
,... MULTICS TECHNICAL BULLETIN MTB- 415

To: MTB Distribution

From: David Spector

Date: 14 May 1979

Subject: New Profile Command

Motivation

The present profile command has been extended by the private,
uninstalled commands -long profile (which accumulates statistics
on execution counts, elapsed times, and page faults),
plot profile (which plots profile data on any Multics graphics
dispTay device), create cost listing (which lists source programs
with associated profile-data) and a version of profile that works
with hardcore programs; these tools are all useful and should be
incorporated into the standard profile command. A means of
creating standard-format profile data segments is also desirable,
so that performance studies of va~ious versions of subject
programs run on various test cases can be handled systematically
and can produce tangible data output in the form of ~ 1ta
segments, rather than the present availability of profile data
only within the lifetime of a single process.

New MPM Documentation

Name: profile

The profile command is a performance measuring tool that
analyzes the time spent executing each source statement of a
program, along with other parameters of interest, after the
program is run.

The program to be analyzed must be compiled using the -profile
(-pf) control argument of the cobol, fortran, and pl1 commands,
or using the -long profile C-lpf) control argument of the pl1
command. The long-profile compiler option is used to acquire
exact elapsed time statistics and is more expensive to use than
the -profile compiler option.

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

- 1 -

MULTICS TECHNICAL BULLETIN MTB-

,. Usage

,..

profile {program_names} {-control_args}

where:

1. program names
are entrynames or
analyzed. They
-input_file control

2. control args

reference names of programs to be
need not be specified if the
argument is used (see below).

are selected
apply to all
any order.

from the following list. Control arguments
programs specified, and may be given in

-print, -pr
prints the following information for each statement in
the specified program(s):

1. Line number.
2. Statement number (if greater than 1).
3. Count: the number of ~imes the statement was

executed.
4. Cost: an approximation to the accumulated execution

time for the statement. Equal to the number of
instructions executed plus ten times the number of
external operators called.

5. Names of all external operators called by the
statement.

For -long profile (actual accumulated time) data, items
4 and 5 are changed to the following:

4. Time: actual execution time for the statement in
virtual CPU microseconds.

5. Faults: page faults incurred in executing the
statement.

-sort STR
used with .-pr int to sort profile information into
descending order of the specified field STR, which may
be any one of the following:

-long, -lg

count
cost

time
faults

used with -print to include in the output information
for statements that have never been executed.

- 2 -

MULTICS TECHNICAL BULLETIN MTB-

-list path, -ls path
creates a profile listing of the source segment
specified by path, which must include the language
suffix. The profile listing file is given the list
suffix, and is created in the working directory. The
listing includes the information described above for
the -print control argument, as well as a column of
stars (asterisks) indicating the percentage of total
cost/time according to the following scheme:

4 stars: 20% to 100%
3 stars: 10% to 20%
2 stars: 5% to 10%
1 star: 2.5% to 5%
no stars: 0% to 2.5%

-exclude STR, -ex STR
used with -list to exclude the column of information
indicated by the field STR, which may be any one of the
following:

stars
line
count

-line length N, -11 N

cost
time
faults

,. operators, ops

used with -list to specify an output width of N
characters. If not specified, N is assumed to be 132.

-plot STR
plots a line graph (on the user's graphics terminal) of
the values of the specified field STR, which may be any
one of the following:

count
cost

time
faults

-from N, -fm N

-to N

used with -plot to begin the plotting with the data for
line number N. If -from is not specified, N is assumed
to be 1.

used with -plot to end the plotting with the data for
line number N. If -to is not specified, N is assumed
to be the line number of the last executable statement.

-output file path, -of path
causes the profile data for the specified program names
to be stored in the profile data file specifTed by
path. The file is created if it does not already
exist. The pf suffix is added to path if it is not

- 3 -

MULTICS TECHNICAL BULLETIN MTB-

already present. The profile data is stored in a
format acceptable to the -input file control argument
(see below). The format of pf data files is described
by the pl1 include file pf format.incl.pl1. The stored
data is determined by the -program names specified, as
well as by the -comment control argument and whether
the compilation was done using the -profile or
-long_profile options.

-comment STR, -cm STR
used with the -output file control argument to include
STR with the stored profile data as a comment. If STR
is to include blanks or other characters recognized as
special by the command processor, it should be enclosed
in quotes. STR may be up to 128 characters long.

-input file path, -if path
causes the profile data to be retrieved from the
profile data file specified by path. Use of this
control argument causes the current (internal static)
profile data, if any, to be ignored. The pf suffix is
appended to path if it is not already present. If any
program names are specified/ they select a subset of
the stored data for analysis. If no program names are
specified, all data stored in the profile data file is
used. This control argument may not be given if
-output_file is specified.

-reset, -rs
resets (zeros) all current (internal static) profile
data for the named program(s). The resetting is done as
the final operation if -print, -list, -plot, or
-output file are also specified. This control argument
may not be given if the -input file or -hardcore
control arguments are specified. -

-hardcore, -hard
indicates that the specified programs are supervisor
(hardcore) segments. The current (internal static)
profile data for such programs is retrieved from the
address space of the supervisor. Hardcore programs
compiled with the -profile (or -long profile) control
argument must be installed by generating a Multics
System Tape and rebooting Multics. See
Multics System Programming Tools (AZ03) for a
description of the generate mst command. Note that the
current (internal static)- profile data for hardcore
programs cannot be reset (zeroed).

-search path, -srh path
used with -hardcore to add the directory path to an
internal search list of hardcore object directories. Up

- 4 -

MULTICS TECHNICAL BULLETIN MTB-

Notes

to 8 directories may be specified. If no search list
is specified, >ldd>hard>o is searched for copies of the
specified program(s).

If none of the control arguments -print, -list,
-output_file, or -reset are specified, -print is assumed.

-plot,

When analyzing several runs of the same program(s) on
test cases, -reset should be specified. If -reset
specified, the current (internal static) profile
accumulated (added) for all runs.

various
is not

data is

There are two forms of profile data, current and stored.
Current data is in a form suitable for direct incrementing by the
program(s) being analyzed and is stored using the pl1 internal
static storage class (or, in the case of hardcore programs, in a
special hardcore data segment). Current profile data (except for
hardcore programs) can be reset by the -reset control argument.
Stored profile data is permanent data as stored by the
-output_file control argument.

Profile listing and data files are automatically stored as
multi-segment files (MSFs) if they are too large to fit into a
single segment. This feature allows very large bound object
segments to be analyzed and very large source segments to be
listed.

Examples

quad; profile quad
prints the current profile data of the program quad.
Note that quad must first be executed, in order to
acquire current profile data.

profile quad -of quad
stores the current profile data in segment quad.pf.

profile -if quad
prints the stored profile data from quad.pf.

profile -if quad -list quad.fortran
creates profile listing quad.list from the source
quad.fortran and the profile data quad.pf.

- 5 -

') ' MULTICS TECHNICAL BULLETIN MTB-

Profile Data File Format

I* BEGIN INCLUDE FILE pf_format.incl.pl 1 ••• D·. Spector May, 1979 */

I*

dcl

I*

dcl

Format of profile data segments 1 /

1 pf header aligned based (pf ptr),
2 iersion . fixed bin, · -
2 date time stored

fixed bin (71),
2 person project char (32),
2 commen~ char (128),
2 first_program,

3 component
3 offset

2 operator_array,

3 component
3 offset

fixed bin,
fixed bin (18),

fixed bin,
fixed bin (18);

Data for one program or component */
~

1 program aligned based (program_ptr),
2 next_program,

3 component
3 off set

2 name

2 translator
2 flags,

3 long profile
3 mbz -

2 n values

fixed bin,
fixed bin (18),
char (32),

char (8),

bit (1) unal,
bit (35) unal,
fixed bin,

- 6 -

I* Start of pf segment */
I* See pf format version below */

I* Msf offset in pf data to first
program data */

I* Msf off set in pf data to
operator_array */

I* Profile data for a program */
I* Msf offset in pf data to next

program data *I

I* Program name (does not include a
language suffix) */

I* Language name *I

l , ' MULTICS TECHNICAL BULLETIN MTB-

I*

dcl

dcl

dcl
dcl

dcl

I*

2 value (1 refer (program.n_values)),
3 source,

4 file fixed bin (10) unsigned unal,
4 line fixed bin (16) unsigned unal,
4 statement fixed bin (5) unsign~d unal,
4 mbz bit (5) unal,

3 first_operator
fixed bin (19) unsigned unal,

3 n_operators fixed bin (1 7) unsigned unal,

3 count fixed bin (35),
3 cost or time fixed bin (35) ,

3 page_faults fixed bin (35);

I* Subscript of first of list of
operators for this statement */

I* Number of operators in list for
this statement *I

I* If n operators= 1,
first operator contains */

I* the operator itself (to save
space) *I

I* Execution count */
I* Instructions or VCPU time

(long profile) */
I* (long=profile only) *I

Packed array of operators referenced by the program. Each operator consists
of the offset into the operators specified by program.operators name *I

~ -
operator_array (522240) fixed bin (18) unsigned unal based (operator_ptr);

pf _ptr ptr;

pf format version 1 fixed bin int static options.
program_ptr - ptr;

operator_ptr ptr;

END INCLUDE FILE pf_format.incl.pl1 */

- 7 -

I* Pointer to base of pf segment
(component 0) *I

(constant) init (1);
I* Pointer calculated from

pf header.first program or
program.next program *I

I* Pointer calculated from
pf_header.operator_array *I

