
Multics Technical Bulletin MTB- 410 

To: Distribution 

From: R. A. Barnes 

Date: 03/30/79 

Subject: The cost of call-push-return 

For some time.now there has been some controversy on the subject­
of call-push-return overhead in Multics and whether something 
should .be done to reduce it. Usually the figure of 5% is quoted 
as the system overhead for call-push-return, which has in the 
past led many to conclude that nothing should be done about it. 
However, I have maintained that for many subsystems on Multics 
and for many user applications this figure should be increased. 
Using the modern disciplines of structured programming in 
constructing subsystems leads to the use of many small 
procedures. Because recursive algorithms often provide the most 
natural solution to problems, and because a subsystem is easier 
to maintain if its procedures are separately compilable, it is 
often undesirable to avoid the call-push-return overhead by the 
use of quick procedures. For example, we avoided the 
call-push-return overhead in the new fortran compiler by using 
only seven external procedures with hundreds of quick procedures. 
However, it takes 180 seconds of CPU time to compile one of these 
8000-line procedures, and i~s much more difficult to divide work 
on the compiler among more than one programmer. Because of the 
above, it seemed important to estimate the call-push-return 
overhead for a subsystem with many small external procedures. 

As an example of a subsystem with many separately compiled 
procedures, I chose the PL/I compiler. First, it was necessary 
to derive the cost of the average call made by the compiler. In 
the cost of a call I include argument list preparation, stack 
frame push and pop, and return. As an educated guess, I assumed 
that the average call had five arguments without descriptors. 
Using the vclock builtin around null-loops, loops making quick 
calls, and loops making non-quick calls, I got the following 
results~ 

Multics Project internal working documentation. Not to be 
reproduced or distributed outside the Multics project. 

.\ 



Page MTB- 410 

quick call non-quick call 

in cache } 6 usec 70 usec 

user code 

out of cac,h_e} 8 usec 76 usec 

(This test case assumes that the pl1_operators_ sequence remained:.. 
in the cache.) 

The PL/I compiler was then used (with all links snapped) to 
compile its own optimizer which cost 40 seconds of virtual CPU 
time. Finally trace -auto on was used to count all external 
calls made by the compiler while compiling the optimizer. This 
came to 94110 external calls. My knowledge of the workings of 
the compiler leads me to believe that at least 6000 more 
non-quick internal calls are made, so I assume that the compiler 
makes roughly 100,000 calls while compiling the optimizer. With 
the above figures one can easily derive a rough percentage for 
the call-push-return overhead in the PL/I compiler--19%. This 
amounts to roughly 8 seconds out of the total of 40 seconds. 

This result of 193, which differs greatly from earlier estimates 
of 5%, plus suggestions from several other people, led me to try 
to get similar figures from a standard benchmark, the "Roach 
script" which MIT uses to track Multics performance. A special 
version of pl1 operators was made which counted every non-quick 
call, and the Roach - script was run using the special 
pl1 operators • (The additional overhead to meter the calls was 
one-AOS instruction per call. In order to keep pl1 operators 
encacheable, only one process was used in the metering-run.) The 
script used 29.979 seconds of virtual CPU time and made 78702 
non-quick calls. Using the estimate of 76 microseconds per call 
gives 5.98 seconds spent in call-push-return for an overhead of 
203, which agrees closely with the earlier figure of 19%. This 
new figure of 20% shows· that.the call-push-return overhead is 
more significant than previously thoughtr 

Recent estimates by knowledgeable people claim that we can reduce 
the number of instructions executed in pl1 operatois by 
call-push-return from 44 instructions to 19 instructions for a 
33-50% improvement in the overhead. This would translate into 
6 2/3-10% improvement in system performance on the Roach script. 
It is estimated that this would require about 6 man-months of 
work. I believe that we have here an opportunity to m~ke a 
significant performance enhancement to Multics. 

.\ 


