.’"

MULTICS TECHNICAL BULLETIN MTB- 405

To: MTB Distribution
From: Gary C. Dixon
Date: January 16, 1979 .

Subject: New query_ Subroutine, and a
Proposed Set of Argument Validation Active Functions

Introduction

A central feature of the new Trouble Report System are the
commands., enter_trouble_report, add_to_trouble_report, and
answer_trouble_report, Like trouble_report (their predecessor).,
these commands -prompt the user for information needed to enter a
report, add to an existing report or answer a report. Unlike
trouble_report, these commands must have the ability to parse up
a pre-typed input segment to obtain their information, rather
than asking questions. Also, they must allow the wuser to edit
his 1input before actual submission (to <correct typose., add
forgotten details, etc). A new query_ subroutine has been
developed to provide a centralized set of interfaces for asking
gquestions, storing the answers in a segment which can be edited.
and reparsing the segment to obtain corrected answers,

Bropeosed Solutigo

The Qquery_ subroutine 1is described in detail by the MPM
documentation which followse. It provides a mechanism for
defining questions, grouping them into wunits in which all
questions are asked by a single call to query_» or are answered
by parsing a single input segment. Formatted answers can then be
placed in an output segment for subsequent processing.

Because query_ is attempting to perform a rather complicated
jobs, 1its interface 1is not as simple as that of ask_ or
command_query_. However, as the sample program at the end of the
query_ documentation illustrates, query_ is not difficult to use.
Your comments on the function being performed, the interfaces
suggested, or other enhancements to query_ will be appreciated.
query_ exists now for experimental wuse on System M, If
necessary, it can be carried to MIT,

Muttics Project internal working documentation. Not to Dbe
reproduced or distributed outside the Multics Projecte.

MTB~- ’ - guery_ and valid_xxx

Misgellaneguys

In the design of answer validation routines for query_, it
became apparent that we are missing an important set of active
functions, those wWwhich validate the format and value of various
kinds of objects. Following the MPM description of query_ is an

info segment describing five possible active functions:
valid_date, valid_number, valid_pathname, valid_picture, and
valid_worde. These have not been implemented as yet. Your

comments on their proposed interface, or upon other possible
validation active functions will be appreciated.

In writing query_» I was wunable to find reasonable
error_table_ codes to describe several types of data manipulation
failure. These codes are Llisted as query_et_ values in the
guery_ documentation, but will probably be added to error_table_
should query_ be installed. These query_et_ codes are described
" following the validation active function info segments,

query_ query.

- - ar——

Name: query_

The query_ subroutine is a generalized gquestion asking facility. The
subroutine asks questions of the user, validates the answers and returns the
answers to its caller. query_ can also parse an input segment looking for the
answers to questions,

query_. is designed to ask and answer many questions at a time. The caller
provides information about each question to be asked, includings a Llong and a
short wversion of the question’; an information string describing the intent of
the question and possible answers; ~an array of delimiters, any one of which can
be used to separate the question from its answer; an array of delimiters, any
one of which <can be used to end the answer, an array of answer processing
routines which can redefine the given a2nswer; and a validation routine which
verifies the correctness of the answer.

query_ stores information about each possible gquestion in a query data base
created in the process directory. Once the guestions are defineds, the caller
can group questions together into units. A single call to query. asks all of
the questions in a wunit, and returns all of the answers, Based upon those

answers, questions in other units can be asked until all appropriate information
is obtained.

Sesides asking gquestions, query_ can look in a formatted input segment for
answers to questions in a wunit. Also, answers found by asking questions or
parsing an input segment can be stored in a formatted output segment suitable
for dprinting, mailing, etc. At a later point in time, query_ can parse the
formatted segment into separate answers for subsequent praocessing.

~The guery_ subroutine has several entry points which perform its various
functions. query_3init must ‘be called first to initialize the qdery data base
in the process directory. Then query_ must be called to define each question to
be asked., query_Sask can then be called to ask the user individual gquestions.
query_Sadd_unit ¢an be called to group a series of questions into a unit. Then
query_3%Sparse_unit can be called to parse an input segment into the answers for
one or more guestion units. Or query_Sask_unit c¢an be called to ask the
questions in one or more units. query_S$Sformat_unit can be called to store the
answers for one or more question units in a formatted cutput segment. Finally,
query_Sterm must be called to terminate use of the query data base. These entry
points and several others are described below. An example is shown following
the entry point descriptions.

EntLy: aquery_Sinit

This entry point is called to initialize the query data hase in the process
directory, €ach caller of Qquery_ must use a separate data base. The data base
can be used in a single process for as Llong as necessary, but should be
terminated when no Longer needed by calling query_Sterm.

DRAFT: MAY BE C(HANGED 1 01717479 AK92

-t - -
W e i a

query,_ os

query_
Usagse
declare query_Sinit entry (char(*), ptr, fixed bin(3S));:
call query_Sinit (caller, Pqs, code): -
where: N
1. caller (Input) .
is the name of the program on whose behalf the questions are being
asked, .
2o Pq . -(Qutput)
points to the query data base.
3. code (Output)

is 3 standard status code., It may have any valus returned by the
define_area_ subroutine.

Entry: query_

This entry poiat s called to define one of the possible gquestions which
may be asked. €Each question must be defined before it can be asked or grouped
into a wunit, or before its answer can be searched for in an input segment.
However, the gquery_ entry point can be called at any time to define a new
guestion,

When a guestion is defined, the user assigns an identifier by which it can
be referenced in subsequent calls to query_ entry points. The identifiers are
positive integers which must be assigned in increasing numeric order, beginning
with 1. No integer identifiers may be skipped. :

Associated with each question are a LOng and short version of the guestion.
The user is asked the lLong version of the guestion unless a brief switch is on
in the call to query_Sask or query_Sask_unit, Either the lLong or short versian
of the question may be used as a title to identify an answer found in a
formatted input segment when query_Sparse_unit is called, .

Also associated with the guestion is dn information string. The

information string describes the intenmt of the question, and gives possible
answers to prompt the user for the correct input. When query_Sask or

query_Sask_unit ask a question which the user does not understand ar does nat
know how to answer, he <can type an information prompt string (e.g., a Line
containing just 3 ?) which causes the information string to bhe printed. The
question is then reasked,

An array of question delimiters specifies what delimiters can be used to
separate 3 guestion from its answer in an input segment. Alsoc, the first
delimiter in the array is wused to end the question when the user is asked a
question, Note that when the user is asked a question, gquery_Sask and
query_Sask_unit do not add a newline character after the question delimiter, In
this way a gquestion can appear on the same line as the answuer typed by the user.
Questions for which long answers are expected may have a delimiter ending in a
newline so that all lines of the answer can be aligned under the question.

DRAFT: MAY BE CHANGED 2 Q1417779 AK92

[-

query_ query_

An array of ansuer delimiters specifies what delimiters can be used to end
an answer, Several delimiters are allowed so that a variety of ending
conventions can he accommodated. For example, a multiline answer <could be
delimited by a-line containing just a period (<KNL>.<NL>), or by twc blank lines
(KNL><NLDSNL>). A one word ansuer ctould be delimited by a newline, space or
horizontal=-tab. This would permit several questions with one word answers to
appear on the same lLine in a formatted input file. Alsos Qquery_Sask _and
query_%Sask_unit can handle answer type-ahead. By using space or horizontal-tab
delimiters, several one word answers can be given on the same line when the user
knows the guestions in advance.

An array of answer processing subroutines can be provided t¢ pre-process
the answer before it is validated, Typical pre-processing might include
expansion of abbreviations or symbols in the answer, expansion of active
functions and iteration parentheses, answer formatting, etc. The pre-processing
feature is currently not implemented,

Finally, a validation routine is provided to verify that the proper answver
is given for the question. query_ supplies several wvalidation routines, as
described under "Validation Routines” below. The <caller can provide other
routines to validate specially-formatted answers.

Usage

declare query_ entry (ptr, fixed bin, char(=), char(=), char(=),
(*) char(*) varying, (2) char(*) varying, (%) entry,
(*,#%) char(*) varying, entry, (*) char(#) varying, fixed 5in{(35)):

call query_ (Pg» gid, qlong, agshort, ginfo, qdelims, adelims, aprocessorss,
aproc_args, avalidator, avalid_args., code)’

~

where:

1. Pq ' (Input)
points to the query data base.

2. qid (Input)
1§ the question identifier. It must be a positive integer, The
first question must have an identifier of 1, the second of 2, and so
on,

3. along) (Input)
ts the long version of the gquestion,

4. qshort (Input)
is the short version of the guestion.

S« qinfo (lnput)
is the information string describing the intent of the question, and
tisting possible answers.

6. qdelinms (Input)
1s an array of question delimiters, The tirst delimiter is used by
query_Sask and query_Sask_unit to end the question when asking the
user a question. Other delimiters are available as optional
question delimiters in the input segments parsed by
query_3Sparse_unit.

DRAFT: MAY BE CHANGED 3 01/172/79 AK92

7. adelims ' (Input)

query_

‘is an array of ansuer delimiters. The user can use any of these

delimiters to end the answer to his guestion.

8. aprocessors (Input)

is an array of answer pre—processing subroutines,
pre-processing is not currently implemented. The nothing subroutine

¢can be used as an argument holder for this argument.

9. aproc_args ‘ (Input)

Answuer

is a 2-dimensional array of character string arguments which are
The array

passed as data to the answer pre-processing routines,
should be dimensioned as follows:

dcl aproc_args (no_aprocessors, no_args_to_aprocessor)

chari{*) varying’,

Answer pre~praocessing is not currently implemented.

character string ("") can be passed as an argument holder
argument,

~10. avalidator (Input)

far

null
this

is an entry variable identifying a validation routine which ¢an
Routines™

verify the correctness of the answer, See "vValidation
below for further details.

11. avalid_args (Input) .

is an array of character string arguments which are passed as data
below for

to the validation routine, See "vValidation Routines”
further details.

12. code (Output)

definition., The following value may be returned.
errar_table_Skey_order :
the gquestion jdentifier (gid) given in this call is not

one

is & standard status code which indicates the failure of gquestion

larger

than the Last id which was wused. Identifiers must be positive
integers, beginning with one and used in sequential order.

Yalidaxign_ Raoutinas

Each time a question is asked by query_Sask or guery_Sask_unit,
by query_3parse_units, its answer is validated for correctness by

sequence shown belows

declare avalidator entry (ptr, fixed bins ptr, char(*),
(*) char(») varying, fixed bin(35)) returns (bit(1))7

or

found

calling a
validation routine, A validation routine is a subroutine which has the calling

true_talse 3 avalidator (Pg, qids, Pvalid_ctl, answer, avalid_args,

where:
1. Pq (Input)
points to the query data base.
DRAFT: MAY BE CHANGED [‘ 01717779

code) s

AK92

CJ

- e -

query_ . - query_

2. qid (Input)
is the identifier of the question being validated.

3. Pvalid_ctt (Input) ‘
points to the valid_ctl structure described below. This structure

contains information used by the validation routine,

[answer (Input)

is the answer to be validated, Th; text of this answer may not be
changed in any way.

5. avalid_args (Input)
is an array of character string arguments which the caller of query_
passed as data to the validation routine., This data may control the
operation of some validation routines, or may Llist specifications
for valid answers, etc, Each validation routine may interpret these
arguments in its own way.

. code (Qutput)

' is a standard status code describing the failure of the validation
routine. 1f a nonzeroc value is returned, then all guestioning stops
and the code value is returned to the <caller of query_3ask,
query_Sask_unit or query_3parse_unit. If a zero value is returned,

then the validity of the answer is indicated by the true_false
return value.

7. true_false (Qutput)

when = "1"h, indicates that the answer is valid. When = "0"b, the
answer is invalide A value of '"0"b should be returned when a
nonzergo code is also returned,

The Pvalid_ctl argument of the validation routine points to the structure
shown below., This structure is declared in query_valid_ctl_.incl.plt.

del 1 valid_ctl aligned based(Pvalid_ctl),
2 version fixed 5in,
2 padl Hit(34),
2 Perror_ioch - ptr,
Pvalid_ctl! ptr,
Vvalid_cti_1 fixed bin int static

cptions{constant) init (1), -

wheres
1. version .
is the version number of this structure. It is currently 1. See
the description of Vvalid_ctli_1 below.
2. pad1
is reserved for future use. The caller must set this to ""b.
3. Perror_ioch
.points to the [/0 Switch Control Block (IO0CB) through which an error
can be reported to the user., The 10CB must be opened for

stream_output. .

ba Pvalid_ettl
points to the valid_ctl structure.

DRAFT: MAY BE CHANGED 5 ’ 01712479 AK92

query_

query,_

5.

L S

Vvalid_ctl 1

is a named constant which should be used to check for a structure
version number of 1,

The gquery_ tacility provides f0ur'validaticn routines which are described

below. In addition, the caller of query_ wmay provide routines to perfornm
specialized types of validation.

1.

3.

query_Sno_validation

performs no validation whatsoever. Any answer is valide including a null
string.

query_Sany_value ’ '
requires that some (nonnull string) value be given as the answer, No
further validation is performed for the value.

query_Slist_validation

requires that the answer be a single word which appears in the list of
acceptable wards passed in the avalid_args array. The array may have oOne
or more elements, each of which is a List of acceptable words, Each word,
ingluding the first, must be preceded and followed by a space character,
For example, the list

yes no maybe

defines three acceptable words: "yes"”, "no” and "maybe”. If maore than one
element is given in the avalid_args array, the elements are Llogically
cembined intos 'a single, Llarge Llist, The Lleading and trailing space
characters are required because the answer is validated by a test of the
form: :

if index(avaliag_args(1), " " Il answer 11 " ®) > 0 then
return ("1"b):

DRAFT: MAY BE (HANGED) _ 01717179 AKS2

query_ . . Qquery_

- - - — A -

b, query_Saf_validation

validates the answer by evaluating a command language active string. The
active string is the only element of the avalid_args array. The answer s
substituted into the active string, under control of the do active
function., For example, the active string

[valid_pathname &f1 ~min 1 ~-max 1 -exists segment]

would be evaluated as if

Ldo "[vaLid_pSthname 3f1 ~min 1 -max 1 ~exists segment]" answer]

had been typed in a3 command {ine. The active string must evaluate to
"true™ or “false", otherwise guery_Saf returns a nonzerc code argument, If
it evaluates to "true”, then the answer is considered valid., Otherwise, it
is considered invalid. In the active string abaove, the answer would be

considered valid if it contains one and only one valid pathname identifying .
an existing segment.

Entry: guery_Sask

This entry point asks the user one of the questions defined by a previous
call tc the guery_ entry point. It returns the user's answer,

Ysagse

declare guery_Sask entry (ptr, fixed bin, (%) char(+) varying, ptr, ptr,
fixed bin(21), fixed bin(35));

call Query_Sask (Pq, qid, info_prompt, Pask_ctl, Panswer, Lanswer, cade):

Where:

Ta Pq (Input)
points to the gquery data base,

2a qid (Input)
is the identifier of the question to be asked.

3. info_prompt (Input)
is an array of character strings, any one of which the user can type
on & line by itself to cause the information string associated with
the guestion to be typed. query_Sask will then ask the user the
question again. A single null string argument may be given to
disable prompting.

4o Pask_ctt (Input)
points to the ask_ctl structure described under "Notes” below. This
structure contains information used by query_3ask.,

DRAFT: MAY .BE CHANGED 7 01717779 AK92

query_

S. Pansuer . (Qutput) -
is a pointer to the answer returned for the question., The answer is
stored in the gquery data base. When the answer is no longer needed,

the space it occupies can be freed by catling query_sSfree_ansuer,

6o Lansuer (Qutput)
is the length (in characters) of the answer to the questian, It
Lanswer is 0, the wuser did not .answer the question and the
question’s validation routine accepted this fact. However, space
was allocated to hold the null string answer. This space can be
freed by calling query_Sfree_answer when no longer needed.

7e code (Qutput)
is a standard statys code indicating fatlure 1in questicning the
user, The code may have any value: returned by iox_Sput_chars when
asking a question; or by iox_Sget_line when reading an answer; or
by the validation routine; or it may have the following values.

error_table_Sunimplemented_version
the ask_ctl structure pointed to by Pask_ctl is not a supported
version of the structure, The caller must set ask_ctl.version to
Vask_ctli_1 tefore calling query_Sask. See "Notes” Dbelow for mare
information,)

error_table_Snoentry N
the question identified by Qid has not yet been defined.

Naras

The Pask_ctl painter argument of query_Sask points to the structure shown
below., This structure is declared in query_ask_ctl_.incl.pll.

sdel 1 ask_ctl aligned based(Pask_ctl),

2 version fixed bin,

2 S,
(3 brief, .
3 adelinms) Bit(1) unal,
3 pad!? Bit(34) unal,

2 Pask_iach - o ptrs

2 Panswer_ioch ptr,

Pask_ctl : ptr,

Vask_e¢tt 1 fixed bin int static
: options(canstant) init (132

where:

1a version)
is the version number of this structure, It is currently 1, See
the description of vask_ctl_1 below.

2. S.brief) . .
when set tg "1"h indicates that the brief version of the question is
to be asked, rather than the long version,

3. S.adelims

when set to "1"b, indicates that answer delimiters are tc be printed
following the guestion when it is asked.

DRAFT: MAY BE CHANGED 8 ‘ 01717779 AK92

Ng

. -y - o>
- -

query_ ' query_

B Y . -t

ha padl
is reserved for future use., The caller must set this to ""b,

S5a Pask_iocd i
points to the 1/0 Switch Control Block (10CB) through which the
question is is asked, It must be opened for stream_output.

Se Panswer_ioch ' .
points to the 1/0 Switch Control Block (10(8B) through which the
answer is read., It must be opened for stream_inpute.

7. Pask_ctl
points to the ask_ctl structure,

8. Vask_cti_1

is a named constant which should be used to check for a structure
version number of 1,

Entry: Query_Sadd_unit

This entry point groups a series of guestions together into a unit. Then
query_$parse_unit can be called to parse an input segment looking for answers to
atl questions in the unit, Simitarly, query_%Sask_unit can be called to ask the
user all of the questions in the unit.

When each unit is defined, space for a structure pointing to all of its
answers s allocated in the query data base, A pointer to this structure is
returned to the caller to identify the wunit in subsequent catls to
query_%Sparse_unit and query_Sask_unit. The structure, is declared in
query_ unit_.incl.pt1 as follows.

del 1 query_unit . aligned based(Pquery_unit),

2 version fixed bin, :

2 Nanswers fixed bin,

2 answers (Nguery_unit_answers refer (query_unit,Nanswers)),
TP ptre.
3L fixed bin(21), '
3 qid fixed bin,
3 line_no fixed bin,
3 code tfixed bin(35),
3 pad?l (2) fixed bin,

(QUESTION_ANSWERED init(Q),
QUESTION_PREANSWERED
init(1),
QUESTION_NOT _ANSWERED
init(2),
QUESTION_ANSWERED_INCORRECTLY
init(3)) fixed bin internal static
options(constant),
Pquery_unit ptr,
vquery_unit_1 fixed bin internal static options{constant)
initial(1),.
Nquery_unit_answers fixed bin/

DRAFT: MAY BE CHANGED 9 01717179 AK92

where:

1.

10.

query_

marc v
.

version
is the version number of this structure, It is current 1,.- The

variable Vquery_unit_l1 should be used to check this version number
(see 15 below).

Nanswers

gives the number of questions/answers grouped together in the units,
and therefore determines the size of the unit stryucture.

answers
is an array of minaor structures, each element of which defines an
insuer for one of the questions. The answers are given in the order
in which the questions were defined in the query_unit. The user may
pre-answer questions to avoid asking-a gquestion in the group while
still allowing the pre-ansuer to be included in the output generated
by Query_Sformat_unit,

points to the answer for a question. When pre-answering a questian,
this should point to the first Létter of the caller’s ansuer,

is the Length (in characters) af the ansuer. When pre=-answering a
question, this should equal the length of the caller's answer,

qid .
is the identifier ‘of the question associated with this answer, This
is set by query_Sadd_unit and should not be changed by the caller,

Line_no
is the line nuamber of the Lline on which gquery_Sparse_unit found the
beginning of the question/answer pair,

code

is a ¢code indicating whether the question has heen ansuered, It may
have to one of the values: QUESTION_ANSWERED, QUESTION_PREANSWERED.,
‘QUESTION_NOT_ANSWERED, QUESTION_ANSWERED_INCCORRECTLY (see 10, 11,
12, 13 below). aquery_Sadd_unit sets code to GUESTION_NOT_ANSWERED,
query_%ask_unit sets code to QUESTION_ANSWERED; bdut when an errar
occurs while asking the question, is sets code -to the standard
status code value returned by gquery_Sask, query_Sfree_answer and
query_Sfree_unit_answers set code to GUESTION_NOT_ANSWERED when an
answer is freed; Dbut when the storage occupied by the answer is not
found . in the query data base, they set code to
error_table_Snat_done, When pre=ansuering a questions, the caller
should set code to QUESTION_PREANSWERED.

padl N
* is a reserved field,

QUESTION_ANSWERED
is a named constant that can be compared with ¢ode to see if the
guestion was answered correctly by a call to query_Sask_unit or
query_Sparse_unit,

11. QUESTION_PREANSWERED
is a named constant that can be used to set code when the caller
pre=answWers a question,

12. QUESTION_NOT_ANSWERED
is a named constant that can be compared with code to see if the

DRAFT: MAY BE CHANGED 10 017172779 AK92.

query. ’ query_

- e s
- e

gquestion has not yet been answered,

13, QUESTION_ANSWERED_INCORRECTLY
is a named constant that can be compared with code to see if the
question was answered incorrectly by a call to query_Sparse_unit.
The answer is returned, even though incorrect.

14, Pquery_unit
points to the query_unit structure,

15. Vquery_unit_1
. is a3 named constant that can be ccmpared_uith version to insure that
a3 version 1 structure is returned by query_Sadd_unit.

16, Nqguery_unit_answers
is used to set the number of questions which are answered 1in the
unit when the qguery_unit structure is allocated by query_3$add_unit.

When a question has been pre-answered or answered by calling
query_Sask_unit or guery_Sparse_unit, then that guestion will not be asked in
subsequent calls to query_3Sask_unit until a pre—answered question is marked
QUESTION_NOT_ANSWERED or wuntil the answer of a previously=—askad guestion is
freed by calling query_Sfree_answer, or query_3Sfree_unit_answers, Simitarly,
query_Sparse_unit will not ook for the answer to such a question when it is
parsing an input segment. C

Usage

declare query_sSadd_unit entry {(ptr, char(*), ptr, fixed bin(35));

call query_Sadd_unit (Pq, query_groups, Pquery_unit, code)}’

where:

1. Pqg (Input)
points to the query data base.

2. query_group (Input)
is a character string which identifies the questions to be grouped
together in the unit.” [t contains a list of question identifiers,
or question identifier ranges, separated by , spaces. A question
identifigr is just an integer, A range of question identifiers is a
pair of integers separated by a colon, For example, the query_group

"1 3 5:9 3 13:11 15"

groups together questions 1, 3, 5, 6, 7, 8, 9, 3, 13, 12, 11, and 15
into a unit in that order.

3. Pquery _unit (Qutput)
points to the query_unit structure for the new unit defined in this
call,

[code (Qutput) '
is a standard status code which indicates the failure of unit
definition. It may have one of the following values.

DRAFT: MAY BE CHANGED 1 01717779 AK92

@ T -

query_

error_table_Sbad_arg
the gquery_group does nat .define any questions.

error_table_3noentry .

One or more of the questions identified in the guery_group has not
been defined in a call ta the query_ entry point.

error_table_3bad_conversion

A syntax error or nonnumeric questiod identifier was found in the
query_group.

Eptry: aquery_Sparse_unit

This entry point parses an input segment, (ooking for answers to all of the
questions in a2 wunit, Answers appear in the input segment, preceded by their
question as an identifier, For example, the gquestion "Date™ with gqguestian
delimiter of ":"” and answer delimiter of ";" pight appear in the input segment
as

'Daté: November 17, 1978

Either the long or short version of the gquestion may identify an answer. Any af
the question and answer delimiters may delimit the question and ansuer. Note
‘that whitespace <characters <(spacer, horizontal-tab, vertical=tab, newline,
newpage) appearing after the question delimiter are trimmed off the answer. The
same is true for whitespace characters preceding the answer delimiter,

As the input segment is parsed, the answers found for questions are c¢opied
into the query data base to preserve their value, even if the input segment is
modified,, The values of the query_unit.answer minor structure are set to
identify the ansuer, In particular, query_unit.answer.code is set to
QUESTION_ANSWERED or QUESTION_ANSWERED_INCORRECTLY for answers found during the
parse.

When parsing the input, guestions appearing more than once in the unit are
answered in their order of appearance in the unit, Ansuwers for gquestions not

appearing in the wunit are ignored if the S.,allow_unknowns fltag is set,

Othgruise: they are reported as errgrs to the user, Similarty, duplicate
answers for the same qugstion are ignared if the S.allow_duplicates flag is set,
OQtherwise, they are reported to the user as errorse,

query_Sparse_unit answers ontly those questions which have naot Dbeen
previously answered (i.e., it answers questiaons whose query_unit.ansuer,code is
QUESTION_NQT_ANSWERED). Ansuers appearing in the input segment for previcusly

answered questions are caonsidered to be duplicates. To reparse previously
answered questions, call query_Sfree_answer, or query_Sfree_unit_answers to free
answers supplied by gquery_Sparse_unit ar Query_Sask_unit, Set

query_unit.answer.code to QUESTION_NOT_ANSWERED for pre-answered questions
(those with a code of QUESTION_PREANSWERED), ’

Wwhen the ansuers are no longer neededs call query_Sfree_unit_answers to
free the storage which the answers octupy in the query data bases

DRAFT: MAY BE CHANGED 12 01/17/79 AK92

C J

- —
- -

query_ ’ query_

ot
i ey -

Usage

declare guery_Sparse_unit entry (ptr, ptr, ptr, ptrs.fixed bin(21), -
fixed bin(35));

call query_Sparse_unit (Pq., Pgquery_unit, Pparse_unit_ctl, Pinput, Linput,

code) N
wheres
1. Pq (Input)
points to the query data base,
2. Pquery_unit (Input))
points to the unit whose questions are to be answered by parsing.
3. Pinput (Input) i
‘points to the input segment to be parsed.
L, Linput (Input) .
is the length (in characters) of the input segment to be parsed.
S. Pparse_unit_ctt (Input)
points to the parse_unit_ctl structure described under '"Notes”
below. This structure contains information used by
Qquery_Sparse_unit.
6. code (Qutput)

is a standard status code describing the failure of the parsing. It
may have any value returned by an answer validation routine, or one
of the following values,

error_table_Sunimplemented_version

. ‘pn the parse_unit_ctl structure pointed to by Pparse_unit_ctl is not a
! supported version af the structure. The calier must set
parse_unit_ctl.version to Vparse_unit_ctl_1 before calling

query_Sparse_unit., See "Notes”™ below for more infaormation.

error_table_Szero_length_seg
a vatue of 0 was passed for Linput.

query_et_3data_missing
the input segment does not contain any non-whitéspace characters,

query_et_S3Sdata_duplicated
duplicate answers were found for some questions in the query_unit,

and parse_unit_ctl.,S.duplicate_answers was "0"b. The error was
reported to the user in an error message.

error_table_sSdata_improperly_terminated
answers for some questions in the query_unit were not terminated
with the correct answer delimiter, The remainder of the input

segment was used as the answer, and the errar was repaorted to the
user in an error message.

query_et_Sdata_invalid
answers for some qQquestions in the query_unit were invalid. The
invalid answer is returned, but aquery_unit.answer,code is set to

QUESTION_ANSWERED_INCORRECTLY for such answers, The error was
reported to the user in an error message.
DRAFT: MAY BE CHANGED 13 G1/17/79 AK92

query_

- wren -

LD T PR

query_

- s o o

Qquery_et_3data_unknoun

Naziss

The

structure

an unknown question was found in the input segment, An attempt was
@adg to . find the next known question and to cantinue parsing the
input segment., The error was reported to the uyser in an errgor
message if parse_unit_ctl.S.allow_unknowns was "0"b.

Pparse_unit_ctl pointer argument pf guery_Sparse_unit points ta the

shown below. Thisg structure is declared in

Qquery_parse_unit_ctl_.incl.pll.

del

wheres

1 parse_unit_ctl aligned based (Pparse_unit_ctl),
2 version fixed bin,
2 Se
(3 allow_unknowns,
3 duplicate_ansuers) bit(1) unal.,
3 pad? bit(34) unal.
2 Perror_ioch ptr,
Pparse_unit_ctl ptrs -
vparse_unit_ctl_1 fixed bin int statiec

options({constant) init (1)

‘1e version

is the version number of this structure., It is currently 1. See
the description of Vparse_unit_ctl_1 below.

2a S.allow_unknouns

when set to "1"b, causes unknown answers (answers whose questions
are not defined in the unit) to be ignored. Normally, such unknoun
answers are reported to the user as errors.

3. S.allow_duplicates

4. pad?

when set to "1"b, causes duplicate answers to be ignored., Ouplicate
answers are .those whose questions appear more times in the input
segment than in the wunit, or are questions which have been
previgcusly answered but which also appear in the input segment,
Normally, duplicate answers are reported to the user as an error,

is reserved for future use. The caller must set this to ""b.

Se Perror_iochd

points to the [/0 Switch Control 8B8loek (I0CS) through which an error
can be reported te the wuyser, The [0CB must be opened for
stream_output,

[Pparse_unit_ctl

points to the parse_unit_ctl structure,

7e Vparse_unit_ctl_1

is a named constant which should be used to check for a structure
version number of 1.,

DRAFT: MAY BE CHANGED 14 01717179 AKS2

Y -

-
-

query_ : Query_

- - ———

Eatry: Qquery_Sask_unit

This entry point asks the wuser gquestiaons in a umit, The answers are
copied into the guery data base, and the values of the query_unit.answer minor
structure are set to identi fy each answer. In particular,
query_unit.answer.code is set to QUESTION_ANSWERED for each aquestion which s
answered,

Each time query_Sask_unit s called, the wuser is asked all unanswered
questions in the unit., Unanswered questions are those whose
query_unit.answer.code value is QUESTION_NOT_ANSWERED. 1In asking the question,
this entry point types the brief or Long version of the question (depending upon
the setting of ask_unit_ctl.S.brief), then it types the first question delimiter
defined for the question., The user then types his-answer, followed by any one
of the answer delimiters defined for the question. The answer is passed to the
question's validation routine., If invalid, the information string describing
the question is typed, then the user is asked the guestion again,

.query_Sask_unit catls query_3%ask to ask each question in the query_unit,
When a question is answered, gquery_unit.answer,code i5 set to QUESTION_ANSWERED
for that question, unless query_Sask returned an nonzero status code for that
question., In that case, query_unit.answer.code is s5et to that status code.

query_Sask_unit asks only those guestions which have not been previously
answered (is0a0 questions with a value of query_unit.answer,code of
QUESTION_NOT_ANSWERED). To ask previgusly answered questions again, use
query_Sfree_answer, or query_Sfree_unit_answers to release the storage occupied
in the query data base by answers supplied by query_Sparse_unit or
query_Sask_unit, Set query_unit.answer.code to QUESTION_NOT_ANSWERED for
pre-answered gquestions (those with a code of QUESTION_PREANSWERED). When the
answers are no longer needecd, call query_Sfree_unit_ansuers to free the storage
which the answers occupy in the query data base.

Usage

declare gquery_Sask_unit entry (ptr, ptr, (*) char(=) varying'.otrp
fixed bin(35));

call query_Sask_unit (Pqs, Pquery_unit, Pask_iocb, Panswer_iocb,
info_prompt, Pask_unit_ctls caode)’

wheres

1. Pg (Input)
points to the query data base,

2. Pquery_unit (Input)
points to the unit whose questions are to be asked.

3. info_prompt (Input)
is an array of character strings, any one of which the user may type
to ask to be prompted with the information string describing the
question. After prompting, the question is repeated. A single null
string argument may be given to disable the prompting.

DRAFT: MAY BE (HANGED 15 01712779 AKS2

query_

Qquery_

b, Pask_uynit_ctl . (Input)

pofnts to the ask_unit_ctl structure described under "Notes" below.
This structure containg information used by query_Sask_unit,

Se code (Qutput) :
is a standard status code describing the failure of question asking.
It may have any value returned by query_Sask, or it may have the
following value. T -
error_table_Suniaplemented_version
the ask_unit_ctl structure pointed to by Pask_unit_ctl is not a
supported version of the structure. The caller must set
ask_unit_ctl.version to Vask_unit_ctl_1 before catling
query_Sask_unit., See "Notes" below for more information,

Nazes

The Pask_unit_ctl pointer .argument of query_Sask_unit paints. to the
structure shown below. This structure is declared in
gquery_ask_unit_ctl_.incl.pll.

del 1 ask_unit_ctl aligned based(Pask_ unit_ctl),
2 version fixed bins
2 S.
(3 brief.,.
3 adelinms) bit(1) unal.,
3 padil ' bit(34) unal,
2 Pask_iocd ptrs
2 Panswer_iioceh ptr,
Pask_unit_cti ptrs
Vask_unit_cti_? fixed bin int static

options{(canstant) init (1)’

wheres

1. version . _
is the version number of this structure., [t is currently 1, See
the description of Vask_unit_ctl_1 below.

2e Sabriet
when set to "1"b indicates that the brief version of the question is
to be asked, rather than the long version.

3. S.adetl ims } .
when set to "1"h, indicates that answer delimiters are to be printed
following the question when it is asked.

be pad1
is reserved for future use, The caller must set this to “"b.

Se Pask_ioch
points to an I/0 Switch Control Block (I0C8) through which questions
are asked, The switch must be opened for stream_output.

ORAFT: MAY BE CHANGED 16 01/1?/79. AK92

query_ query_

6. Panswer_iocb
points to an 1/0 Switch Control Block (I0(B) through which the
user'’s answers are read. The switch must be opened for

stream_input.

7. Pask_unit_ctl .
points to the ask_unit_ctl structure.

8 Vask_unit_ctl_1 N

is a named constant which should be used to check for a structure

version number of 1.

gEniry: gquery_Sfree_answer

This entry point frees the storage used for an answer obtained by calling
query_3asks, query_3%ask_unit or query_Sparse_unit.

Usage

declare query_Sfree_answer entry (ptr, ptr, fixed bin, ptr, fixed bin(21).,
fixed bin(35))7

call query_sSfree_answer (PQs, Pquery_unit, qids, Panswer, Lanswer, code)?

where:
1. Pq (Input)
points to the query data base.
2e Pquery_unit (Input)
points to the query_unit structure for the unit containing the
answer to be freed., when t he question was answered by
query_Sask_unit or query_3parse_unit., A null pointer should be
. given when freeing an answer obtained from query_Sask.
3. qid (Inpyt)
is the identifier of the question which was asked.
4, Panswer (Input)
points to the storage for the answer to be freed.
Se Lanswer (Input)
is the length (in characters) of the answer tao be freed.
6o code (Output)

is a standard status code indicating the failure of the freeing, It
may have any of the following values, ; :

error_table_3Snoentry
the question defined by qid has not been defined by a call to the
query_ entry point or does not appear in the Qquery_unit,

error_table_Snot_done

no storage was found in the query data base for the answer to the
question, .

DRAFT: MAY BE CHANGED 17 01717779 AK92

query_

query_

A -

Eatry: Query_Sfree_unit_ansuers

. This entry point releases query data base stqrage occupied by the .ansuers
in a _uni:. Only unit answers supplied By query_SasSk_unit or query_Sparse_unit
occupy storage, query_unit,answer.,code is set to QUESTION_ANSWERED or
QUESTION_ANSWERED_INCORRECTLY for these aquestions, Pre-answered guestiaons in

the unit (those with Qquery_unit,answer.code = JQUESTION_PREANSWERED) are not
changed.,

- Ysage ' .

declare query_Sfree_unit_answers entry (ptr, ptrs, fixed bin(35));

call query_Sfree_unit_answuers (Pqg, Pguery_unit, code);

where:
1. Pq (Input)
points to the query data Dbase.
2. Pguery_unit (Input)
points to the unit whose gquestions are to be freed.
3. code (Qutput)

is a standard status code describing the failure of the freeing. It
may have any value returned by query_Sfree_answer.

Entry: Query_Sformat_uynit

This entry point writes questions and answers associated with a unit into a
segaent in a format which can subsequently be parsed by query_Sparse_unit, The
questions are added to the segment in the order in which they were grouped in
the unit by the query_Sadd_unit call.

For each question with a value of - query_unit.answer,code of
QUESTION_ANSWERED or QUESTION_PREANSWERED, the long version of the gquestion is
added to the segment (unless the Sbrief control argument is "1"b), followed by
the first question delimiter, the answer, and the first answer delimiter,
Unanswered questions are not put in the segment, Incorrectly answered guestions
are put in the segment only when format_unit_ctl.S.incorract_answers is "1"bh.

Usage

-declare query_Sfarmat_unit entry (ptr, ptr, ptr, ptr, fixed bin(21),
fixed bin(21), fixed Din(35)):

call query_Stormat_unit (Pg, Pquery_unit, Pformat_unit_ctls, Psegs, Lin,
Lout, coce);

DRAFT: MAY BE CHANGED 18 01717179 AK92

query. . _) query_

- —————

wheres

1. Pa (Input)
points to the guery data base.

2. PQuery_unit (lnput)
points to the unit which is to be formatted,

3. Pformat_unit_cttl (Input)
points to the format_unit_ctl structure described under “Notes"”
bel ow. This structure contains information used by
query_Sformat_unit,

ba Pseg (Input)
is a pointer to the segment in which the formatted unit is to be
placed. The unit can be appended to the end of existing data by
setting the (Lin argument, as described below, If Pseg is a null
pointer, get_temp_segment_ is called to obtain a temporary segment
in which the formatted wunit is placed. The <caller is then
responsible for <calling release_temp_segment_, to release this
segment.,

Se Lin (lnput)
is the Llength (in characters) of data already existing in the
segment, The formatted unit is appended after this data. A value
of 0 should be given to overwrite the segment, This value is
assumed to be 0 if Pseg = null,

6. Lout (Qutput)
is the length (in characters) of the segment after the formatted
unit has been appended.

7. code (Qutput)

is a standard status code describing the failure of unit formatting.

It may have any value returned by qget_temp_segmeni, or one of the
following values.

error_table_Sunimplemented_version :
the format_unit_ctl structure pointed to by Pfaormat_unit_ctl is not
a supported wversion of the structure. The caller must 'set
format_unit_ctl.version to Vformat_ unit_ctl_1 before calling
query_3Sformat_unit, See "Notes”" below for more information.

error_table_3cut_of_bounds

the segment in which the formatted unit was placed has overflowed.
Lout is set to indicate how much data is returned, but some data may.
be lost., In particular, the final question/answer pair which was
output may be incomplete.

Nozles

The Pformat_unit_ctl pointer argument of query_Sformat_unit points to the
structure shown below. This structure is declared in
query_format_unit_ctl_.incl,.pll..
DRAFT: MAY BE CHANGED 19 01712779 AK92

- - . .
e < ——

query_ query_
del 1 format_unit_ctl aligned based(Pformat_unit_ctl), . ‘)
2 version fixed din, ' :
2 S,
(3 brief, .
3 incorrect_answers) 5it€1) unal.,
Pformat_unit_ctl ptr, -
Viormat_unit_ctl_1 fixed bin int static
aptions(constant) init (1);
where:
1. versigon . -)
is the version number of this structure. It is currently 1, See
the description of Vfaormat_unit_ctl_1 below.
2. S.brief : o T)
when set to "1"b indicates that the brief version of the cquestion is
to be used in the formatted output, rather than the long version.
3. S.incorrect_ansuers
when set to "1"bh indicates that incorrectly answered question/answver
pairs are to be placed in the formatted output, in addition to
correctly answered pairs.
4o Pformat_unit_ctl

points to the format_unit_ct!l structure,

S. Viformat_unit_cti_1
is a named constant which should be used to check for a structure
version number of 1, .

-~
"Epgry: Qquery_Sterm . ;n‘)

This entry point iS called to terminate the query data base when atl
Qquestioning is complete,

Wsage

declare Qquery_Sterm entry (ptr)’

call query_Sterm (PqQ)’

.

where Pg points to the query data base.

Exapole

The following pregram excerpt illustrates the use of several query_ entry
points.

DRAFT: MAY BE CHANGED 20 Q1717779 AK92

L)

-

query_

-

census g

det

det
del

Zinclude
del
Zinclude
del
Zinclude
del
Xinclude
det

DRAFT:

query_

proc’ /* procedure to prompt for census data. */

(Lanswer, Ltemp) fixed bin(21),
(Panswer, Pcensus_unit, Pg, Ptemp)
ptr.,

be fixed bin(24)7

answer char(Lanswer) based(Panswer)’

poT (1) char(3) internal static options{(constant)
init("\012.\012"),

HT_SP_NL (3 char(1) internal static options{(constant)
init¢”"\011", * ", "\012™),

NL (1) char(1) internal static options(constant)
init("\012"),

aM (1) char(2) internal static options{constant)

: init(”2\012");

query_ask_ctl_~

1 my_ask_ctl automatic like ask_ctls
query_ask_unit_ctl_~ R

1 my_ask_unit_ctl automatic Like ask_unit_ctli’
query_sSformat_unit_ctl_’

1 my_format_unit_ctl automatic (ike format_unit_ctl’
query_parse_unit_ctl_’

"1 my_query_parse_unit_ctl

automatic like query_parse_unit_ctl’

Pg = nuil’ /* be prepared to clean up if census */
Ptemp = null’ /* taking is aborted, */
on cleanup begin’ . :
if Ptemp "= null then
call release_temp_segment_ ("census”, Ptemp, code)’
if Pg@ "= null then call query_sSterm (PqQ)’
end’

call query_3init ("census”", Pqg» code):
if coge "= 0 then _
/* create query data bhase. x/

/* define 4 census questions. */
call query_ (Pq, 1, "Person's Name”, "Name", ’
"Enter name of person being surveyed by the census.".»
":", NL, nothing, "", query_Sany_value, "", code)’
if code "= 0 then
call query_ (Pgs, 2, "Person's Address,)', "Address",
"Enter street address, city, state, 2ip, PO BOx or Apt No.".»
":", 00T, nothing, "", qQuery_Sany_value, "", code)’;
if code "= 0 then
call query_ (Pg, 3, "Person's Age", "Age",
"Enter persan's age in years”, ":", HT_SP_NL, nothing, """,
query_Saf_validation,
"fvalid_number &f1 -min 1 -max 1 -~integer -from 1 -to 1501",
codel)’
if code "= 0 then ,,..
call query_ (Pqg, 4o "Person's Occupation”, "Occupation”,
"Enter occupation from known occupation Llist.".,
":", NL, nothing, """, census_Svalidate_occupation,
"d>udd>CENSUS>data>known_occupations”, coded’
if code "= 0 then

MAY BE CHANGED 21 01717779 AK92

Type

DRAFTS

.

query__
calt query_3Sadd_unit (Pg, "1:6", Pcensus_unit, code)?
if code = 0 then ... ‘

/* group questions 1 thru 4 inte a unit */

/* sa uwe can ask, format and parse all =/

/* at one time, ®/°
my_ask_unit_ctl.version = Vask_ctl_1/
my_ask_unit_ctl.5 = "0"b/J
my_ask_unit_ctl.S.adelims = "1"p; .
my_ask_unit_ctl.Pask_iocbh = jox_Suser_output’
my_ask_unit_ctl.Panswer_ioch 3 iox_Suser_input’
call query_Sask_unit (Pgs, Pcensus_unit, aM,

addri{my_ask_unit_ctl), code)’

/+* ask census taker all four questions. =*/
my_format_unit_ctl.version = Vformat_unit_ctl_17
my_format_unit_ctl.S = *0"b’
amy_format _unit_ctl.S.incorrect_answers = "1"h
call query_Sformat_unit (Pg, Ptensus_unit,

addr{my_format_unit_ctl), Ptemp, Ltemp, code)’
call jox_Sput_chars (iax_3Suser_output, Ptemo, Ltemp, code)’
: /* format/print answers to verify them, #/

/* Sinece Ptemo is null, formatted ocutpute*/

/+ is placed in a temp seg.) */
call guery_ (Pgs, S, "Edit the answers™, "Edit”,

"Type ""yes”"™ or ""y"" to sdit census data.
""no"" ar ""n™" it data is correct.,”, "?", HT_SP_NL., nething, ",
query_3list_validation, " yes y no n ", code)’
if code "= 0 then ...

/* prepare to ask if user wants v/

/+ to edit the answers, =/
call hes_Sfs_get_path_name (Ptemp, dir, Ldir, ents, code):
path = substridirstsldir) |1 """ 1l ent’

/* get pathname 2f temp seg to edit it, =/
ay_ask_ctl.version = vask_ctl 17 °
my_ask_cti.$ = "O0"b/
my_ask_ctl.S.adelims = "1"b;
my_3ask_ctl.Pask_ioch = iox_Suser_output’
my_ask_ctli.Pansuer_ioch = iox_Suser_input; :)
call query_3ask (Pgs, 5, GM, addr(my_ask_ctl).,

Panswer, Lanswer, cgode);

/* Ask if answers are to be edited? */
do while (substrlanswer,1,1) = "y"); -)

/* Loop until answers are satisfactory, */

catl query_Sfree_unit_answers {(Pg, Pcensus_unit, code)’
if code "= 0 then ...e

/* free storage in Query data base */

/* occupied by current answers, */

call edm (path)’ ‘

/» Use edm to edit the answers, */

call hes_Sstatus_mins (Ptemp, 0, D¢, coded:
Ltemp 3 divide (bcs 9, 24, O

/* get length of edited answers. */

MAY BE CHANGED 22 . 01717779 AK92

oy

P o

query_ query_

R

my_parse_unit_ctl.version = Vparse_unit_ctl_1;

my_parse_unit_ctl.$ = "0"b7’ :

my_parse_unit_ctl.Perror_iocb = iox_Suser_output’

call guery_Sparse_unit (Pq, Pcensus_unit,

addr (my _parse_unit_ctl), Ptemp, Ltemp, code)’

/* parse up the edited question/answer */
/* pairs., Make sure editing fixed */
/+ errors rather than creating them. */

it code = 0 then do’
call query_S$format_unit (PQqs, Pcensus_unit.,
addr(my_format_unit_ctl), Ptemp, O, Ltemp, code)’
call jox_Sput_chars (iox_Suser_output, Ptemp, Ltemp,
code)’
/* reformat and print edited answers. */

call query_Sfree_answer (Pg, nulls 5, Panswver,
Lanswer, code)’
if code “= 0 then ...
call query_Sask -(Pgs S5, QM, addr(my_ask_ctl),
Panswer, Lanswer, code)’
end’ /+*+ ask census taker if data is 0k now. *)
/+* if query_Sparse_unit found errcrs in #/
/* parsings it reports the errors. We */

/* then re-edit without asking user. */
end; /* once loop completes, both census */
/* taker and query_Sparse_unit are */
/* happy with the answers. */
end census’
DRAFT: MAY BE (CHANGED 23 01717779 AK92

:Info: valid_af: valid: 12/28/78 validating active functions

This info segment describes active functions which check a value to determin N

if it is a correctly formed object of a given type. These active functions A)
include-

valid_date, vdt valid_picture, vpic
valid_number, wvnb valid_words, vw
valid_pathname, vpn

tInfo: valid_word: vw: 12/28/78 valid_word, vw

"Syntax: Cvw {words) {-control_args?]

Function: validates a set of input words to insure that one or more of the
words is found in a3 list of acceptable words, or in a named set of
dictionaries. A value of true is returned if the words are valid, false is
returned otherwise.

Arguments:
words
are z2eros, one or more words to be validated.,

«

Control arguments: - ' j:>
-word STR :)
specifies that STR is a word, even though it Looks like a control argument.
-all, =-a
requires that all of the words are valid before a value of true is returned.
A value of true is also returned if no words are given, (This is default.)
-any .
reguires that only one of the words is valid before a value of true is
returned, A value of true is also returned if no words are given.
-maximum N, =-max N
requires that no more than N words are given. 1If more than N are given,
value of false is returned whether or not the words are valid. (Default
infinite number of words.)
-miniaum N, =min N
requires that at Least N words are given, If fewer than N are given, a
value of false is returned. (Default = Q)

[\

-ignore_case
specifics that the case of letters is ignored when comparing the words with
3 Llist of acceptable answers or with dictionary entries., . (Default, case
matters), .
-alphabetic, =aptha
requires that valid words consist of only letters of the alphabet. “~
~number, =-nb ')
requires that valid words consist only of digits from O through 9,
-alphanumeric, =-alphan , . ,
requires that valid words consist only of alphabetic letters or digits.
-identifier, -id
requires that valid words meet the constraints imposed upon identifiers in
PL/1l source programs.

R
-

.

-

—

-accept words :
gives a list of acceptable waords., At least one word must be given, AlL of
the arguments following -accept are treated as part of the list. Thus
-accepts, if present, must be the last control argument.

~-dictionary {paths}, —~dict {paths}
gives pathnames of one or more dictionaries containing valid words., All
arguments following ~dict are treated as pathnames, Thus =-dicts, if present,
must be the last control argument and is mutually exclusive with =accept.

If no pathnames are given, the dictionaries given in the "dictionary" search
list are used. '

Notes: Control arguments in the following lines are mutually exclusive with
other members of the Line; only one member of each line may be used.

-any, =-all

-alphabetics, =-number, =—-alphanumeric, =-identifier

-accepts, -dictionary

Syntax as a command: vw {words} {-control_args}

““nfo: valid_pathname: vpn: 01/710/79 wvalid_pathname, vpn

Syntax: L[vpn {paths) {~-control_argsl}]

Function: validates a set of pathnames to insure that all pathnames are valid,
Pathnames are valid if they are acceptable to the expand_pathname_ subroutine.,
and if they meet the existence criteria of the -exists control argument,

Arguments:
paths.

are zeros, one or more pathnames to be validated. The star convention 13s
allowed in final entryname of path. '

Control arguments:
-maximum N, =-max N

reguires that no more than N paths are given, If more than N are given, a
vatue of false is returned whether or not the paths are valid. (pefault =
infinite number of paths.,)

-minimum N, =min N
requires that at least N paths are given., If fewer than N are given, a
value of false is returned, (Default = 0)

-exists type

o checks to see if the pathnames exist in the storage system as a given type

of entry. Any keyword given under "List of types" below may be given,

-~~-=-chase

causes link targets to be checked for existence when =exist is given.
-chase allowed only with =-exists,

5

-all, =2
requires that all of the pathnames are valid and exist (when —exists is “«
used) before a value of true is returned. A value of true is also returne_j
'if no pathnames are given., (This is default.)

-any
requires that only one of the pathnames is valid and exists before a value

of true is returned. A value of true is also returned if no pathnames are
given, ‘

List of types:
branch

segment, multisegment file or directory must exist.
directory, dir

directory must exist.

entry

segment, multisegment file, directory or Link must exist.
file

segment or multisegment file must exist,
link

link must exist.

master_directory, mdir
master directory must exist.

ms f
multisegment file must exist, “
nonbranch ,
link must exist, . j)
nonfile - -
link or directory must exist.
nonlink

segment, directory or multisegment file must exist.

nonmaster_directory, namdir
directory not a master directory must exist.
nonmsf '
link, segment or directory must exist,
nonnull_Llink, nnlink ‘
link must exist to an existing segment, directory or multisegment file,
nonsegment, nonseg
link, multisegment file or directory must exist.
nonzero_*tiles, nzfile . '
segment or multisegment file must exist, must have nonzero bit count.

nonzero_msf, nzmsf

multisegment file must exist, must have nonzero bit count.
nonzero_segment, nzseg '

segment must exist, must have nonzero bit count.

null_Llink “N
link must exist, link target must not exist.

segment, seg :
segment must exist. i ;)

.

zero_filesr-zfile
segment or multisegment file must exist, must have zero bit count,

2ero_msf, z2msf

multisegment file must exists, must have zero bit count.,
tero_segment, zseg

~ segment must exist, must have 2ero bit count.

Notes: If any pathname is not accepted by expand_pathname_, then a value of
false is returned. -

The =any and =-all control arguments are mutually exclusive?, only one may be
given.

-

Syntax as a command: vpn {paths} {~-control_argsl}

tInfo: valid_date: vdt: 01/710/79 valid_date, vdt

Syntax: (vdt {dates)> {-control_argsl}]

Function: validates a set of date/time specifications to insure that all dates
~#-e valid and that one or more of the dates falls within a given time period.
K”,ate/time specifications are valid 1f they are acceptable to the

convert_date_to_binary_ subroutine.

Arguments:

dates
are 2ero., one or more date/time specifications. If the specification
includes spaces, it must be anclosed in quotes.

ontrol arguments:

-from date, -fm date :
gives beginning of time period in which valid dates must fall. The time
period includes the date/time specified by date (to the nearest

microsecond), (Default - accept dates from
January 1, 0000 00:00:00.000000 gmt)
-to date

gives end of time period in which valid dates must fall. The time period
includes the date/time specified by date (to nearest microsecond). (Default
-~ accept dates to December 31, 9999 23:59:59.99999% gmt)

-all, -3
requires that all of the dates fall within the given time period before a
#»~ value of true is returned. A value of true is also returned if noc dates are
.y given. (This is default.)
~~any .
requires that only one of the dates falls within the given time period

before a value of true is returned. A value of true is also returned 1f no
dates are given,

27

-maximum N, =-max N

requires that no more than N dates are given, If more than N are given, a

value of false is returned whether or not the dates are valid, ~ (Default =

infinite number of dates.) ‘
-minimum N, =-min N : '

requires that at least N dates are given, If fewer than N are given, a
value of false is returned., (Default = Q)

Notes: if any date is not acceptable to convert_date_to_binary_», then a ‘value
of false is returned.

-

Syntax as a command: vdt {dates) {-control_args?

s:Info: valid_number: vnb: 01/10/79 valid_number, vnb

Syntax: ([vnb {numters) .{-control_args’}]

fFunction: validates character representations of numbers to insure that all
are valid and that one or more numbers fall within a given range.

. “N

Arguments ‘ R ’ S
u : : N
numbers -/

are 2ero, one or more character stking representations of numbers. Integer,
fixed-point or floating—=point representations may be given. Numbers are’
assumed to be expressed in base 10, but may be expressed in base 2, 4, 8 oar
16 by ending the representation with b, g, 0 or x respectively. ‘For
floating=~point numbers, only the mantissa is expressed in a nondecimal base:’

the exponent must be expressed in decimal. This follows the PL/I convention
for arithmetic constants.

Control arguments:
-range STR, =-rg STR . .
defines a3 range in which valid numbers must fall., STR has one of the forms:
lower _bound<X<upper_bound
lower_bound<X
X<upper_bound
where X is any alphabetic symbol representing the numbers being validated.
lower_bound and upper_bound are numbers, as described above for number
arguments. The relational operator <= may be used in place of < tgo specify
inclusive ranges. If STR contains spaces, then it must be enclosed in
quotes. A sample range is: ".314159265e+1 < X <= 99",

(Default: ~-infinity <= X <= infinity}
- ‘
-fixed . . ~
requires that valid numbers be expressed as fixed-point character *H)

representations. A radix point and fractional-digits are optional.
-integer

reqpires that valid numbers be expressed as integer character
representations. A radix point and fractional digits are not allowed.

-float
requires that valid numbers be expressed as floating-point character
representations. A radix point and fractional digits are optiocnal, but an
g~ exponent is required.

-all, -a
requires that all of the numbers fall within the given range before a value
of true is returned. A value of true is also returned if no numbers are
given, (This is default.)

-any
requires that only one of the numbers falls within the given range before a
value of true is returned. A value,of true is also returned if no numbers
are given,

-maximum N, —-max N i
requires that no maore than N numbers are given., If more than N are given, a
value of false is returned whether or not the numbers are valid. <(Default =
infinite number of numbers.)

“minimum N, =-min N
requires that at least N numbers are given. If fewer than N are given, a
value of false is returned, (Default = 0)

Notes: Control arguments in the following lines are mutually exclusive with
other members of the line; only one member of each lLine may be used.
-fixed, -float, -integer
-alls, -any

- #™ ntax as a command: vnb {numbers) {—-control_args)

L

sInfo: wvalid_pic: vpic: 01/710/79 wvalid_pics vpic

Syntax: [vpic pic_spec {values) {-control_args}]

Function: checks to see if one or more values can be edited into a PL/I
numeric or character pictured string. If no values are given, checks to see if
given numeric or character pictured string is valid,

Arguments:

pic_spec
is a PL/I numeric or character pictured string (picture?.

values
are one or more values to be edited into the picture, If no values are
given, the pic_spec itself is checked for validity,

”»~

"‘ontrol arguments:
-value STR, -vl STR

specifies that STR is a value to be edited into pic_spec, even though it
looks Like a control argument,

29

-alls, -3
requires that atl values can be correctly edited into pic_spec before a
value of true is returned, (This is default.) -~

-any ' h
requires that only one value can be correctly edited into pic_spec before a/
a value of true is returned.

-maximum N, =-max N
requires that no more than N values are given., If more than N are given, a
value of false is returned whether or not the values are valid. (Default =
infinite number of values.,) :

“-minimum N, =-min N
requires that at least N values are given, 1f fewer than N are .given, a
value of false is returned. (Default = Q)

’

Notes: The —any and ~all control érguments are mutually exclusive; only one
may be given, .

Syntax as a command: wvpic pic_spec {values) {-control_args’

include
et
ec
ec
ec

ec

end

et_macros

query_et_

data_dupticatedsdata_dup.,

(bDuplicate data found.)
data_invalid,data_inv,
(Invalid data found.)
data_missingrdata_mis,
(Expected data missing.)
data_unknown,data_unk.,
(Unknown data values found.)

34

