
,... .

Multics Technical Bulletin MTB- 421

To:· Distribution

From: Eleanor Donner

Date: 07 /11 /'79

Subject: Improvements to IPC

SUMMARY

This MTB proposes that the IPC (interprocess communication)
facility be reimplemented and enhanced. The primary reasons are:

1) Maintainability

Originally coded in 1968, the collection of programs
comprising IPC can be recoded and restructured to be more
straightforward and clearer. New features of PL/I, new
system facilities and structured programming techniques can
be utilized.

2) Better management of ECT (event channel table)

The contorted management of the ECT can be made simpler
using areas. The restriction that all ECT entries be placed
in a single segment will be removed. The circumstances of
copying only some of the ITT messages from hardcore per call
will be eliminated.

3) Performance •

As part of the implementation of better maintainability and
ECT management, performance improvements will accrue.
Further, consideration of very large users of IPC, such as
the answering service, will be given.

The MTB consists of a discussion of the current problems and
proposed solutions of ECT storage, a summary of format changes in
ECT entries, a list of possible future extensions, and is
followed by module descriptions and PL/I structures of the data
concerned.

Multics project internal working documentation. Hot to be
reproduced or distributed outside the Multics project.

Page 1.

MTB- Multics Technical Builetin

Please send comments to:

Donner.Multics,

or

Eleanor Donner
Honeywell Information Systems
575 Tech Square
Cambridge, Mass. 02139

Or call:

(617) 492-9338
HVN 261-9321

PROBLEM

Background

The ECT (Event Channel Table) is a per ring database containing

1) ECT header

2) Entries for event wait channels
These generally remain in the ECT from the time they are

created until the process is destroyed.

3) Entries for event call channels
These generally remain in the ECT from the time they are

created until the process is destroyed.

4) Entries for additional information needed for event call
channels

These are known as trailer entries.
These generally remain in the ECT from the time they are

created until the process is destroyed.

5) Entries for event messages associated with either event
wait or event call channels

These remain in the ECT for a short time, until the
messages for a channel are read.

6) Entries for itt messages """'
These are copied from the ITT (Interprocess Transmission

Table) in ring O.
These remain in the ECT for a short time until they are

converted to event message entries.

Page 2.

Multics Technical Bulletin MTB-

,,,,.. The first 5 objects are managed entirely in the outer ring
rece1v1ng IPC messages. The ECT entries for itt messages are
constructed from slots in the ITT - a per system ring 0 data base
containing all !PC messages for all processes. (In the ITT, there
is a single linked list of messages for each process managed by
the traffic controller. The head of the list for each process is
pointed to by a variable in the pds. The list contains IPC
messages for all rings. IPC messages are added to the end of the
list. The freeing operation currently is defined to deallocate
the entire list of ITT messages for a process.) These messages
in the ITT are converted into itt ECT entries when the hardcore
block primitive is called. The entries for ECT event messages
are constructed from ECT itt messages entries by user ring IPC
when block is called in the outer ring.

Allocation of ECT entries

Currently the header of the ECT and the first 15 entries are
stored in internal static of a process. If more than 15 entries
are needed, hes $assign linkage is called to allocate a block of
15 more entries. In the first block, a fixed number of entries
(currently 10) is reserved for itt message entries. This
reserved block is the last 10 entries of the first block of the
ECT.

There are some serious problems with the manner in which the ECT
is managed.

1) If there are more than 10 messages in the ITT to be
copied into a given ring's ECT, ring 0 is unable to copy
them all. If this situation occurs, a bit is set in the ECT
header indicating that the user's ECT is full. The outer
ring must call into ring 0 again to copy out the ITT
messages. If there are many messages waiting, repeated calls
must be made. (1)

2) The scheme of creating itt message entries in the user
ring's ECT by the hardcore block primitive works improperly
in a multiple ring environment. If more than one ring has
messages in the ITT, the present behavior can result in lost
wakeups. Messages from the ITT for all rings are copied into
the appropriate ring's ECT. If the ECT for a ring (other
than the calling ring) becomes full before any messages for
the calling ring are retrieved, wakeups are lost. This has
happened more frequently as more use of ring 1 is made. It

(1) This situation was worse in the past. Under some
circumstances, ECT itt message entries could be overwritten as
event message entries were created.

Page 3.

MTB- Multics Technical Bulletin

is more prone to occur in the initialilzer process.

3) The scheme of allocating a block of 15 ECT entries has
performance ramifications when a process either creates a
large number of channels or receives a large number of
messages. The blocks can be ·allocated in different pages
without any control by the system.

4) Allocating the entries in internal static may have some
problems in a multitasking environment.

SOLUTION

One solution to the itt message entry problem is to copy
only the messages for the calling ring. This involves changing
the traffic controller's discipline of managing the ITT
specifically allowing the freeing of individual messages. Since
the problem of controlling the overflow of the ITT itself has not
been s~lved, I am relunctant to do so at this time. This change
to IPC would make overflow more likely. Once the ITT overflow is
under contntrol, IPC should be changed in this manner.

While the ITT message entries do not strickly speaking have to be
put in the ECT, it is very convenient to do so for debugging
purposes and to conserve segment and page usage.

A solution to the above difficulties is to use an area of
"reasonable" size, which is itself allocated in the system free
area. All components of the ECT will be allocated and freed using
the standard system area mechanism.

Using an area rather than allocating individual entries has the
effect of minimizing scattering of ECT entries. The ECT won't be
located using internal static but via a pointer in the· stack
header; thus it will work properly for run units and for tasking.

When the area is exhausted, another area of a larger size will be
created. This can be done in one of two ways:

1) Make the first area extensible. The area package will
create a new segment in the process directory. If the size
of the initial area is chosen properly, a second segment
will be created only for heavy users of IPC.

2) Adopt a slightly more complicated scheme of creating a
list of areas. When an overflow occurs, the current area ~
will be marked as full. A new area will be allocated and
will become the current area. The IPC allocator will create
a list of areas of progessively larger sizes. The maximum
size of these areas will approach a page. Initially there

Page 4.

Mu 1 ti c s Te c h n i c a 1 B.u 11 e ti n MTB-

r will be two sizes 1)- an area large enough to hold 20
assorted entries and 2) one large enough to hold 40 entries.
(These numbers may be changed upon experimentation.)

I prefer the first approach but would welcome comments.

SUMMARY OF ECT ENTRY FORMAT CHANGES

1) Event wait channels and event call channels will be doubly
threaded into two lists. Currently only event call channels are
threaded. This change will allow a display tool to be written
that can find ECT entries easily. It will allow more
comprehensive consistency checks of ECT entries to be made.

2) Packed pointers will be used for threading purposes and in the
event channel name instead of relative pointers. This will allow
placment of ECT entries in multiple segments. Currently the
process is terminated if more ECT entries are needed than can be
put in a single segment. Occasionally this has occured in the
initializer process and might reasonably occur in a transaction
processing setting.

3) The procedure associated with an event call channnel will be
changed to be a PL/I entry variable rather than a pointer
variable. New entry points will be added to create an event call
channel and to convert an event wait channel to a call channel.
Both of these will supply an entry variable. Need has arisen to
make active internal procedures the targets of an event call. In
order to save space, the entry variable kept in the event call
entry will consist of two packed pointers - a pseudo packed entry
variable.

4) The total number of wakeups received over a channel will be
kept rather than a bit indicating that the channel has been used.

5) Static channel information in the header will be removed, as
they are obsolete.

6) Trailer entries will be combined with event call entries.

7) The pointer to the ECT header will be placed in the stack
header.

8) The size of each ECT entry will increased from 8 to 12 words.

Page 5.

MTB- Multics Technical Bulletin

OTHER CHANGES

1) An entry point will be provided for subsystem writers and
system use to set the ECT area size, overwritting the system
default. If the ECT is not yet created, the ECT initial area will
be created using the size defined by the caller. If the ECT is
created already, a status code will be returned to indicate that
the ECT has been initialized. If the second allocation schme is
adopted, all subsequest areas will be of the given size. will be
the given size. This is envisioned as a useful tool for large
users of IPC, like the initializer process or transaction
processing.

2) A tool will be provided to display the ECT.
dump it in octal and display it symbolically.
accept as input the pathname of an ECT so that
be debugged.

STATUS CODES

It will be able to
It optionlly will

dead processes may

The practice of returning nonstandard status codes will be
continued (unfortunately) for current entry points of IPC. New
entry points will return standard status codes.

FUTURE IMPROVEMENTS

Optimize the act of a process sending itself wakeups. Eliminate
calls into ring 0. This would speed up the answering service.

Provide the ability for IPC to be replaced in the user ring.
Remove the knowledge of the ECT format from ring O. Provide new
entry points to ring 0 block and change management of the ITT by
pxss.

Provide an IPC command sirniliar to the io call command.

Implement a more efficient search of the event call list, using a
hashing scheme.

P-:::1a ,.,,. ;.,

ipc ipc_

Name: ipc_

Entry: ipc $create event call channel

This entry point creates an event-call channel in the
current ring.

Usage

declare ipc $create event call channel entry (entry, ptr,
fixed ~in, fixid binT71),-fixed bin(35));

call ipc $create event call channel (procedure value,
data_ptr, priority, channel_id, code); -

where:

1. procedure_ value (Input)
is the value of the entry point of the procedure to
be invoked when an event occurs on the new channel.
The procedure entry point may be an internal
procedure.

2. data ptr (Input)
is a pointer to a region where data to be passed to
and interpreted by that procedure entry point is
placed.

3. priority (Input)
is a number indicating the priority of this
event-call channel as compared to other event-call
channels declared by this process for this ring. If,
upon interrogating all the appropriate event-call
channels, more than one is found to have received an
event, the lowest-numbered priority is honored first,
and so on.

4. channel id (Output)
Is the identifier of the event channel.

5. code (Output)
is a standard system status code.

DRAFT: MAY BE CHANGED 7 07/11/79 AK92

ipc_ ipc

Entry: ipc $dcl event_call channel

This entry point changes an event-wait channel into an
event-call channel.

Usage

declare ipc $dcl event call channel entry (fixed bin(71),
entry,-ptr,-fixed-bin,-fixed bin(35));

call ipc $dcl event call channel (channel id,
procedure_value, data ptr, priority, code);

where:

1. channel id (Input)

2.

is the identifier of the event channel.

procedure_ value (Input)
is the value of the entry point of the procedure to
be invoked when an event occurs on the specified
channel. The procedure entry point may be an
internal procedure.

3. data ptr (Input)
is a pointer to a region where data to be passed to
and interpreted by that procedure entry point is
placed.

4. priority (Input)

5. code

is a number indicating the priority of this
event-call channel as cci'lpared to other event-call
channels declared by this process for this ring. If,
upon interrogating all the appropriate event-call
channels, more than one is found to have received an
event, the lowest-numbered priority is honored first,
and so on.

(Output)
is a standard system status code.

DRAFT: MAY BE CHANGED 8 07/11/79 AK92

set ect size set ect size

Name: set ect size

This is an internal interface to be used by system programs
that create a large number of event channels and for whom the
performance of interprocess communication is an issue.

This entry point sets the initial block of event channel
table entries for the current ring to a specified size. Normally
it is called before the event channel table for the current ring
is initialized.

Usage

declare set ect size entry (fixed bin, fixed bin(35));

call set ect size (ect_size, code);

where:

1. ect size (Input)

2. code

is the size in entries of the initial block of the
event channel table for the current ring.

(Output)
is a standard system status code. It may be
error table $ect already initialized .

. - - -

DRAFT: MAY BE CHANGED 9 07/11/79 AZ03

display_ect display ect - .

Name: display_ect

The display ect command prints the state of an ECT (Event
Channel Table). The ECT to be displayed can be indicated by a
pathname or by a virtual pointer or may be omitted. In this last
case, the ECT for the user's process for the current ring is
selected. Several options are provided to select types of ECT
entries displayed and to select various formats. -

Usage

display_ect {pathname} {-control args}

where:

1. pathname
is either the pathname of a segment or a virtual
pointer to a segment, containing the ECT to be
displayed. If a virtual pointer with an offset is
supplied, it is assumed to point to the ECT header.
If no offset is specified, the command uses a
heuristic to find the ECT header. If no pathname is
specified, the ECT for the user's process for the
current ring is selected.

2. control args
may be chosen from the following:

-channel channel-id, -chn channel-id
prints information about event channels whose name is
a substring of channel-id.

-wait, -wt
prints information about event-wait channels. This is
the default.

-no wait, -nwt
does not print information about event-wait channels.

-call, -cl
prints information about event-call channels. This is
the default.

-no call, -ncl
does not print information about event-call channels.

-itt
prints event messages copied out of ring 0 from the

DRAFT: MAY BE CHANGED 10 07/11/79 AZ03

display_ect display_ect

ITT.

-no itt, -nitt
- does not print event messages copied from the ITT.

This is the default.

-all, -a
prints information about
including unused ones.

-queued, -queue, -q

all event channels,

prints information only about used channels. This is
the default.

-ring n, -rg n
displays the ECT from ring n in the user's process,
rather than the current ring. This control argument
can be used only if a pathname was not given.

-brief, -bf
supresses or shortens some of the output.

-long, -lg
prints the full text. This is the default.

-header, -he
prints the information in the ECT header.

-no header, -nhe
- does not print the information in the ECT header.

This is the default.

-interpret, -it
interprets process
This is the default.
below.

-no interpret, -nit

identifiers in event messages.
See the Access Required section

does not attempt to interpret process identifiers in
event messages.

-octal, -oc
prints the contents of event channels in octal
format.

-no octal, -noc
does not print event channel information in octal.
This is the default.

DRAFT: MAY BE CHANGED 1 1 07/11/79 AZ03

display_ect

-short, -sh
prints octal information
character width carriage.

-no short, -nsh

display_ect

formatted for an 80

prints octal information formatted for a. ·larger ·
carriage. This is the default.

-debug, -db
prints forward and backward threads in each item.

-no debug, -ndb
does not print forward and backward threads. This is
the default.

Access Required

Read access is required to the answer table in order to
interpret process identifiers. If this access requirement is not
satified, process identifiers will not be interpreted.

*
dcl
dcl

dcl

~ '
,.

BEGIN INCLUDE FILE .•• ect structures.incl.pl1 ••• June 1979 */

ectp
ectep

ect header
2 counts,

ptr;
ptr;

aligned based,

3 entry count fixed bin,
3 wait count fixed bin,
3 call-count fixed bin,
3 ev message count fixed bin,
3 itt message count

- - fixed bin,
2 entry list ptrs,

3 first waTtp
3 last waitp
3 first callp
3 last callp
3 first ittp

2 area info,
3 first areap
3 last areap
3 current areap
3 next area size

2 meters-; -

ptr
ptr
ptr
ptr
ptr

unaligned,
unaligned,
unaligned,
unaligned,
unaligned,

ptr unaligned,
ptr unaligned,
ptr unaligned,
fixed bin (18),

3 total wakeups fixed bin (33),
3 total-wait wakeups

- fixed bin (33),
3 total call wakeups

fixed bin (33),
2 flags aligned,

3 wait or call priority
- - - bit (1) unaligned,

3 unused bit (17) unaligned,

I* pointer to ECT header *I
I* pointer to individual ECT entry */

I* structure of the Event Channel Table header

I* size in entries of ECT */
I* number of event wait channels */
I* number of event call channels */
I* number of event message entries *I

I* number of itt message entries */

I* head of event wait channel list */
/* tail of event wait channel list */
I* head of event call channel list */
I* tail of event call channel list */
I* head of itt message list */

I* head of ect area list */
I* tail of ect area list */
I* pointer to current area */
I* size in words of next ect area *I

I* total wakeups sent on all channels */

I* wakeups sent on wait channels */

I* wakeups sent on call ch~nnels */
I* space for various flags */

/* = "O"b if wait chns have prio.rity */
I* = "1"b if call chns have priority*/

3 mask call count fixed bin (18) unsigned unaligned,
I* number of event call chns masked *I

2 fill (18) fixed bin; /* pad to 36 words */

. ·- --·--·- -·- ··-.

13

WAIT
CALL
EV MESSAGE
ITT MESSAGE

wait channel
2 word 0

3 unused1
3 type

2 next wait chanp
2 prev-wait-chanp
2 word-3 -

3 unused2
3 inhibit count

3 wakeup_count

2 name
2 first ev messp
2 last ev messp
2 unused3-

1 call channel
2 word 0

3 prTority

3 type

2 next call chanp
2 prev-call-
2 word-3

3 call inhibit
3 inhibit count

3 wakeup_count

2 name
2 first ev messp
2 last ev messp
2 data-ptr
2 procedure value

3 procedure ptr
3 Jvironment_ptr

2 und""sed

fixed bin static options (constant) init (1);
fixed bin static options (constant) init (2);
fixed bin static options (constant) init (3);
fixed bin static options (constant) init (4);

aligned based,
aligned,
fixed bin (17)
fixed bin (17)

/* Event wait channel - type

= WAIT */

= WAIT */

ptr unaligned,
ptr unaligned,
aligned,

unaligned,
unaligned,

!*
!*
I*

pointer to next wait channel 1 /

pointer to previous wait channel */

bit (1) unaligned,
fixed bin (17) unaligned unsigned,

I* number of times message reception has been inhibi
fixed bin (18) unaligned unsigned,

!* number of wakeups received over this channel */
bit
ptr
ptr
(4)

(72),
unaligned,
unaligned,
fixed bin;

I* event channel name associated with this channel *
I* pointer to first message in queue */
I* pointer to last message in queue */

aligned based, /* Event call channel - type = CALL */
aligned,
fixed bin (17) unaligned,

I* Indicates priority relative to ott1er call chns *I
fixed bin (17)

ptr unaligned,

unaligned,
I* = CALL */

chanp ptr unaligned,
I*
I*

pointer to next call channel */
pointer to prev call channel */

aligned,
bit (1) unaligned, /* "1"b if call to associated proc in progress*/
fixed bin (17) unaligned unsigned,

/* number of times message reception has been inhib:
fixed bin (18) unaligned unsigned,

/* number of wakeups received over this channel */
I* event channel name associated with this channel
I* pointer to first message in queue */

bit (72),
ptr unaligned,
ptr unaligned,
ptr unaligned,
aligned,
ptr unaligned,
ptr unaligned,
fixed bin;

I _A -

I* pointer to last message in queue */
I* pointer to associated data base */
I* procedure to call when message arrives */
I* pointer to entry point */
)* pointer to stack frame */)

cl

cl

1 ev 't-'message
2 v.J'rd O,

3 unused1
3 type

2 next ev messp
2 message-data

3 channel id
3 message-
3 sender
3 origin,

4 dev signal

4 ring

2 chanp
2 unused2

1 itt message
2 word o,

3 unused1
3 type

2 next itt messp
2 message data

3 channel id
3 message-
3 sender
3 origin,

4 dev signal

4 ring

2 unused2

aligned based,

fixed bin (17)
fixed bin (17)

ptr unaligned,
aligned,
fixed bin (71),
fixed bin (71),
bit (36),

-.,,*
unaligned,
unaligned,

I*
I*
I*
I*
I*
I*

bit (18) unaligned, I*
I*

unaligned, fixed bin (17)

ptr unaligned,
(3) fixed bin;

aligned based,

fixed bin (1 7)
fixed bin (17)

ptr unaligned,
aligned,
fixed bin (71),
fixed bin (71),
bit (36),

I*
I*

I*

unaligned,
unaligned,

I*
I*
/*
I*
I*
I*

bit (18) unaligned, ·I*
I*

fixed bin (17) unaligned,
I*

(4) fixed bin;

IS

Event message - type = EV MESSAGE */ ~

= EV MESSAGE */
poinier to next message for this channel· */
event message as returned from ipc $block */
event channel name *I -
12 bit message associated with wakeup */
process id of sender */

"1"b if device signal */
"O"b if user event */

ring of sending process */
pointer to associated event chann~l */

Itt message - type = ITT MESSAGE */

= ITT MESSAGE */
pointer to next it~ message entry in ECT c.urrentll
event message as returned from ipc $plqck *I
event channel name *I · -· ·
72 bit message associated with wakeup */
process id of sender */

"1"b if device signal */
"O"b if user event */

ring of sending process */

dcl

dcl

~vent channel name
2 ecte ptr -
2 r i tig·-

2 unique_id

aligned based,
ptr unaligned,
fixed bin (3) unaligned

bit (33) unaligned;

1 special channel name aligned based,
2 zero_If_special fixed bin,

I~ description of name of chahnei *F
I* pointer to channel entry in ECT */
unsigned,
I* ring number of ECT */
I* identifier unique to the process */

I* description of name of special channel */
I* =0 special channel */
I* A=O full event channel */

2 ring fixed bin (3) unaligned unsigned,
I* target ring number */

2 mbz bit (15) unaligned,
2 channel index fixed bin (17) unaligned;

/* number of special channel */

END INCLUDE file ect_structures.incl.pl1 */

,,.

------------------------------------· ··-----------·---------- ----·····--·-

J))
I/,,.

