
Multics Technical Bulletin MTB-423

To: Distribution

From: Richard A. 3arnes

Date: 08/17/79

Subject: FORTRAN REGISTER OPTIMIIZER

This paper describes the general design of register
optimization for the Multics Fortran compiler. The reader is
assumed to be familiar with the terminology used in.discussing
optimization and to have some knowledge of the design of the
present Multics Fortran loop optimizer. An obsolete document
which contains early jesign notes for a PL/1 Loop ootimizer and a
glossary of optimization terminology can be found in
>udd>m>rab>looo>opt.rJnout. A short glossary also appears at the
end of this paper.

The go~l of the Fortran register optimizer is to improve the
efficiency· of object code by loading frequently used loop
invariant pointer and index values into registers before the
beginning of the loop rather than on each iteration of the loop,
and by keepiny freqJently used induction variables in index
registers rather than in storage if they are only used for
subscri~ting and Loop testing. An induction variable is defined
to be a scalar Local integer variable that is updated once in a
loop in one of the fol lowing ways:

o by incrementing it by a loop invariant value

0 b y a s s i g n i n ·~ t o i t a n o t h e r induction variable

Besides the variables coded by the user,
must consider induction variables created
during strength reduction.

the
by

register optimizer
the loop optimizer

Multics Project interial working documentation. Not to be
reproduced or distributed outside the Multics project.

Page 2 MTB-423

2.1

One problem with the code generated by present compilers is
the inefficiency of access code for variables more than 16384
words away from the beginning of a storage region. Consider the
following storage fra~ment:

common /fool dummyC16385),iarrayC16384),jarrayC16384)
do 10 i = 1116384
iarray(i) = jarray(i)
10 continue

The code generated by today's compiler looks something Like this:

loop:

Ldq
stq
ldq
adq
eax2
l d Q

ddq
epp7
ldq
st q
aos
ldq
cmpq
tmoz

i
16384,dl
o, q l
i
32763,Jl
pr418,•
pr71Q,ql
pr71012

i
1S384,dl
l 0 00

foo
jarray
iarray

iJote that each iteration executes 12 instructions.
register optimizer I hope to get a sequence like this:

1111 it h the

ep p7 or4181* too
ad wp? 16384,du
ep pS or418,• foo
ad wp5 32 768,du
l x l 2 1, d l

loop: ldq prSI0,2 jarray
st .'.l or?f0,2 iarray
ad l x2 11du
c mpx2 16384,du
tmoz lo op

for a cost of 5 instruclions per iteration. CA possible future
improvement for this particular example of.array assignment might
be the replacement of the entire loop by an MLR instruction!)

Since most l 000 s
do-loops, these Loops are
the test that ends a loop
being kept in an index
were made using a cnpxo

thdt appear in FORTRAN programs are
controlled by induction variables. If
involves an induction variable that is

register, it would be nice if the test
instruction. Unfortunately, this has

MTB-423 Page 3

several problems. An index register is treated by the hard.ware
as a siyned 17-bit integer when used with compare instructions
while we normally reoresent integers in storage as signed 35-bit
inte9ers. Yet we could easily generate index values greater than
131071, so it is not clear which transfer instruction to use
after a compare. Also, the cmpxc instruction compares an index
register with an upoer halfword in storage while we normally
store integers in fullwords ..

In order to deal with this problem, if an induction variable
is to be kept in an index register ~nd used in a comparison, the
optimizer must figure out its range. As a example, for the loop

do 100 index =start, finish, by
body
100 continue

·.where "by" is a positive constant and "start" and "finish" are
integers, the following cases apply:

-131072 <= index <= 131071, finish is a constant

l x l Q start
loo o: body

ad l XQ by ,du
c mpxQ fi ni sh,du
tmoz loop

-131072 <=index<= 131071, finish is a variable

ld q finish
q ls 1 8
stq ftemp
L x lo start

loop: body
ad l xa by,du
c moxo ftemp
tmoz l ::>op

index>= Q, finish is a constant

L x la st art
loop: body

ad l xo by,du
cm pxo fi ni sh,du
tnc l ::J 0 p
t z e loop

OR

Page 4 MTB-423

l x l 0 st art
Loop: Dody

ad L xo by,du
cm pxa finish+1,du
tnc Loop

~2~5!-~: index >= o, finish i s a variable

l d q finish
q L s . 1 8
StQ ftemp
l x Lo start

l 00 p: body
ad l XQ by, du
Cm PXQ ftemp
tnc Loop
tze Loop

OR

ldq finish
adq 1 , d l
q l s 1 3
st q ftemp
l x Lo st art

loop: body
ad l xo by,du
Cm PXO ft em p

t n c Lo op

index ran~e Jnknown

For now, we'll handle this as Case 6. However, if we were
to change the converter to either provide information about do
statements or to pro1uce a different quadruple set from that
generated now for do loops, we could generate code similar to
that of the GCOS Fortran Y compi Ler, where the trip count is kept
in a seperdte re·~ister 3nd is adjusted so as to comolete when the
register has a zero value:

t 00 0:

L x L !!l
L x Lo
body
adlxo
adlxai
t z e

OR

-Tiax(ntrips,1)
st art

by,du
1,du
Loop

MTB-423

lcq ntrips
t mi 2, i c
l c Q 1, d l
eaxm Q,ql
l x l 0 st art

loo P! body
ad l xo by,du
ad l icm 1,du
tze l :>op

This can be done by a form of test replacement
adjustment for a mininum of 1 test is made.

Page 5

as long as the

~ase_g: index is used for something other than subscripting or
loop testing

(We don't keep index in an index register.)

ldq start
stq index

loop: body
ldQ by.1dl
asq index
ldq i,dex
cmpq finish
tmoz lo op

OR if index is not busy on exit from the loop, and the loop is a do-loop:

l d Q st art
loop: stq index

body
ldq index
adq ':Jy,dl
cm pq finish
t m oz l 0 OP

(This latter case will probably
of the
register optimizer.)

not be tried in initial releases

The code denerator puts two types of nodes into its machine
state model's index registers: temporary nodes and symbol nodes.
A temporary node reoresents the value of an expression that is
not just a reference to a variable or constant. Wherever a
particular temporary node appears in the internal representation,
it always represents the ~ame ~al.!.!~· The compiler distinguishes
between temporaries that are to be used as input to other

Page 6 MTB·-42 3

operators and those that are to be used for indexing, converting
the former to the latter by use of the SUBINDEX o~erator.
Because of this, a teTiporary that represents an index value will
not be an input to a comparison, and thus analysis of its range
or use is unnecessary.

A symbol node represents a reference to a variable. Each
time a particular symbol node appears in the internal
representation, it may represent a different value. A symbol
node may be used for subscripting if it reoresents a scalar
integer variable. If we want to keep the value of a variable in
an index register throughout a loop without storing it in the
loop, one of two c o nd i t i on s mu s t be s a t i sf i e d:

o the variable's value must not change within the loop

OR

o the variable must be an induction variable for the loop
whose value is not needed upon loop exit and its only
use must be for subscripting, its own incrementing,
comparison against a loop invariant~ and assignment to
other vari3bles that satisfy this condition. This
condition ensures that the high-order 18 bits of the
induction variable are not needed for any calculation.

For each variable that is
condition and this is used in
variable must be calculated.
satisfy one of cases 1 - 4
variable is not consi:Jered to

supposed to satisfy the second
a comparison, the range of the

If the variable's range does not
mentioned in Section 2.2, that

satisfy the condition.

How do we gather the information to make these
determinations? For each loop we wi Ll have 2 bit strings:
USED_AS_SUBSCRIPT and ALWAYS_USED_AS_SUBSCRIPT, with one bit per
variable. The Loops are scanned one at a time in an order such
that the most deeply nested ones are scanned first. At the start
of each loop's scan the USED_AS_SUBSCRIPT string is initialized
to all zeroes and the AL~AYS_USED_AS_SUBSCRIPT string is
initialized to ones for those scalar integer variables that are
either invariant or induction variables and to zeroes for all
other variables. If the Loop contains any inner Loops, the
USED_AS_SUBSCRIPT strings of the inner Loops are OR'd to the
USED_AS_SUBSCRIPT string of this loop, and the
ALWAYS_USED_AS_Su8SCRIPT strings of the inner loops are AND'd to
the ALWAYS_uSED_AS_SU3SCRIPT string of this loop. The operators
in the flow units belonging to this Loop but ~ot to inner Loops
are scanned. For each operator the inputs1 if they are symbols,
are processed as follows:

MTB-423

0

0

0

0

0

Page 7

OPT_SUBSCRI?T, SUBSTR -- the bit corresponding to
operand(3). (the variable offset) is turned on in
USED_AS_SU3SCRIPT. If operand(1) is a string which
might require an offset greater than 262143, turn off
operand(3)'s bit in ALWAYS_USED_AS_SUBSCRIPT.

incrementin3 operators -- if the increment is not a
constant, turn off the bit corresponding to the
incremented variable in ALWAYS_USED_AS __ SUBSCRIPT.

RELATIONAL OPERATOR OR JUMP_ARITHMETIC -- if neither
operand is an induction vari~ble, do nothing.
Otherwise, for each induction variable, if the operand
beiny compared against is not loop invariant, turn off
the bit corresponding to the induction variable in
ALWAYS_USED_AS_SUdSCRIPT; if the operand being
compared against is loop invariant , then add this
operator to the COMPARISON list for this loop.

ASSIGN - if the target does not have its bit on in
ALWAYS USED_AS_SUBSCRIPT, turn off the bit of the
source in ALWAYS_USED_AS_SUBSCRIPT; otherwise, add this
operator to the ASSIGNMENT list for this loop.

other operators -- turn off the
ALWAYS_USED_AS_SUBSCRIPT.

bits of all inputs in

Once all the ooerators have been scanned, the COMPARISON
List must be processed. Processing the COMPARISON List means
finding the range of each inductio~ variable in the list. If the
induction variable is neither known to be always nonnegative nor
Known to be between -131072 and +131071, the variable's bit in
ALWAYS_USED_AS_SUBSCRIPT must be turned off.

Deducing the range of each induction variable in the
COMPARISON List is one of the trickiest tasks of the re9ister
optimizer. For now I have chosen a scheme that errs on the side
of safety -- that is, it doesn't always succeej in calculating a
range, but it never calculates a range incorrectly. This scheme
only works for valid FORfRAN programs, however. It requires that
subscriptrange never occurs within a loop. Basically, the scheme
is this: all subscripting uses of the induction variable in the
flow unit of the comparison and in the flow units in the
dominator chain back to and including the loop entry unit are
examined. Each subscripted reference gives us a range, thusly:

Lower_limit = - constant_oifset [+ increment, if increment is negative]

if array has constant extents
then uooer limit = array_size - constant_offset - 1

[+ increment, if increment is positive]
else upoer_Limi t = 262143 - constant offset

[+ increment, if increment is positive]

Page 8 MTB-423

<Each subscripted reference is represented as an OPT_SUBSCRIPT
operator with operand(1) as the array name, operand(2) the
constant offset, and operandC3) as the variable offset, that is
the induction variable. Some adjustment might have to be made
when SUBSTR is im~lemented.)

If more than one subsc rioted reference of the induction variable
is found in the backJard scan, the resulting lower limit is the
maximum of all lciwer Limits calculated, and the re&ulting upper
limit is the minimun of all upper limits found. This works
because all subscripted references found must be evaluated before
the comparison is re3ched on every iteration of the Loop. Once
the range has been calculated, it is remembered 'for use by the
code generator and for use by the next phase of range analysis~

After the CO~PARISON list has been processed, the
ASSIGNMENT list must be processed. The object of this processing
is to ensure that no variable with a bit on in
ALWAYS_USED_AS_SUBSCRIPT is assigned to a variable with a bit off
in that string. Thus, we won't have a problem with the missing
18 hiyh-order bits ~hi le keeping an induction variable in an
index register. A secondary consideration is that we want to
pass on any range data calculated during COMPARISON list
orocessing, so that all variables that assign to variables used
in comparisons, have range data. To process the ASSIGNMENT list
each assignment on the list must be scanned. If the source of
the assignment is a variable whose bit in the
ALWAYS_USED_AS_SUBSCRIPT string is off, that assignment is
removed from the list. If the source is a variable whose
ALWAYS_USED_AS_SUBSCRIPT bit is on, but. the target is a variable
whose AlwAYS_USED_AS_SUBSCRIPT bit is off, the source variable's
bit is turned off, the fact that a change has occurred on this
scan of the list is remembered, and the assignment is removed
from the list. If both the source and target are variable whose
ALWAYS_USED_AS_SUBSCRIPT bits are on and the target has range
information Cdlculated for it while the source does not, range
information is propagated to the source variable, and the fact
that a change has occurred on this scan of the list is
remembered. Scanning of the list repeats until no change occurs
during a scan.

Once ASSIGNMENT list processing completes, we can derive a
list of candidates for index register assignment by intersecting
the USED_AS_SUBSCRIPT and AL~AYS_USED_AS_SUBSCRIPT strings.
These strings are made available for analyzing outer loops and
for the register assignment phase.

MTB-423 Page 9

Stora9e allocation must be done before global register
allocation because the locations assigned to variables may affect
register usage. This is especially important in the case of
variables that are located at an offset of more than 16384 words
from the beginning of their storage regions. No changes need to
be made to the current FORTRAN code generator's storage
allocator. After storage allocation has been completed,
sufficient information exists to analyze register usage.

The algorithms described in this section are run on a
Loop-by loop oasis from the inside-out and from front-to-back.
This ensures that the innermost loops get the most chance for
improvement. Each loJp is analyzed for register usage, and loop
invariants and induction variables are allocated registers across
the loop before the next looo is processed.

Ti.10 classes of
analysis for a loop
allocation:

information must be obtained during usa~e
ln order to facilitate global register

.
0 the number Jf uses of any

a reg i st e r g l ob a l l y
values that m~~ be allocated

o the maximu~ number of registers that would normally be
allocated to non-global values during normal linear
code gene rat ion if register optimization did not occur

This information orovides us with the number of
available for]lobal allocation and a rank.ordering of
that might be allocated a register.

registers
the values

In order to get this information, which i·nvolves finding out
which operations erase regist~rs as well as causing them to be
loaded, it appears that the most reliable method is to simulate
code generJtion ~ith a different macro interoreter that runs off
the quadruples and fort_opt_macros_ just like the real code
generator's i~terpreter does. Only instead of emitting code,
this new interpreter would be compiling statistics for use in
glooal register allocation. This means that information on which
pl1_operators_ entries erase which registers need be kept in only
one place. A proble~ of using two such similar interpreters is
in keeping them consistent. Perhaps it is possible for them to
be merged or else to share some code by include files. This
still needs to be worked out.

Page 10 MTB-423

The usage analysis interpreter must handle index values and
pointer values in different ways. As mentioned earlier, index
values are represented either by temporary nodes or symbol nodes.
Only loop invariant temporaries are eligible for global register
allocation. A temporary is considered invariant in a Loop in
which it is used if the operator producing its value is evaluated
outside that loop. Both loop invariant symbols and symbols
representing elibible loop induction variables are eligible for
global register allocation. A symbol is found to be loop
invariant if its bit in loop.set is off. A variable is an
eligible induction variable if its bit in both the loop's
USED_AS_SUBSCRIPT and ALWAYS_USED_AS_SUUSCRIPT strings are on.
It is clearly possible to associate a usage count for the loop
with each eligible value.

Pointer values do not at present have a uniform
representation. Since for most storage regions it is possible
that up to 16 pointers might be needed (because storage regions
are a maximum of 262144 words long, while the 15-bit address
fields can address 16364 words in a nonnegative dire~tion), one
'Nay to represent each storage region might be with a vector of
pointer value nodes containing usage counts. Each common block's
header node could poi~t to such a vector, and there could also be
a vector each for automatic and static storage. Vectors would
not be needed for argJment pointers or the argument List itself.
In these cases there would be a single pointer to a pointer value
node.

The register usa~e analysis interpreter would scan all the
quadruples contained in flow units of the particular loop that
are not contained in inner loops of that loop. I'f an inner loop
is encountered during the scan, it is treated as a black box that
preserves all registers assigned across the inner loop and erases
the rest. Note that this interpreter assumes no reyisters have
been globally allocated for the loop being scanned.

After the loop is scanned, the values eligible for global
allocation are sortej in descending order by usage count within
their two classes -- index values and pointer v3lues.

The allocation algorithm we will use is not optimal but does
a pretty good job for most programs. It is an improvement of
Busam and Englund's algorithm, which was used for FORTRAN Y. The
algorithm is run se~arately for the pointer registers and the
index registers.

i'HB-423 Page 11

Let REGS_."'.VAIL be the number of availa.ble registers, and let
,.. REGS_USED be the number of registers allocated for this loop, not

countiny inner locos. Initialize REGS_USED t.o
maxCmax_regs_needed_locally,1). (The second argument of the max
function must be different for index registers if EIS is used.
This has not yet been designed.)

~e now consider each candidate for global allocation in turn
in descending order oy usage count. The effect of allocating a
register to a candidate in a Loop in which the candidate has not
been allocated a re~ister would be to increment REGS_USED for
that loop by one. Therefore, we determine the effect of such an
allocation for this loop and all nested loops. If for any of the
examined Loops~ REGS_USED would exceed REGS_AVAlL~ the attempt to
allocate a register to the candidate fails.

If the attempt does not tail, we actually perform the
allocation. The candidate is allocated a register in all inner
loops in which it does not already have a register~ and REGS_USED
for each of those looos is adjusted accordingly. The candidate
is then allocated a register in the Loop being processed and
REGS_USED is incremented for this loop. A LOAD_PREG or LOAD_XREG
quadruple to load the register is inserted in the loop's back
tar~et. This will be seen as a register use when the outer Looo
is Later scanned. If the candidate is an induction variable
which is compared to a non-constant, a quadruple to force the

,.. non-constant to an uoper halfword is placed in the back target,
and the comparison is changed to be against the output of the new
quadruple.

This algorithm ensures that enough registers are left
avai laole for Local assignment whi Le attemoting to maximize the
number that may be globally assi,;ned. Note, that in this phase a
register is ~llQ~al~J to a value. When the code qenerator runs
later, iJ specific re~ister will be 2~~i~!J~Q to a value (and the
value assigned to the register).

The functional changes neeced for the code generator are
described fairly completely in this section. Not all the
necess3ry data structure changes are described. Some familiarity
with the present fort_optimizing_cg is assumed.

The machine state node, loop node, and
need some modificatio~s.

6. 1 • 1

operand nodes all

The machine state
fields for each index or

node presently contains the following
oointer register:

Page 12

0 type
a c od e d e f i n i n g t h e t y p e o f i t em i n t h e
specifying that the register is empty, or
that a register is "reserved" (locked).

MTB-423

register,
s p e c i f y i n·g

o variable
for index registers this
register. This has other

o used

specifies the variable in the
uses in pointer registers.

the last location this register was used.

o offset
tor pointer registers this specifiP.s the offset of the
value of the pointer from the beginning of a storage
area. Not JSed for index registers.

Two bits will be added to each register description:

o global
"1"b means the register has been globally assigned. If
the type field is greater than zero, then the register
currently contains the value globally assigned to it.

o reserved
"1"b means the register is reserved (locked). This
register may not be selected for loading a new value.
This functi~n used to be in the type field.

The type field currently has the following meaninqs:

-1 RESERVED

EMPTY

+n contains known value

ihe meaning of -1 will be changed to "contains unknown value".

The representation of the indicators in the machine state
should also be changed. Presently there is an "indicators_valid"
bit which indicates that the indicators correspond to the value
in the eaq, and there is a set of indicator substates for the
eaq. This should be changed so that there is a code saying which
register, variable, or comparison between 2 values caused the
indicators to be set, and the indicators should be independent of
any eaq states.

6. 1 • 2

MTB-423 Page 13

Loop nodes are created by the loop optimizer and contain or
,,.,. ~oint to all information specific to a loop. They are accessible

by going from the opt_statement node to the flow_unit node to the
Loop node.

,..

The loop node will be changed to contain. a machine state
image. This image will indicate which registers have been
globally assigned which values for the loop.

The loop node will also be the
information for induction variables

repository of range
globally assigned to

registers.

6. 1 • 3

The various operand nodes will have a "globatty_assigned"
bit to indicate that the operand has been globally assigned to an
index register. This is used to speed up register searching.

The changes
described here.

6.2.1

A referenced

for various

Label on an

operations and processing are

executable stat~ment usually
represents a merging 0 f t WO or more flows of control and always
marks the beginning of a flow unit. Because of th; s, additional
;;irocessing i s needed which code generation reaches a label to
support register opti11ization.

If the flow unit headed by the label belongs to a different
loop than the flow u1it that was being compiled,
that were globally assigned to an index register in
loop must have their "glooally_assigned" bits
Otherwise, this step is bypassed.

all operands
the previous
turned off.

The machine states corresponding to the various flows of
control are then intersected as is presently done. If there is a
b a c k w a r d r e f e r e n c e t o t h e s t a t e m e n t l a b e l o r i t i s r e f e r e n c e· d i n
an ASSIGN statement, all registers are marked as empty.

Finally, if any registers have been globally assigned for
the loop that the labelled statement is in, the machine state is
updated from the loop node's machine state image to indicate
which registers have globally assigned values in them. At this
time any operands that are in globally assigned index registers
have their "qlobally_assigned" bits turned on.

Page 14 ,"l!TB-423

The action taken in the previous paragraph assumes that all
globally assigned values are preloaded before the loop starts,
and that if a register is Locked or erased (because of a
subroutine call, for example), that the register will be
refreshed with its globally assigned value before the completion
of the flow unit containiny the erasure.

6.2.2

As is done currently, if a register already contains the
desired value, ever~thing is fine and no action takes place
except to update the "used" field in the machine state. The
changes in function are in what happens if the value is cc!
contained in a register.

If the value has been globally assigned to a register but is
not currently in the register, that register is selected for
reloading the value. If the register is in the "reserved" state,
an error occurs.

If the value has not been globally assigned to a register,
get_free_reg is callej as usual to select a register for loading.
get_free_reg must not select a register that has been globally
assigned, nor must it select a "reserved" register.

Registers are reserved either because the code generator
(actually fort_opt_macros_) wants that register for a special
preemptive purpose, or code is about to be emitted that
invalidates the register contents, such as the code for a
subroutine call. Registers are freed after the code generator
has emitted the code for which it reserved the registers, usually
by invoking a free_regs macro. Any register that was reserved is
now marked "empty" except for perman.ently assigned registers.

Two procedures reserve registers: reserve_ regs and
base_man_load_pr. free_regs frees alt reserved registers.
reserve_regs implements the reserve_regs macroinstruction and
reserves the specified registers for "unknown" purposes.
base_man_toad_pr imolements the load_pr macroinstruction and
reserves the specifiej pointer register after loading an address
into it. It is planned that for FORTRAN 77 char mode reservation
will be requested in order to make multiple operands
simultaneously addressable for EIS instructions. The LOAD_PREG
and LOAD_XREG operators proposed later for register optimization
will also wish to reserve registers so that the loads will not be
undone.

MTB-423

Because of these latest plans, the concept
register has been split off from the concept of an
reserve_regs and base_man_load_pr will both
"reserved" bit and set the "type" field to -1
"unknown value". Reservation done for EIS
LOAD_PREG and LOAD_XREG operators wi LL turn on
bit, but will leave the "type" field unchanged.

Page 1 5

of a reserved
unknown value.

turn on the
to indicate

addressing or
the "reserved"

Free_regs will turn off the "reserved" bit for all reserved
registers and wi Ll ch3nge the "type" fields that have a -1 value
to 0 for "empty". Positive "type" fields wi Lt be left unchanged.

6.2.4

Unlike traditional operating systems, Multics does not have
calling conventions that guarantee transparency; that is,
subroutines on Multics do not save and restore any registers they
modi f y. W h i le th i s mi n i mi z e s memory re fer enc e s, i t causes
problems for an ootimizing compiler that don't exist on
traditional operating systems. One the one hand, a compiler may
wish to globally assign values to registers across loops,
preloading the registers before the loops. On the other hand,
calls to subroutines and pl1_operators_ may erase these frozen
registers, thus counteracting the compiler's intentions.

There are three oossible approaches that could be taken
,.. here. The first would be to say that any registers clobbered by

pl1_operators_ or subroutine calls within a loop are unavailable
tor global register assignment. This greatly simplifies code
generation, but it loses opportunities for optimization,
especially if the more frequently executed paths in the loop
would not have clobbered the registers. (Note that subroutine
calls are considered to clobber 2ll registers.) The second
approach is to gener3te code so that the calling program saves
<if necessary) and restores registers across each call. This
could cause unnecessary and redundant register lo3ding if there
are many calls close together as in an I/O stateMent. The
present FORTR.'\N compiler uses a strategy like that for pr1 and
pr4, anJ its bad effects can be seen in today's object code for
I/O statements.

We will take a third approach that is an adaptation of the
second approach. As registers are erased by subroutine or
pl1_operators_ calls, they will be restored only as' needed as
long as flow stays within the S3me flow unit. The mechanism for
this "as needed" restoration has already been described in
Section 6.2.2 (Loading a Register). When control reaches the end
of a flow unit, any glooally assigned registers whose values are
not in the registers must be "refreshed" , that is these values
must be restored to the registers. This ensures that the values
are known to be i, the globally assigned registers at the
beginning of every flow unit of the loop. It will be unnecessary
to save globally assiined registers before these calls due to

Page 16 MTB-423

several mechanisms. First, all pointer values used in FORTRAN
proyrams are const3nts, so they don't need to be saved.
Secondly, all Loop invariant index values are either symbols
whose values were stored outside the Loop when they were assigned
or temporaries whose values were stored before entry to the loop
due to the normal action that occurs when a label <compiler
generated or otherwise) or forward jump is encountered. We need
a third mechanism to minimize unnecessary storing for globally
assiyned induction Jariables. The plan here is to store the
index register into the variable's storage whenever the
variable's value changes within the loop. This storing of the
value would only occur if the register were ever erased within
the loop or any of its descendants. This information must be
provided by the interpreter that does the global register usage
analysis and should be kept in the loop node.

There will be a new subroutine, refresh_regs, whose job will
be to refresh all globally assigned registers whose values are
not in the register. It will be called at the beginning of label
processing, since a label marks the join of two flow units, and
it will be called 1o1hen the refresh_reys macroinstruction is
invoked in any of the macro procedures for the various jump
operators, since the registers must be refresheJ bffQrf the
jumps. Because of this Latter case, refresh_regs must be
prepared to optionally preserve the indicators across a
refreshing operation since loading index registers changes the
indicators, since the jump could be conditional, and since the
refreshing must occur after all expressions have been evaluated
in the flow unit but oefore the actual transfer instructions are
emitted.

Refresh_regs should call free_regs as the last thing it does
so that no registers are Left reserved at the end of a flow unit.
This could occur because of the processing of LOAD_PREG or
LOAD_XREG operators, ~hich is described in the next section.

6. 2. 5

As mentioned e3r lier, the global register allocation phase
inserts LOAD_PREG and LOAD XREG operators in the back targets of
loops for which values ·are to be ylobally assigned to registers.
The assignment of a value to a ~g~~iii~ register does not occur
until the code generator actually encounters and processes the
LOAD_PREG or LOAD_XREG quadruple. When one of these quadrucles
is encountered, the aporopriare base_man or xr_man procedure is
called to select and load a register with the globally assigned
value. That register is then reserved until the end of the flo1oo1
unit. (Refresh_reys will call free_regs.) 2ecause of this
reservation, LOAD_PqcG and LOAD_XREG quadruoles should only
appear at the end of a flow unit.

iHB-423 Page 17

After a register has been selected and loaded, the machine
state. images for the loop that is about to be entered and all
descendant loops must be updated to show that the specific
register has been ~lobally assigned the specific value. This
enables the machine state to be appropriately initialized with
the globally assignej registers at the beginning of every flow
unit of the loops.

There are 3 types of nonindexing operations that will be
carried out in index registers for globally assigned values:
incrementing, comparison against a loop invariant, and assignment
to or from other ind~ction variables. These operations ~i LL be
brief Ly discussed.

6.2.6.1

The processi1g for incrementing operations is
·straightforwarj •. The only complications is that the new value
must be stored if the register is ever erased in the loop or any
of its descendants.

Code sequence s f o L l ow:

ad l xo
Cs x la

ad L xo
(s x La

sblxo
(s x Lo

constant1du
induction_var]

1,du
induction_varJ

constant,du
induction_var]

be against loop Comparison must
problem is whether
follow arithmetic
comparisons.· Also,
!lU modi f i Cdt ion.

to use transfer or
comparisons or those

·"'lOte that comparisons

-131072 <= i-idex <= 131071

invariants. The major
tsxO instructions that

that follo1o1 Log.ical
against constants us€

cmpxJ cJmparand
arithmetic comparison

(in upper
i ndi c:i tors used

18 bits)

Page 18

~~S,~_2: index >= 0

cm pxo
logical

MTB-423

comparand (in upper 18 bits)
comoarison indicators used

Hopefully, more refined methods can be found for index value
an a l y s i s (Se c t i on 3) t h a t w i l l do a be t t e r j ob o f comp u t i n g i n de x
ranges than those I have presently proposed.

Since induction variables are·updated either by incrementing
them by a loop invariant or by assignment from another induction
variable, index registers may be used for assignments of one
induction variable to another. The cases break down as to
whether source, tar~et, or neither are kept in storage. The
interesting case is ~hen the source is in an index register and
the target is in storage. If the resulting value might be used
in a comparison, we want a fullword stored. How this is done
depends on the range anlysis done earlier. If the value will not
be used in comparison, only a halfword need be stored. Note,
also, that storage is updated if the target is in a register, but
the register is erasej in the loop.

~2,S~_l:

~a~f-2:

~2!if_3:

~ss.f_3 ... 1:

~a~e-~£f:

Source in

eaxm
(s x l(!!

Source in

l x l 0
[s x l~

Source in

No ran!~ e

s x Lo

-131072

eaq
qrs
st q

re~ister, target in

O>n
iriduction_var]

storage, target i n

sJurce
induction_var]

re;i is ter, tar1et in

data on target

target

<= target <= 131071

Q,n
1 8
target

target >= 0

eaq
qr l
stq

Q,n
1 3
target

register

register

storage

Page 19

These changes are not necessary for register optimization
and can be delayed if time becomes an issue. Presently if a
variable in the Q is used in a comparison, the code generator
thinks that the variable is no Longer in the Q after the
comparison. This is due to the indicators being considered par
of the (ea]q in the 'llachine state model. While this model was
satisfactory for.fast compilation and no code optimization~ it is
not so good for an optimizing compiler.

Plans to change this have not been worked out in detail, but
the idea would be to more approximate the actions of the hardware
the way the PL/I compiler does. Hopefully, a more uniform method
than that .used by pl1 can be developed. Basically the machine
state would remember whether the indicators reflect a value in a
specific register, a value of a specific variable in storage, the
result of comparing 2 nonzero values, or none of the above.

aeside the omission of a detailed plan for handling the
indicators, there are several known problems that have not yet
been resolved. The most important problem is efficient
initialization code for globally assigned induction variables.
The code produced by the present comoiler, the algorithms
discussed here, and the desired code for a given loop follow:

do 100 i = 1 , 1000
a < i) = b (i) + c (i)

100 continue

£_g~~-1: Installed C::>mpiler

ldq 1 , d l
st q

l 00 p: l x l 2 i
f l d b, 2
fad c, 2
f s tr a,2
ao s
ldq i
cmpq 1000,dl
tmoz loop

~a.s.e_,: Algorithms Described Here

Page 20 MTB-423

ldq 1 , d l
stq
l x l 2 i

l 00 p: fld b,2
fad c,2
fstr a,2
ad L x2 1, du
c mpx2 1JQO,du
tmoz Loop

Desired Code

l x l 2 , , d l
loop: f ld b, 2

fad c,2
f str a,2
ad L x2 1, du
cm px2 1000,du
tmoz loop

I think that some
one of the passes over

minor constant folding can be done during
the quads to solve this problem.

Another problem is that I wish we could do a better job of
index value analysis. The present algorithm depends on a
pro';3ram's not taking subscriptrange, and does not utilize any
information about starting and finishing values. Of course, the
need for i n de x v a l u e a n a Ly s i s would d i sap pea r i f we had f u l l word
index registers or general purpose registers!

oa'k-tats.-ft (of a loop): the flow unit nearest to a loop that
must be entered before a loop is enterej. Loop optimization
often moves operations from a loop to its back target.

gQmio2.tQ£ (of a flow unit, F): the flow unit nearest to F
through which control mY~1 p::iss before F is entered. Also called
the back dominator or immediate back dominator.

fLcw-~ait: one or more statements· defi~ing a sequence of code
that has no intermediate branching points; it can only be entered
at the beginning and left at the end

irn1u~.tiQO-ll2£i.e9.!.~ (in a loop): a scalar non::iliased local
integer variable that is only updated once in a loop, either by
incrementing it by a loop invariant, or by assigning it the value
of another induction variable. The control variable of a do-loop
is an induction variable.

