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This paper describes the general design of register 
optimization for the Multics Fortran compiler. The reader is 
assumed to be familiar with the terminology used in.discussing 
optimization and to have some knowledge of the design of the 
present Multics Fortran loop optimizer. An obsolete document 
which contains early jesign notes for a PL/1 Loop ootimizer and a 
glossary of optimization terminology can be found in 
>udd>m>rab>looo>opt.rJnout. A short glossary also appears at the 
end of this paper. 

The go~l of the Fortran register optimizer is to improve the 
efficiency· of object code by loading frequently used loop 
invariant pointer and index values into registers before the 
beginning of the loop rather than on each iteration of the loop, 
and by keepiny freqJently used induction variables in index 
registers rather than in storage if they are only used for 
subscri~ting and Loop testing. An induction variable is defined 
to be a scalar Local integer variable that is updated once in a 
loop in one of the fol lowing ways: 

o by incrementing it by a loop invariant value 

0 b y a s s i g n i n ·~ t o i t a n o t h e r induction variable 

Besides the variables coded by the user, 
must consider induction variables created 
during strength reduction. 

the 
by 

register optimizer 
the loop optimizer 

Multics Project interial working documentation. Not to be 
reproduced or distributed outside the Multics project. 
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2.1 

One problem with the code generated by present compilers is 
the inefficiency of access code for variables more than 16384 
words away from the beginning of a storage region. Consider the 
following storage fra~ment: 

common /fool dummyC16385),iarrayC16384),jarrayC16384) 
do 10 i = 1116384 
iarray(i) = jarray(i) 
10 continue 

The code generated by today's compiler looks something Like this: 

loop: 

Ldq 
stq 
ldq 
adq 
eax2 
l d Q 

ddq 
epp7 
ldq 
st q 
aos 
ldq 
cmpq 
tmoz 

i 
16384,dl 
o, q l 
i 
32763,Jl 
pr418,• 
pr71Q,ql 
pr71012 

i 
1S384,dl 
l 0 00 

foo 
jarray 
iarray 

iJote that each iteration executes 12 instructions. 
register optimizer I hope to get a sequence like this: 

1111 it h the 

ep p7 or4181* too 
ad wp? 16384,du 
ep pS or418,• foo 
ad wp5 32 768,du 
l x l 2 1, d l 

loop: ldq prSI0,2 jarray 
st .'.l or?f0,2 iarray 
ad l x2 11du 
c mpx2 16384,du 
tmoz lo op 

for a cost of 5 instruclions per iteration. CA possible future 
improvement for this particular example of.array assignment might 
be the replacement of the entire loop by an MLR instruction!) 

Since most l 000 s 
do-loops, these Loops are 
the test that ends a loop 
being kept in an index 
were made using a cnpxo 

thdt appear in FORTRAN programs are 
controlled by induction variables. If 
involves an induction variable that is 

register, it would be nice if the test 
instruction. Unfortunately, this has 
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several problems. An index register is treated by the hard.ware 
as a siyned 17-bit integer when used with compare instructions 
while we normally reoresent integers in storage as signed 35-bit 
inte9ers. Yet we could easily generate index values greater than 
131071, so it is not clear which transfer instruction to use 
after a compare. Also, the cmpxc instruction compares an index 
register with an upoer halfword in storage while we normally 
store integers in fullwords .. 

In order to deal with this problem, if an induction variable 
is to be kept in an index register ~nd used in a comparison, the 
optimizer must figure out its range. As a example, for the loop 

do 100 index =start, finish, by 
body 
100 continue 

·.where "by" is a positive constant and "start" and "finish" are 
integers, the following cases apply: 

-131072 <= index <= 131071, finish is a constant 

l x l Q start 
loo o: body 

ad l XQ by ,du 
c mpxQ fi ni sh,du 
tmoz loop 

-131072 <=index<= 131071, finish is a variable 

ld q finish 
q ls 1 8 
stq ftemp 
L x lo start 

loop: body 
ad l xa by,du 
c moxo ftemp 
tmoz l ::>op 

index>= Q, finish is a constant 

L x la st art 
loop: body 

ad l xo by,du 
cm pxo fi ni sh,du 
tnc l ::J 0 p 
t z e loop 

OR 
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l x l 0 st art 
Loop: Dody 

ad L xo by,du 
cm pxa finish+1,du 
tnc Loop 

~2~5!-~: index >= o, finish i s a variable 

l d q finish 
q L s . 1 8 
StQ ftemp 
l x Lo start 

l 00 p: body 
ad l XQ by, du 
Cm PXQ ftemp 
tnc Loop 
tze Loop 

OR 

ldq finish 
adq 1 , d l 
q l s 1 3 
st q ftemp 
l x Lo st art 

loop: body 
ad l xo by,du 
Cm PXO ft em p 

t n c Lo op 

index ran~e Jnknown 

For now, we'll handle this as Case 6. However, if we were 
to change the converter to either provide information about do 
statements or to pro1uce a different quadruple set from that 
generated now for do loops, we could generate code similar to 
that of the GCOS Fortran Y compi Ler, where the trip count is kept 
in a seperdte re·~ister 3nd is adjusted so as to comolete when the 
register has a zero value: 

t 00 0: 

L x L !!l 
L x Lo 
body 
adlxo 
adlxai 
t z e 

OR 

-Tiax(ntrips,1) 
st art 

by,du 
1,du 
Loop 
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lcq ntrips 
t mi 2, i c 
l c Q 1, d l 
eaxm Q,ql 
l x l 0 st art 

loo P! body 
ad l xo by,du 
ad l icm 1,du 
tze l :>op 

This can be done by a form of test replacement 
adjustment for a mininum of 1 test is made. 
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as long as the 

~ase_g: index is used for something other than subscripting or 
loop testing 

(We don't keep index in an index register.) 

ldq start 
stq index 

loop: body 
ldQ by.1dl 
asq index 
ldq i,dex 
cmpq finish 
tmoz lo op 

OR if index is not busy on exit from the loop, and the loop is a do-loop: 

l d Q st art 
loop: stq index 

body 
ldq index 
adq ':Jy,dl 
cm pq finish 
t m oz l 0 OP 

(This latter case will probably 
of the 
register optimizer.) 

not be tried in initial releases 

The code denerator puts two types of nodes into its machine 
state model's index registers: temporary nodes and symbol nodes. 
A temporary node reoresents the value of an expression that is 
not just a reference to a variable or constant. Wherever a 
particular temporary node appears in the internal representation, 
it always represents the ~ame ~al.!.!~· The compiler distinguishes 
between temporaries that are to be used as input to other 
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operators and those that are to be used for indexing, converting 
the former to the latter by use of the SUBINDEX o~erator. 
Because of this, a teTiporary that represents an index value will 
not be an input to a comparison, and thus analysis of its range 
or use is unnecessary. 

A symbol node represents a reference to a variable. Each 
time a particular symbol node appears in the internal 
representation, it may represent a different value. A symbol 
node may be used for subscripting if it reoresents a scalar 
integer variable. If we want to keep the value of a variable in 
an index register throughout a loop without storing it in the 
loop, one of two c o nd i t i on s mu s t be s a t i sf i e d: 

o the variable's value must not change within the loop 

OR 

o the variable must be an induction variable for the loop 
whose value is not needed upon loop exit and its only 
use must be for subscripting, its own incrementing, 
comparison against a loop invariant~ and assignment to 
other vari3bles that satisfy this condition. This 
condition ensures that the high-order 18 bits of the 
induction variable are not needed for any calculation. 

For each variable that is 
condition and this is used in 
variable must be calculated. 
satisfy one of cases 1 - 4 
variable is not consi:Jered to 

supposed to satisfy the second 
a comparison, the range of the 

If the variable's range does not 
mentioned in Section 2.2, that 

satisfy the condition. 

How do we gather the information to make these 
determinations? For each loop we wi Ll have 2 bit strings: 
USED_AS_SUBSCRIPT and ALWAYS_USED_AS_SUBSCRIPT, with one bit per 
variable. The Loops are scanned one at a time in an order such 
that the most deeply nested ones are scanned first. At the start 
of each loop's scan the USED_AS_SUBSCRIPT string is initialized 
to all zeroes and the AL~AYS_USED_AS_SUBSCRIPT string is 
initialized to ones for those scalar integer variables that are 
either invariant or induction variables and to zeroes for all 
other variables. If the Loop contains any inner Loops, the 
USED_AS_SUBSCRIPT strings of the inner Loops are OR'd to the 
USED_AS_SUBSCRIPT string of this loop, and the 
ALWAYS_USED_AS_Su8SCRIPT strings of the inner loops are AND'd to 
the ALWAYS_uSED_AS_SU3SCRIPT string of this loop. The operators 
in the flow units belonging to this Loop but ~ot to inner Loops 
are scanned. For each operator the inputs1 if they are symbols, 
are processed as follows: 
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0 

0 

0 

0 

0 

Page 7 

OPT_SUBSCRI?T, SUBSTR -- the bit corresponding to 
operand(3). (the variable offset) is turned on in 
USED_AS_SU3SCRIPT. If operand(1) is a string which 
might require an offset greater than 262143, turn off 
operand(3)'s bit in ALWAYS_USED_AS_SUBSCRIPT. 

incrementin3 operators -- if the increment is not a 
constant, turn off the bit corresponding to the 
incremented variable in ALWAYS_USED_AS __ SUBSCRIPT. 

RELATIONAL OPERATOR OR JUMP_ARITHMETIC -- if neither 
operand is an induction vari~ble, do nothing. 
Otherwise, for each induction variable, if the operand 
beiny compared against is not loop invariant, turn off 
the bit corresponding to the induction variable in 
ALWAYS_USED_AS_SUdSCRIPT; if the operand being 
compared against is loop invariant , then add this 
operator to the COMPARISON list for this loop. 

ASSIGN - if the target does not have its bit on in 
ALWAYS USED_AS_SUBSCRIPT, turn off the bit of the 
source in ALWAYS_USED_AS_SUBSCRIPT; otherwise, add this 
operator to the ASSIGNMENT list for this loop. 

other operators -- turn off the 
ALWAYS_USED_AS_SUBSCRIPT. 

bits of all inputs in 

Once all the ooerators have been scanned, the COMPARISON 
List must be processed. Processing the COMPARISON List means 
finding the range of each inductio~ variable in the list. If the 
induction variable is neither known to be always nonnegative nor 
Known to be between -131072 and +131071, the variable's bit in 
ALWAYS_USED_AS_SUBSCRIPT must be turned off. 

Deducing the range of each induction variable in the 
COMPARISON List is one of the trickiest tasks of the re9ister 
optimizer. For now I have chosen a scheme that errs on the side 
of safety -- that is, it doesn't always succeej in calculating a 
range, but it never calculates a range incorrectly. This scheme 
only works for valid FORfRAN programs, however. It requires that 
subscriptrange never occurs within a loop. Basically, the scheme 
is this: all subscripting uses of the induction variable in the 
flow unit of the comparison and in the flow units in the 
dominator chain back to and including the loop entry unit are 
examined. Each subscripted reference gives us a range, thusly: 

Lower_limit = - constant_oifset [+ increment, if increment is negative] 

if array has constant extents 
then uooer limit = array_size - constant_offset - 1 

[+ increment, if increment is positive] 
else upoer_Limi t = 262143 - constant offset 

[+ increment, if increment is positive] 
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<Each subscripted reference is represented as an OPT_SUBSCRIPT 
operator with operand(1) as the array name, operand(2) the 
constant offset, and operandC3) as the variable offset, that is 
the induction variable. Some adjustment might have to be made 
when SUBSTR is im~lemented.) 

If more than one subsc rioted reference of the induction variable 
is found in the backJard scan, the resulting lower limit is the 
maximum of all lciwer Limits calculated, and the re&ulting upper 
limit is the minimun of all upper limits found. This works 
because all subscripted references found must be evaluated before 
the comparison is re3ched on every iteration of the Loop. Once 
the range has been calculated, it is remembered 'for use by the 
code generator and for use by the next phase of range analysis~ 

After the CO~PARISON list has been processed, the 
ASSIGNMENT list must be processed. The object of this processing 
is to ensure that no variable with a bit on in 
ALWAYS_USED_AS_SUBSCRIPT is assigned to a variable with a bit off 
in that string. Thus, we won't have a problem with the missing 
18 hiyh-order bits ~hi le keeping an induction variable in an 
index register. A secondary consideration is that we want to 
pass on any range data calculated during COMPARISON list 
orocessing, so that all variables that assign to variables used 
in comparisons, have range data. To process the ASSIGNMENT list 
each assignment on the list must be scanned. If the source of 
the assignment is a variable whose bit in the 
ALWAYS_USED_AS_SUBSCRIPT string is off, that assignment is 
removed from the list. If the source is a variable whose 
ALWAYS_USED_AS_SUBSCRIPT bit is on, but. the target is a variable 
whose AlwAYS_USED_AS_SUBSCRIPT bit is off, the source variable's 
bit is turned off, the fact that a change has occurred on this 
scan of the list is remembered, and the assignment is removed 
from the list. If both the source and target are variable whose 
ALWAYS_USED_AS_SUBSCRIPT bits are on and the target has range 
information Cdlculated for it while the source does not, range 
information is propagated to the source variable, and the fact 
that a change has occurred on this scan of the list is 
remembered. Scanning of the list repeats until no change occurs 
during a scan. 

Once ASSIGNMENT list processing completes, we can derive a 
list of candidates for index register assignment by intersecting 
the USED_AS_SUBSCRIPT and AL~AYS_USED_AS_SUBSCRIPT strings. 
These strings are made available for analyzing outer loops and 
for the register assignment phase. 
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Stora9e allocation must be done before global register 
allocation because the locations assigned to variables may affect 
register usage. This is especially important in the case of 
variables that are located at an offset of more than 16384 words 
from the beginning of their storage regions. No changes need to 
be made to the current FORTRAN code generator's storage 
allocator. After storage allocation has been completed, 
sufficient information exists to analyze register usage. 

The algorithms described in this section are run on a 
Loop-by loop oasis from the inside-out and from front-to-back. 
This ensures that the innermost loops get the most chance for 
improvement. Each loJp is analyzed for register usage, and loop 
invariants and induction variables are allocated registers across 
the loop before the next looo is processed. 

Ti.10 classes of 
analysis for a loop 
allocation: 

information must be obtained during usa~e 
ln order to facilitate global register 

. 
0 the number Jf uses of any 

a reg i st e r g l ob a l l y 
values that m~~ be allocated 

o the maximu~ number of registers that would normally be 
allocated to non-global values during normal linear 
code gene rat ion if register optimization did not occur 

This information orovides us with the number of 
available for ]lobal allocation and a rank.ordering of 
that might be allocated a register. 

registers 
the values 

In order to get this information, which i·nvolves finding out 
which operations erase regist~rs as well as causing them to be 
loaded, it appears that the most reliable method is to simulate 
code generJtion ~ith a different macro interoreter that runs off 
the quadruples and fort_opt_macros_ just like the real code 
generator's i~terpreter does. Only instead of emitting code, 
this new interpreter would be compiling statistics for use in 
glooal register allocation. This means that information on which 
pl1_operators_ entries erase which registers need be kept in only 
one place. A proble~ of using two such similar interpreters is 
in keeping them consistent. Perhaps it is possible for them to 
be merged or else to share some code by include files. This 
still needs to be worked out. 
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The usage analysis interpreter must handle index values and 
pointer values in different ways. As mentioned earlier, index 
values are represented either by temporary nodes or symbol nodes. 
Only loop invariant temporaries are eligible for global register 
allocation. A temporary is considered invariant in a Loop in 
which it is used if the operator producing its value is evaluated 
outside that loop. Both loop invariant symbols and symbols 
representing elibible loop induction variables are eligible for 
global register allocation. A symbol is found to be loop 
invariant if its bit in loop.set is off. A variable is an 
eligible induction variable if its bit in both the loop's 
USED_AS_SUBSCRIPT and ALWAYS_USED_AS_SUUSCRIPT strings are on. 
It is clearly possible to associate a usage count for the loop 
with each eligible value. 

Pointer values do not at present have a uniform 
representation. Since for most storage regions it is possible 
that up to 16 pointers might be needed (because storage regions 
are a maximum of 262144 words long, while the 15-bit address 
fields can address 16364 words in a nonnegative dire~tion), one 
'Nay to represent each storage region might be with a vector of 
pointer value nodes containing usage counts. Each common block's 
header node could poi~t to such a vector, and there could also be 
a vector each for automatic and static storage. Vectors would 
not be needed for argJment pointers or the argument List itself. 
In these cases there would be a single pointer to a pointer value 
node. 

The register usa~e analysis interpreter would scan all the 
quadruples contained in flow units of the particular loop that 
are not contained in inner loops of that loop. I'f an inner loop 
is encountered during the scan, it is treated as a black box that 
preserves all registers assigned across the inner loop and erases 
the rest. Note that this interpreter assumes no reyisters have 
been globally allocated for the loop being scanned. 

After the loop is scanned, the values eligible for global 
allocation are sortej in descending order by usage count within 
their two classes -- index values and pointer v3lues. 

The allocation algorithm we will use is not optimal but does 
a pretty good job for most programs. It is an improvement of 
Busam and Englund's algorithm, which was used for FORTRAN Y. The 
algorithm is run se~arately for the pointer registers and the 
index registers. 
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Let REGS_."'.VAIL be the number of availa.ble registers, and let 
,.. REGS_USED be the number of registers allocated for this loop, not 

countiny inner locos. Initialize REGS_USED t.o 
maxCmax_regs_needed_locally,1). (The second argument of the max 
function must be different for index registers if EIS is used. 
This has not yet been designed.) 

~e now consider each candidate for global allocation in turn 
in descending order oy usage count. The effect of allocating a 
register to a candidate in a Loop in which the candidate has not 
been allocated a re~ister would be to increment REGS_USED for 
that loop by one. Therefore, we determine the effect of such an 
allocation for this loop and all nested loops. If for any of the 
examined Loops~ REGS_USED would exceed REGS_AVAlL~ the attempt to 
allocate a register to the candidate fails. 

If the attempt does not tail, we actually perform the 
allocation. The candidate is allocated a register in all inner 
loops in which it does not already have a register~ and REGS_USED 
for each of those looos is adjusted accordingly. The candidate 
is then allocated a register in the Loop being processed and 
REGS_USED is incremented for this loop. A LOAD_PREG or LOAD_XREG 
quadruple to load the register is inserted in the loop's back 
tar~et. This will be seen as a register use when the outer Looo 
is Later scanned. If the candidate is an induction variable 
which is compared to a non-constant, a quadruple to force the 

,.. non-constant to an uoper halfword is placed in the back target, 
and the comparison is changed to be against the output of the new 
quadruple. 

This algorithm ensures that enough registers are left 
avai laole for Local assignment whi Le attemoting to maximize the 
number that may be globally assi,;ned. Note, that in this phase a 
register is ~llQ~al~J to a value. When the code qenerator runs 
later, iJ specific re~ister will be 2~~i~!J~Q to a value (and the 
value assigned to the register). 

The functional changes neeced for the code generator are 
described fairly completely in this section. Not all the 
necess3ry data structure changes are described. Some familiarity 
with the present fort_optimizing_cg is assumed. 

The machine state node, loop node, and 
need some modificatio~s. 

6. 1 • 1 

operand nodes all 

The machine state 
fields for each index or 

node presently contains the following 
oointer register: 
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0 type 
a c od e d e f i n i n g t h e t y p e o f i t em i n t h e 
specifying that the register is empty, or 
that a register is "reserved" (locked). 

MTB-423 

register, 
s p e c i f y i n·g 

o variable 
for index registers this 
register. This has other 

o used 

specifies the variable in the 
uses in pointer registers. 

the last location this register was used. 

o offset 
tor pointer registers this specifiP.s the offset of the 
value of the pointer from the beginning of a storage 
area. Not JSed for index registers. 

Two bits will be added to each register description: 

o global 
"1"b means the register has been globally assigned. If 
the type field is greater than zero, then the register 
currently contains the value globally assigned to it. 

o reserved 
"1"b means the register is reserved (locked). This 
register may not be selected for loading a new value. 
This functi~n used to be in the type field. 

The type field currently has the following meaninqs: 

-1 RESERVED 

EMPTY 

+n contains known value 

ihe meaning of -1 will be changed to "contains unknown value". 

The representation of the indicators in the machine state 
should also be changed. Presently there is an "indicators_valid" 
bit which indicates that the indicators correspond to the value 
in the eaq, and there is a set of indicator substates for the 
eaq. This should be changed so that there is a code saying which 
register, variable, or comparison between 2 values caused the 
indicators to be set, and the indicators should be independent of 
any eaq states. 

6. 1 • 2 
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Loop nodes are created by the loop optimizer and contain or 
,,.,. ~oint to all information specific to a loop. They are accessible 

by going from the opt_statement node to the flow_unit node to the 
Loop node. 

,.. 

The loop node will be changed to contain. a machine state 
image. This image will indicate which registers have been 
globally assigned which values for the loop. 

The loop node will also be the 
information for induction variables 

repository of range 
globally assigned to 

registers. 

6. 1 • 3 

The various operand nodes will have a "globatty_assigned" 
bit to indicate that the operand has been globally assigned to an 
index register. This is used to speed up register searching. 

The changes 
described here. 

6.2.1 

A referenced 

for various 

Label on an 

operations and processing are 

executable stat~ment usually 
represents a merging 0 f t WO or more flows of control and always 
marks the beginning of a flow unit. Because of th; s, additional 
;;irocessing i s needed which code generation reaches a label to 
support register opti11ization. 

If the flow unit headed by the label belongs to a different 
loop than the flow u1it that was being compiled, 
that were globally assigned to an index register in 
loop must have their "glooally_assigned" bits 
Otherwise, this step is bypassed. 

all operands 
the previous 
turned off. 

The machine states corresponding to the various flows of 
control are then intersected as is presently done. If there is a 
b a c k w a r d r e f e r e n c e t o t h e s t a t e m e n t l a b e l o r i t i s r e f e r e n c e· d i n 
an ASSIGN statement, all registers are marked as empty. 

Finally, if any registers have been globally assigned for 
the loop that the labelled statement is in, the machine state is 
updated from the loop node's machine state image to indicate 
which registers have globally assigned values in them. At this 
time any operands that are in globally assigned index registers 
have their "qlobally_assigned" bits turned on. 
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The action taken in the previous paragraph assumes that all 
globally assigned values are preloaded before the loop starts, 
and that if a register is Locked or erased ( because of a 
subroutine call, for example), that the register will be 
refreshed with its globally assigned value before the completion 
of the flow unit containiny the erasure. 

6.2.2 

As is done currently, if a register already contains the 
desired value, ever~thing is fine and no action takes place 
except to update the "used" field in the machine state. The 
changes in function are in what happens if the value is cc! 
contained in a register. 

If the value has been globally assigned to a register but is 
not currently in the register, that register is selected for 
reloading the value. If the register is in the "reserved" state, 
an error occurs. 

If the value has not been globally assigned to a register, 
get_free_reg is callej as usual to select a register for loading. 
get_free_reg must not select a register that has been globally 
assigned, nor must it select a "reserved" register. 

Registers are reserved either because the code generator 
(actually fort_opt_macros_) wants that register for a special 
preemptive purpose, or code is about to be emitted that 
invalidates the register contents, such as the code for a 
subroutine call. Registers are freed after the code generator 
has emitted the code for which it reserved the registers, usually 
by invoking a free_regs macro. Any register that was reserved is 
now marked "empty" except for perman.ently assigned registers. 

Two procedures reserve registers: reserve_ regs and 
base_man_load_pr. free_regs frees alt reserved registers. 
reserve_regs implements the reserve_regs macroinstruction and 
reserves the specified registers for "unknown" purposes. 
base_man_toad_pr imolements the load_pr macroinstruction and 
reserves the specifiej pointer register after loading an address 
into it. It is planned that for FORTRAN 77 char mode reservation 
will be requested in order to make multiple operands 
simultaneously addressable for EIS instructions. The LOAD_PREG 
and LOAD_XREG operators proposed later for register optimization 
will also wish to reserve registers so that the loads will not be 
undone. 
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Because of these latest plans, the concept 
register has been split off from the concept of an 
reserve_regs and base_man_load_pr will both 
"reserved" bit and set the "type" field to -1 
"unknown value". Reservation done for EIS 
LOAD_PREG and LOAD_XREG operators wi LL turn on 
bit, but will leave the "type" field unchanged. 
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of a reserved 
unknown value. 

turn on the 
to indicate 

addressing or 
the "reserved" 

Free_regs will turn off the "reserved" bit for all reserved 
registers and wi Ll ch3nge the "type" fields that have a -1 value 
to 0 for "empty". Positive "type" fields wi Lt be left unchanged. 

6.2.4 

Unlike traditional operating systems, Multics does not have 
calling conventions that guarantee transparency; that is, 
subroutines on Multics do not save and restore any registers they 
modi f y. W h i le th i s mi n i mi z e s memory re fer enc e s, i t causes 
problems for an ootimizing compiler that don't exist on 
traditional operating systems. One the one hand, a compiler may 
wish to globally assign values to registers across loops, 
preloading the registers before the loops. On the other hand, 
calls to subroutines and pl1_operators_ may erase these frozen 
registers, thus counteracting the compiler's intentions. 

There are three oossible approaches that could be taken 
,.. here. The first would be to say that any registers clobbered by 

pl1_operators_ or subroutine calls within a loop are unavailable 
tor global register assignment. This greatly simplifies code 
generation, but it loses opportunities for optimization, 
especially if the more frequently executed paths in the loop 
would not have clobbered the registers. (Note that subroutine 
calls are considered to clobber 2ll registers.) The second 
approach is to gener3te code so that the calling program saves 
<if necessary) and restores registers across each call. This 
could cause unnecessary and redundant register lo3ding if there 
are many calls close together as in an I/O stateMent. The 
present FORTR.'\N compiler uses a strategy like that for pr1 and 
pr4, anJ its bad effects can be seen in today's object code for 
I/O statements. 

We will take a third approach that is an adaptation of the 
second approach. As registers are erased by subroutine or 
pl1_operators_ calls, they will be restored only as' needed as 
long as flow stays within the S3me flow unit. The mechanism for 
this "as needed" restoration has already been described in 
Section 6.2.2 (Loading a Register). When control reaches the end 
of a flow unit, any glooally assigned registers whose values are 
not in the registers must be "refreshed" , that is these values 
must be restored to the registers. This ensures that the values 
are known to be i, the globally assigned registers at the 
beginning of every flow unit of the loop. It will be unnecessary 
to save globally assiined registers before these calls due to 
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several mechanisms. First, all pointer values used in FORTRAN 
proyrams are const3nts, so they don't need to be saved. 
Secondly, all Loop invariant index values are either symbols 
whose values were stored outside the Loop when they were assigned 
or temporaries whose values were stored before entry to the loop 
due to the normal action that occurs when a label <compiler 
generated or otherwise) or forward jump is encountered. We need 
a third mechanism to minimize unnecessary storing for globally 
assiyned induction Jariables. The plan here is to store the 
index register into the variable's storage whenever the 
variable's value changes within the loop. This storing of the 
value would only occur if the register were ever erased within 
the loop or any of its descendants. This information must be 
provided by the interpreter that does the global register usage 
analysis and should be kept in the loop node. 

There will be a new subroutine, refresh_regs, whose job will 
be to refresh all globally assigned registers whose values are 
not in the register. It will be called at the beginning of label 
processing, since a label marks the join of two flow units, and 
it will be called 1o1hen the refresh_reys macroinstruction is 
invoked in any of the macro procedures for the various jump 
operators, since the registers must be refresheJ bffQrf the 
jumps. Because of this Latter case, refresh_regs must be 
prepared to optionally preserve the indicators across a 
refreshing operation since loading index registers changes the 
indicators, since the jump could be conditional, and since the 
refreshing must occur after all expressions have been evaluated 
in the flow unit but oefore the actual transfer instructions are 
emitted. 

Refresh_regs should call free_regs as the last thing it does 
so that no registers are Left reserved at the end of a flow unit. 
This could occur because of the processing of LOAD_PREG or 
LOAD_XREG operators, ~hich is described in the next section. 

6. 2. 5 

As mentioned e3r lier, the global register allocation phase 
inserts LOAD_PREG and LOAD XREG operators in the back targets of 
loops for which values ·are to be ylobally assigned to registers. 
The assignment of a value to a ~g~~iii~ register does not occur 
until the code generator actually encounters and processes the 
LOAD_PREG or LOAD_XREG quadruple. When one of these quadrucles 
is encountered, the aporopriare base_man or xr_man procedure is 
called to select and load a register with the globally assigned 
value. That register is then reserved until the end of the flo1oo1 
unit. (Refresh_reys will call free_regs.) 2ecause of this 
reservation, LOAD_PqcG and LOAD_XREG quadruoles should only 
appear at the end of a flow unit. 
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After a register has been selected and loaded, the machine 
state. images for the loop that is about to be entered and all 
descendant loops must be updated to show that the specific 
register has been ~lobally assigned the specific value. This 
enables the machine state to be appropriately initialized with 
the globally assignej registers at the beginning of every flow 
unit of the loops. 

There are 3 types of nonindexing operations that will be 
carried out in index registers for globally assigned values: 
incrementing, comparison against a loop invariant, and assignment 
to or from other ind~ction variables. These operations ~i LL be 
brief Ly discussed. 

6.2.6.1 

The processi1g for incrementing operations is 
·straightforwarj •. The only complications is that the new value 
must be stored if the register is ever erased in the loop or any 
of its descendants. 

Code sequence s f o L l ow: 

ad l xo 
Cs x la 

ad L xo 
( s x La 

sblxo 
( s x Lo 

constant1du 
induction_var] 

1,du 
induction_varJ 

constant,du 
induction_var] 

be against loop Comparison must 
problem is whether 
follow arithmetic 
comparisons.· Also, 
!lU modi f i Cdt ion. 

to use transfer or 
comparisons or those 

·"'lOte that comparisons 

-131072 <= i-idex <= 131071 

invariants. The major 
tsxO instructions that 

that follo1o1 Log.ical 
against constants us€ 

cmpxJ cJmparand 
arithmetic comparison 

(in upper 
i ndi c:i tors used 

18 bits) 
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~~S,~_2: index >= 0 

cm pxo 
logical 

MTB-423 

comparand (in upper 18 bits) 
comoarison indicators used 

Hopefully, more refined methods can be found for index value 
an a l y s i s ( Se c t i on 3) t h a t w i l l do a be t t e r j ob o f comp u t i n g i n de x 
ranges than those I have presently proposed. 

Since induction variables are·updated either by incrementing 
them by a loop invariant or by assignment from another induction 
variable, index registers may be used for assignments of one 
induction variable to another. The cases break down as to 
whether source, tar~et, or neither are kept in storage. The 
interesting case is ~hen the source is in an index register and 
the target is in storage. If the resulting value might be used 
in a comparison, we want a fullword stored. How this is done 
depends on the range anlysis done earlier. If the value will not 
be used in comparison, only a halfword need be stored. Note, 
also, that storage is updated if the target is in a register, but 
the register is erasej in the loop. 

~2,S~_l: 

~a~f-2: 

~2!if_3: 

~ss.f_3 ... 1: 

~a~e-~£f: 

Source in 

eaxm 
( s x l(!! 

Source in 

l x l 0 
[ s x l~ 

Source in 

No ran!~ e 

s x Lo 

-131072 

eaq 
qrs 
st q 

re~ister, target in 

O>n 
iriduction_var] 

storage, target i n 

sJurce 
induction_var] 

re;i is ter, tar1et in 

data on target 

target 

<= target <= 131071 

Q,n 
1 8 
target 

target >= 0 

eaq 
qr l 
stq 

Q,n 
1 3 
target 

register 

register 

storage 
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These changes are not necessary for register optimization 
and can be delayed if time becomes an issue. Presently if a 
variable in the Q is used in a comparison, the code generator 
thinks that the variable is no Longer in the Q after the 
comparison. This is due to the indicators being considered par 
of the (ea]q in the 'llachine state model. While this model was 
satisfactory for.fast compilation and no code optimization~ it is 
not so good for an optimizing compiler. 

Plans to change this have not been worked out in detail, but 
the idea would be to more approximate the actions of the hardware 
the way the PL/I compiler does. Hopefully, a more uniform method 
than that .used by pl1 can be developed. Basically the machine 
state would remember whether the indicators reflect a value in a 
specific register, a value of a specific variable in storage, the 
result of comparing 2 nonzero values, or none of the above. 

aeside the omission of a detailed plan for handling the 
indicators, there are several known problems that have not yet 
been resolved. The most important problem is efficient 
initialization code for globally assigned induction variables. 
The code produced by the present comoiler, the algorithms 
discussed here, and the desired code for a given loop follow: 

do 100 i = 1 , 1000 
a < i ) = b ( i ) + c ( i ) 

100 continue 

£_g~~-1: Installed C::>mpiler 

ldq 1 , d l 
st q 

l 00 p: l x l 2 i 
f l d b, 2 
fad c, 2 
f s tr a,2 
ao s 
ldq i 
cmpq 1000,dl 
tmoz loop 

~a.s.e_,: Algorithms Described Here 
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ldq 1 , d l 
stq 
l x l 2 i 

l 00 p: fld b,2 
fad c,2 
fstr a,2 
ad L x2 1, du 
c mpx2 1JQO,du 
tmoz Loop 

Desired Code 

l x l 2 , , d l 
loop: f ld b, 2 

fad c,2 
f str a,2 
ad L x2 1, du 
cm px2 1000,du 
tmoz loop 

I think that some 
one of the passes over 

minor constant folding can be done during 
the quads to solve this problem. 

Another problem is that I wish we could do a better job of 
index value analysis. The present algorithm depends on a 
pro';3ram's not taking subscriptrange, and does not utilize any 
information about starting and finishing values. Of course, the 
need for i n de x v a l u e a n a Ly s i s would d i sap pea r i f we had f u l l word 
index registers or general purpose registers! 

oa'k-tats.-ft (of a loop): the flow unit nearest to a loop that 
must be entered before a loop is enterej. Loop optimization 
often moves operations from a loop to its back target. 

gQmio2.tQ£ (of a flow unit, F): the flow unit nearest to F 
through which control mY~1 p::iss before F is entered. Also called 
the back dominator or immediate back dominator. 

fLcw-~ait: one or more statements· defi~ing a sequence of code 
that has no intermediate branching points; it can only be entered 
at the beginning and left at the end 

irn1u~.tiQO-ll2£i.e9.!.~ (in a loop): a scalar non::iliased local 
integer variable that is only updated once in a loop, either by 
incrementing it by a loop invariant, or by assigning it the value 
of another induction variable. The control variable of a do-loop 
is an induction variable. 


