyenerator's storage
allocator. After storage alloccation has been completed.,
sufficient information exists to analyze register usage,.

5. Global_Register_Usage_Analysis_and_Allogation

The algorithms described in this section are run on a
Loop-by Lloop pasis from the inside-out and from front-to-back.
This ensures that the innermost Loops get the most chance for
improvement. Each lodp 1is analyzed for register usage, and loop
invariants and induction variables are allocated reqgisters across
the loop before the next Loop is processed.

5.7 Global_Register_Jsage_Analysis

Two classes of information must be obtained during usage

analysis for a3 looo in order to facilitate global register
allocation:

0 the number >f wuses of any wvalues that may be allocated
a register globally

o} the maximum number of registers that would normally be
allocated to non-global wvalues during normal linear
code generation if register optimization did not occur

This information arovides us with the number of registers
available for jlobal 3llocation and a rank ordering of the wvalues
that might be allocated a register,

In order to get this information, which involves finding out
which operations erase registers as well as causing them to be
loaded, it appears that the most reliable method is to simulate
code generation «ith a different macro interpreter that runs off
the quadruples and fort_opt_macros_ just Like the real code
generator's interpreter does. Only instead of emitting code.,
this new interpreter would be compiling statistics for use in
gloval register allocation. This means that information on which
pll_operators_ entries erase which registers need be kept in only
one place. A prcblenm of using two such similar interpreters 1is
in keeping them consistent, Perhaps it is possible for them to
be merged or else ta share some code by include files, This
still needs to be worked out.

Page 10 MTB-423

The usage analysis interpreter must handle index values and
pointer values in different WaVYS. As mentioned earlier, index
values are represented either by temporary nodes or symbol nodes.
Only loop itnvariant temporaries are eligible for global register

allcoccation. A temporary is considered invariant in a Loop 1in
which it is used if the operator producing its value i1s evaluated
outside that loop. Both loop invariant symbols and symbols
representing elibible loop induction wvariables are eligible for
global register allocation. A symbol is found to be loop
invariant 1if its bit in loop.set 1s off, A variable is an
eligible induction wvariable if 1ts bit in both the Lloop's

USED_AS_SUBSCRIPT and ALWAYS_USED_AS_SUBSCRIPT strings are on.

It is clearly possible to associate a usage count for the Lloop
with each eligible value.

Pointer values do not at present have a uniform
representation. Since for most storage regions it is possible
that up to 16 pointers might be needed (because storage regions
are a maximum of 262144 words long., while the 15-bit address
fields can address 163384 words in a nonnegative direction), one
way to represent each storage reglon might be with a vector of
pointer value nodes containing usage counts, Each common block's
header node could point to such a3 vector, and there could also be
a vector each for automatic and static storage. Vectors would
not be needed for argument pointers or the argument list itself.

In these cases there would be a3 single pointer to a pointer wvalue
node.

The register usagje analysis interpreter would scan all the
guadruples contained in flow wunits of the particular loop that
are not contained in inner locps of that Lloop. 1f an inner Loop
is encountered during the scan, 1t i1s treated as a black box that
preserves all registers assigned across the inner loop and erases
the rest., HNote that this interpreter assumes NO reygisters have
been globally allocated for the loop being scanned,

After the loop 1s scanned, the values eligible for global
allocation are sorted in descending order by usage count within
their two classes == index values and pcinter values.

5.2 Global_Register_aliocatign

The allocation algorithm we will use is not optimal but does
a pretty good job for most programs. It is an improvement of
Susam and Englund's algorithm, which was used for FORTRAN Y. The
algorithm is run seoarately for the pointer registers and the
index registers.

MTBE=423 Page 11

Let REGS_AVAIL be the number of available registers, and let
REGS_USED be the number of registers allocated for this loops, not
counting inner loops. Initialize REGS_USED to
max (max_regs_needed_locally.,1). (The second argument of the max
function must be different for index registers if EIS is used.
This has not yet been designed.)

We now consider 2ach candidate for global allocation in turn
in descending order o0y usage count. The effect of allocating a
register to a candidate 1in a Loop in which the candidate has not
been allocated a register would be to increment REGS_USED for
that loop by one. Therefore, we determine the effect of such an
allocation for this loop and all nested loops. If for any of the
examined loops, REGS_USED would exceed REGS_AVAIL, the attempt to
allocate a register to> the candidate fails.

If the attempt does not fail, we actually perform the
allocation, The <candidate is allocated a register in all inner
loops in which it does not already have a register, and REGS_USED
for each of those loops is adjusted accordingly. The candidate
is then allocated a register in the loop being processed and
REGS_USED 1is incremented for this loop. A LOAD_PREG or LOAD_XREG
gquadruple to load the register is inserted in the loop's back
target. This will be seen as a register use when the outer loop
i1s later scanned, If the <candidate is an induction variable
which 1is compared to a non—-constants, a quadruple to force the
non-constant to an uyoper halfword is placed in the back target.,

and the comparison is changed to be against the output of the new
quadruple,

This algorithm ensures that enough registers are left
availaole for local assignment while attempting to maximize the
number that may be globally assigned. Note, that in this phase a
register is allocated to a value. When the code generator runs
lLater, a specific register will be assigned to a value (and the
value assigned to the register),

6. (ode_Generator_Changes

The functional changes needed for the code generator are
described fairly completely in this section, Not all the
necessary data structure changes are described. Some familiarity
with the present fort_optimizing_cg is assumed,

6.1 DRata_Structures

The machine state node, loop node, and operand nodes all
need some modifications.

6.1.1 The_Maghine

- - e -

State

The machine state node presently <contains the following
tields for each index or pointer register:

Page 12 MTB=-6423

0 type
a code defining the type of item in the register.,
specifying that the register is empty., or specifying
that a register is "reserved” (locked).

o} variable
for index registers this specifies the varjable in the
register., This has other uses in pointer registers.

0 used
the Last location this register was used.

0 offset :
for pointer registers this specifies the offset of the
value of the pointer from the beginning of a storage
area. Not Jsed for index registers.

Two bits will be added to each register description:

o] global
"1"b means the register has been globally assigned. If
the type field is greater than zero, then the register
currently contains the value globally assigned to it.

o reserved
"1"b means the register is reserved (locked). This
register may not be selected for Lloading a new value.
This function used to be in the type field.

The type field currently has the following meanings:

-1 RESERVED
) - EMPTY
+n contains known value

The meaning of =1 will be changed to "contains unknown value',

The representation of the indicators in the machine state
should also be changed. Presently there is an "indicators_valid"”
bit which indicates that the indicators correspond to the valuye
in the eags and there is a set of indicator substates for the
eaqg. This should be changed so that there is a code saying which
register, wvariable, or comparison between 2 values caused the
indicators to be sets and the indicators should be independent of
any eag states.

6.7.2 Thg_Logp_Node

MTB-423 Page 13

Loop nodes are created by the loop optimizer and contain or
potnt to all information specific to a loop. They are accessible
by going from the opt_statement node to the flow_unit node to the
loop node.

The Lloop node will be <changed to <contain a machine State
image. This 1image will indicate which registers have been
globally assigned which values for the Lloop.

The loop node will also be the repository of range

information for induction variables globally assigned to
registers,

6.17.3 TIhe_Qperand_Nogdes

The various operand nodes will have a "globally_assigned”
bit to indicate that the operand has been globally assigned to an
index register, This 1s used to speed up register searching.

6.2 Fupngtigpal_Changes

The <changes for various operations and processing are
described here.

A referenced label on an executable state2ment usually
represents a merging of two or more flows of control and always
marks the beginning of a flow wunit. Because of this, additional
processing is needed which code generation reaches a label to
support register optinization.,

If the flow unit headed by the label belongs to a different
loop than the flow unit that was being compiled, all operands
that were globally assigned to an index register in the previous
loop must have their "g3looally_assigned” bits turned off,
Otherwise, this step is bypassed.

The machine states corresponding to the wvarious flows of
control are then intersected as is presently done, If there i1s a
backward reference to the statement label or it is referenced in
an ASSIGN statement, all registers are marked as empty.

Finallys, if any reqgisters have been globally assigned for
the loop that the labelled statement is in, the machine state 1is
updated from the loop noce's machine state i1mage to indicate
which registers have globally assigned wvalues in them. At this
time any operands that are in globally assigned index registers
have their "globally_assigned"” bits turned on.

Page 14 MTB=423

The action taken in the previous paragraph assumes that all
globally assigned values are prelocaded before the loop starts.,
and that 1f a register is Locked or erased (because of a
subroutine call., for example)., that the register will be

refreshed with its globally assigned value before the completion
of the flow unit containing the erasure,

6.2.2 Loading_a_Register_with_a_valuye

As is done currently., if a register already <contains the
desired value, everything 1is fine and no action takes place
except to wupdate the "used"” field in the machine state. The
changes in function are in what happens if the value is pot
contained in a register,

If the value has been globally assigned to a register but is
not currently in the register, that register is selected for
relocading the value. If the register is in the "reserved" state,
an error OCCUrs.

If the wvalue has not been globally assigned to a register.,
yet_free_reg is called 3as usual to select a register for loading.
get_free_reg must not select a register that has been glotally
assigned, nor must it select a "reserved” register.

6.2.3 Register_ Reservation_ang_Erseing

Registers are reserved either because the code generator
(actually fort_opt_macros_) wants that register for a special
preemptive purposes or <code 1s about to be emitted that
invalidates the register contents. such as the code for a
subroutine call. Registers are freed after the code generator
has emitted the code for which it reserved the registers, usually
by invoking a free_regs macro. Any register that was reserved 1s
now marked "empty" except for permanently assigned registers,

Two procedures reserve registers: reserve_regs and
base_man_load_pr. free_regs frees all reserved registers.
reserve_regs implements the reserve_regs macroinstruction and
reserves the sgecified registers for "unknown'" purposes.
base_man_load_pr implements the load_pr macroinstruction and

reserves the specified pointer register after loading an address
into it, It is planned that for FORTRAN 77 char mode reservation
will be requested in order to make multiple operands
simultaneously addressable for EIS instructions. The LOAD_PREG
and LOAD_XREG operators proposed later for register optimization

will also wish to reserve registers so that the loads will not be
undone,

MTB-423 Page 15

' Because of thesse latest plans., the concept of a reserved
register has been split off from the concept of an unknown value.
reserve_regs and sase_man_Lload_pr will both turn on the
"reserved" bit and set the "type" field to -1 to indicate
"unknown vatue', Reservation done for EIS addressing or
LOAD_PREG and LOAD_XREG operators will turn on the "reserved"
bit, but will Lleave the "type" field unchanged.

Free_regs will turn off the "reserved" bit for all reserved
registers and will change the "type” fields that have a -1 value
to U for "empty". Positive "type" fields will be left unchanged.

e

b.2.46 E£nd_of Elow Unit_Processing_-=_Refresh_regs

Unlike traditional operating systems, Multics does not have
calling conventions that guarantee transparency; that 1S
subroutines on Multics do not save and restore any registers they
modify. Wwhile this minimizes memory references., it causes
problems for an ootimizing compiler that don't exist on
traditional operating systems. One the one hand, a compiler may
wish to globally assign values to registers across lLoocpss
preloading the registers before the loops. On the other hand.,
calls to subroutines and pl1_operators_ may erase these frozen
registers, thus counteracting the compiler's intentions.

There are three possible approaches that could be taken
here. The first would be to say that any registers clobbered by
pl1_operators_ or subroutine calls within a loop are unavailable
for global register assignment,. This greatly simplifies code
generation, but it loses opportunities for optimization,
especially if the more freguently executed paths in the Loop
would not have <clobbered the registers. (Note that subroutine
calls are considered to <clobber 3LL registers.) The second
approach is to generate code so that the calling program saves
(if necessary) and restores registers across each call. This
could cause unnecessary and redundant register Loading if there
are many calls close together as in an I1/0 statement. The
present FORTRAN compiler wuses a strategy Like that for prl1 and
pr4é, and its bad effects can be seen in today's object code for
I1/0 statements.

we will take a third approach that is an adaptation of the
second approach, As registers are erased by subroutine or
pl1_operators_ calls, they will be restored only as needed as
long as flow stays within the same flow unit, The mechanism for
this "as needed"” restoration has already pbeen described in
Section 6.2.2 (Loading a Register). wWwhen control reaches the end
of a flow unit, any glooally assigned registers whose values are
not in the registers must be "refreshed” , that is these values
must be restored to the registers. This ensures that the values
are known to be in the globally assigned registers at the
beginning of every flow unit of the loop. It will be unnecessary
to save globally assijyned registers Dbefore these calls due to

Page 16 MTB=6423

several mechanisms. First, all pointer wvalues used in FORTRAN
programs are ‘constants., so they don't need to be saved.
Secondly, all loop invariant index wvalues are =ither symbols
whose values were stored outside the loop when they were assigned
or temporaries whose values were stored before entry to the loop
due to the normal action that occurs when a Label (compiler
generated or otherwise) or forward jump is encountered. We need
a third mechanism to minimize wunnecessary storing for globally
assigned induction variables. The pltan here is to store the
index register into the variable's storage whenever the
variable's value changes within the loop. This storing of the
value would only occur if the register were ever erased within
the loop or any of its descendants. This information must be
provided by the interpreter that does the global register usage
analysis and should be kept in the loop node.

There will be a new subroutines refresh_regs, whose job will
be to refresh all globally assigned registers whose values are
not in the register. It will be called at the beginning of label
processings, since a Label marks the join of two flow units, and
it will be called when the refresh_regys macroinstruction is
invoked in any of the macro procedures for the wvarious jump
operators, since the registers must be refreshed before the
jumps. Because of this latter cases refresh_regs must be
prepared to optionally preserve the indicators across 3
refreshing operation since loading index registers changes the
indicatorss, since the jump could be <conditional, and since the
refreshing must occur after all expressions have been evaluated

in the flow unit but oefore the actual transfer instructions are
emitted.

Refresh_regs should call free_regs as the last thing it does
so that no registers are left reserved at the end of a flow unit.
This could occur because of the processing of LOAD_PREG or
LOAD_XREG operators, which 1s described in the next section.

6.2.5 LOAR_PREG_2nd_LQAR_XREG

As mentioned earlier, the global register allocation phase
inserts LOAD_PREG and LOAD_XREG operators in the back targets of
loops for which values are to be ylobally assigned to registers.
The assignment of a value to a spegific register does not occur
until the code generator actually encounters and processes the
LOAD_PREG or LCAD_XREG quadruple. W4hen one of these quadruples
1s encountered, the aporopriare base_man or xr_man procedure is
called to select and load a register with the globally assigned
value. That register is then reserved until the end of the flow
unit. (Refresh_regs Wwill call free_regs.) Because of this
reservation, LOAD_PRZG and LOAD_XREG gquadruples should only
appear at the end of 3 flow unit,

MTB=-423 Page 17

After a register has been selected and loaded, the machine
state 1images for the loop that 1is about to be entered and all
descendant loops must be wupdated to show that the specific
register nas been globally assigned the specific value. This
enables the machine state to be aporopriately initialized with

the globally assigned registers at the beginning of every flow
unit of the Lloops.

6.2.6 Ngpiodexing_%aerations

There are 3 types of nonindexing operations that will be
carried out in index registers for globally assigned values:
incrementing, comparison against a loop invariant, and assignment
to or from other induction variables, These operations will be
briefly discussed.

6.2.6.1 Ingrementing_of_Index_Values
The processing for incrementing operations is
‘straightforward. The only <complications is that the new wvalue

must be stored if the register is ever erased in the loop or any
of its descendants.

Code sequences follow:
STQRAGE_ARR

adlxn constant,du
[sxln induction_var]

SICRAQE_ARD_QuZ

adlixn 1,du
{sxln induction_var)]

NEG_STQBAGE_AQD

sbixn constant.,du
[sxln induction_varl

6.2.6«2 Compariscon-of_Index_¥alues

Comparison must be against loop dinvariants. The major
problem is whether to use transfer or tsx0 instructions that
follow arithmetic comparisons or those that follow logical

comparisons. Also. note that comparisons against constants use
Dy modification,

Case_l: =131072 <= index <= 131071

cmpx) comparand (in upper 18 bits)
arithimetic comparison indicators used

Page 18 MTB-423
Case_2: index >= 0
cmpxn comparand (in upper 13 bits)
logical comoariscon indicators used
Hopefully, more refined methods can be found for index value

analysis (Section 3) ¢t

hat will do a better job of computing index

ranges than those I have presently proposed.

6.2.6.3

Since induction v
them by a lLoop invaria
variable, index regi
induction wvariable t
whether sources targ
interesting case 1s
the target is in stor
in a comparison, we
depends on the range a

be used in comparisan
alsos, that storage 1is
the register is erased
{ase_1l: Source in regy
eaxm 3
[sxla in
Case_2: Source in sto
Ixlnp $2
[sxln in
Case_3: Source in regj
Case_3.1: MNo range da
sxin ta
Case_3,2: =131072 <=
eaq 3.,
ars 18
sty ta
§se_3.3__: target >=
€aqg Js
ari 13
stqg ta
6.2.7 lpdicatar.Chang

ariables are -updated either by incrementing

nt or by assignment from another induction
sters may be used for assignments of one
o} another, The cases oreak down as to
et, or neither are kept in storage. The
hen the source is in an index register and
age. If the resulting value might be used

want a fullword stored. How this 1s done

nlysis done earlier. If the value will not

’ only a halfword need be stored,. Note.

updated if the target is in a register, but
in the loop.

ister, target in register

n

duction_varl]

rages target in register

urce
duction_var]

ister, target in storage

ta on target
rget
target <= 131071
n

rget

0

n

rget

23

-~

MTB=423 Page 19

These changes are not necessary for register optimization
and can be delayed 1if time becomes an 1issue. Presently 1f a
variable in the g 1is used in a3 <comparison, the code generator
thinks that the variable is no Longer in the q after the
comparison. This is due to the indicators being considered par
of the [ealg 1imn the machine state model. While this model was
satisfactory for _fast compilation and no code optimization, it 1is
nct so good for an optimizing compiler.

Plans to change this have not been worked out in detail., but
the 1dea would be to more approximate the actions of the hardware
the way the PL/I compiler does. Hopefully., a more uniform method
than that used by pl1 can be developed. Basically the machine
state would remember whether the indicators reflect a value in a
specific reqister, a value of a specific variable in storage, the
result of comparing 2 nonzero values, or none of the above.

7. Problems

3eside the omission of a detailed plan for handling the
indicators, there are several known problems that have not yet

ceen resolved. The most important problem is efficient
initialization <code for gltobally assigned induction variables,
The code produced by the present compiler, the algorithms

giscussed here, and the desired code for a given loop follow:

do 10 1 = 11,1000
ali) = b(31) + c(1i)

100 continue

Case_1: Installed Compiler
Ldg Tedl
stq 3

looop: Lxt?2 i
fld br,2
fad cr2
fstr are
aos i
ldg i
cmpgqg 1000.,4dl
tmoz loop

Case_2: Algorithms Described Here

Page 20 MTB-423

Ldg 1,dl
stg i
Lxl2 i

Loop: fld b, 2
fad cCre
fstr 3,2
adtix? 1,du
cmpx?2 1300.,du
tmoz Loop

Case_3: Desired Code

txL2 1,dl
loop: fld bs2

fad Cr2

fstr are

adlx?2 1, du

cmpx?2 1000.,du

tmoz Loop

I think that some minor constant folding can be done during
one of the passes over the guads to solve this problem,

Another problem is that I wish we could do a better job of
index value analysis. The present algorithm depends on a
program's not taking subscriptrange, and does not utilize any
information about starting and finishing values. Of course, the
need for index value analysis would disappear if we had fullword
index registers or general purpose registers!

8. Glossary

tagk_tacge: (of a loop): the flow unit nearest to a loop that
must be enterad before a lcop is entered. Loop optimization
often moves operations from a loop to its back target.

dominator (of a flow unite, Foe t he flow unit nearest to F
through which control must pass before F 1s entered. Also called
the back dominator or immediate back dominator,.

flow_unit: one or more statements defining a sequence of code
that has no intermediate branching points, 1t can only be entered
at the beginning and left at the end

indugtign_yariable (in a loop): a scatar nonaliased Locat
integer variable that 1s only updated once in a loop, either gy
incrementing it by a loop invariant, or by assigning 1t the value
ot another induction variable. The control variable of a do-loop
is an induction variable.

