
MULTICS TECHNICAL BULLETIN MTS- 405

To: MTB Distribution

From: Gary C. Dixon

Date: January 16, 1979

Subject; New query_ Subroutine, and a
Proposed Set of Argument Validation Active Functions

A central feature of the new Trouble Report System are the
commands, enter_trouble_report, add_to_troubte_report, and
answer_trouble_report. Like trouble_report <their predecessor),
these commands ·prompt the user for information needed to ent~r a
report, add to an existing report or answer a report. Unlike
trouble_report, these commands must have the ability to parse up
a pre-typed input segment to obtain their information, rather
than asking questions. Also, they must allow the user to edit
his input before actual submission <to correct typos, add
forgotten details, etc>. A new query_ subroutine has been
developed to provide a centralized set of interfaces tor asking
questions, storing the answers in a segment which can be edited,

(,,... and reparsing the segment to obtain corrected answers.

r_...
I

The query_ subroutine is described in detail by the MPM
documentation which follows. It provides a mechanism for
defining questions, grouping them into units in which all
questions are asked by~ single call to query_, or are answered
by parsing a single input segment. Formatted answers can t~en be
placed in an output segment for subsequent processing.

Because query_ is attempting to perform a rather complicated
job, its interface is not as simple as that of ask_ or
command_query_. However, as the sample program at the end of the
query_ documentation illustrates, query_ is not difficult to use.
Your comments on the function being performed, the interfaces
suggested, or other enhancements to query_ will be appreciated ..
query_ exists now for experimental use on System M. If
necessary, it can be carried to MIT.

--------------------------------·--------------------------------
Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

- A -

MTB- Query_ and valid_xxx

In the design of ·a~swer validation r~utines for Query_, it
became apparent that we are missing an important set of active
functions, those which validate the format and value of various
kinds of objects. Following the MPM description of query_ is an
info segment d~scribing five possible active functions:
valid~date, valid_number, valid_pathname, valid_picture1 and
vaUct_word.· These have not been implemented as yet. Your
comments on their proposed interface, or upon other possible
validation active functions will be appreciated.

In writing Query_, I was unable to find reasonable
e~ror_table_ codes to describe several types of data manipulation
failure. These codes are listed as query~et_ values in the
Query_ docum,ntation, but will probably be added to error~table_
should Query_ be installed. These Query_et_ codes are described
following the validation active f~nction info segments.

8 -

,_j

(~
•. ,..

QUet'y_

The Query. subrout;ne ;5 a generalized Question ask;ng facility. The-
subt'out;ne asks quest;ons of the user, validates the answers and retu,.~s the
answet's to its callet'. query_ can also parse an input segment look;ng fot' the
answet'S to auest;ons.

Query_ is des;gned to ask and answet' many Questions at a time. The caller
Pt'ov;des informat;on about each Quest;on to be asked1 ;nclud;ng: a long and a
shot't version of the question: an ;nformat;on string desct'ibing the intent of
the Question and possible answe,.s: an array of delimiters, any one of wh;ch can
be used to separate the auest;on from its answer: an array of del;miters, any
one of which can be used to end the answer: an art'ay of answer processing
t'Outines which can red~f ine the given answer; and a validation t'Outine which
ve,.ifies the correctness of the answer.

Query_ stores ;nformat;on about each possible Question in a Query data base
created fn the process d;rectory. Once the Questions are defined, the caller
can group Questions together into units. A single call to query_ asks all of
the Questions in a unit, and returrys all of the.answers. Based upon those
answers, Questions in other un;ts can be asked until all appropt'iate infot'mation
is obtained.

Besides asking questions, query_ can Look ;n a formatted input segment for
answers to quest;ons in a unit. Also, answers found by asking Questions or
parsing an input segment can be stored in a fot'matted output segment suitable
for dprinting, ma;ling, etc. At a later point ;n time, Query_ can pa,.se the
formatted segment into separate answet'S fo,. subsequent pt'ocessing.

The query_ subt'outine has several entry po;nts wh;ch perform its various
f-Unctions. query_Sinit must"be called.first to initialize the Qu.ery data base
in the pt'ocess directory. Then query_ must be called to define each question to
be asked. query_Sask can then be called to ask the use,. individual Questions.
quet'y_Sadd_unit can be called to group a series of questions into a unit. Then
Query_Sparse_unit can be called to parse an input segment ;nto the answers tor
one or more question units. Or auery_Sask_unit can be called to ~sk the
questions in one or more units. query_Sformat_unit can be called to store the
answers for one or more question units in a formatted output segment. Finally,
Quet'y_Sterm must be called to terminate use of the Query data base. These entry
points and several others are described below. An example is shown following
the entry point desct'iptions.

This entry point is called to initialize the auery data base in the process
directory. Each caller of Quet'y_ must use a separate data base. The data base
can be used in a single process for as long as necessat'y, but should be
terminated when no longer needed by calling auery_Sterm.

DRAFT: MAY SE CHANGED 01/17/79 AK92

Que t"f-

l.l.UU

deClire Query_Sinit entry CcharC•), ptr, fixed binC3S>J;

where:

1 .. caller

2. Pq

3. code

is the
asked.

<Input>
name of the pragra~ on whose"behalf the Questions are being

.(Output)
Doints to the Query data base.

<Output>
is a standard status code. It may have any value returned by the
define_irea_ subroutine.

This entry paint is called to define one at the possible Questions which
may be asked. each Question must be defined before it can be asked or grouped
into a unit, or before its answer can be searched tor in an input segment.
However, the Query_ entry point can be called at any time to define a new
Question.

When a Question is defined, the user assigns an identifier by which it can
be referenced in subsequent calls to Query_ entry points. The identifiers are
positive integers which must be assigned in increasing numeric order, beginning
with 1~ No integer identifiers may be .sk.ipp~ct.

Associated with each Question are a Long and short version of the Question.
The user is asked the long version of the question unless a brief switch i~ on
in the c~lt to Query_Sask or query_Sask_unit. e.ither the Long or short version
of the Question may be used as a title to identify an answer found in a
formatted input segment when Query_Sparse_unit is called.

Also associated with the Question is ~n information string. The
information string describes the intent of the Question, and gives possible
answers to pramot the user tor the correct input. When Query_sask or
Query_Sask_unit ask a Quest1an which the user does not understand or does not
know how to answer, he can type an information prompt string <e.g., a line
containing just a ?> which causes the information string ta be printed. The
Question is then reasked.

An array of question delimiters specifies what delimiters can be used ta
separate a Question from its answer in an input segment. Also, the first
delimiter in the array is used to end the Question when the user is asked a
Quest.ion. Note that when the user is asked a Question, Query_Sask and
Query_Sask_unit do not add a newline character after the Question delimiter. In
this way a question can appear an the same line as the answer typed by the user.
Questions far which Long answers are expected may have a delimiter ending in a
newline so that all lines of the answer can be aligned under the question.

DRAFT: MAY ae CHANGED 2 01117/79 AIC92

..

·,J

.. ,...
(

\

Query_

An array of answer delimiters specifies what delimiters can be used to end
an answer. Several delimiters are allowed so that a variety of ending
conventions can be accommodated. For example, a multiline answer could be
delimited by a -line containing just a period C<NL>.<NL>), or by two blank lines
C<N~><NL><NL>l. A one word answer could be delimited by a newiine, space or
horizontal-tab. This would Permit several Questions with one word answers to
appear on the same line in a formatted input file. Also, Query_Sask .and
Query Sask_unit can handle answer type-ahead. By using space or horizontal-tab
delimiters, several one word answers can be given on the same line when the user
knows the Questions in advance.

An array of answer processing subroutines can be provided to pre-process
the answer before it is validated. Typical pre-processing might include
e~pansion of abbreviations or symbols in the answer, expansion of active
functions and iteration parentheses, answer formatting, etc. The pre-processing
feature is currently not i~plemented.

Finally, a validation routine is provided to verify that the
is given for the Question. Query_ supplies several validation

proper answer
routines, as
provide other described under "Validation Routines" below. The caller can

routines to validate specially-formatted answers.

declare Query_ entry Cptr, fixed bin, char(•), char(•), char(•),
C * > ch a r < * l v a r y i n g, C * l ch a r < • l v a ry i n g, C * l en t r y ,
(•,•> char<•> varying, entry, C•l char(•) varying, fixed bin<35l>;

call Query_ CPQ1 Qid, along, ashort, Qinfo, adelims, adelims, aprocessors,
aproc_args1 avalidator, avalid_args, code>:

where:

1. Pq

2. aid

C Input>
points to th~ Query data base.

<Input>
is the Question identifier. It must be a positive integer. The
first Question must have an identifier of 1, the second of z, and so
on.

3. Qlong C Input>
is the long version of the Question.

4. Qshort (Input)
is the short version of the auestion.

s. ainfo <Input>
is the information string describing the intent of the auestion, and
l)sting possible answers.

6. odelims (Input)
is an array of Question delimiters. The first delimiter is used by
Query_Sask and Query_Sask_unit to end the Question when asking the
user a Question. Other delimiters are available as optional
Question delimiters in the input segments parsed by
Query_Sparse_unit.

DRAFT: MAY BE CHANGED 3 01/17/79 AK92

Query_

1. adelims <Input>
·is an array of answer delimiters. The user can use any of these
deli•iiers to end the answer to his question.

a. aprocessors <Input>

9.

10.

11.

12.

is an array of answer pre-processing subroutines. Answer
pre-processing is not currently implemented. The nothing subroutine
can be used as an argu11ent holder for this argument.

aproc_args <Input>
h a
passed
should

2-di11ensional array of character string argu11ents which are
as data to the answer pre-processing routines. The array
be di•ensioned as follows:

dcl aproc_args Cno_aprocessors, no_args_to_aprocessor>
char<•> varying;

Answer pre-processing is not currently implemented. A
character string <""> can be pass.a a.s an argument holder for
argu•ent.

null
thh

avalidator Ctnput>
is an entry variable identifying a validation routine which can
verify the correctness of the answer. See "Validation Routines"
below for further details.

avalid_args <Input>

code

is an array of character
to the validation routine.
further details.

<Output>

string arguments which· are passed as data
See gValidation Routines" below for

is a standard status code which indicates the failure of question
definition. The following value ~ay be returned.

error_table_Skey_order
the Question identifier (Qid> given in this call is not one larger
than the last id which was used. tdentifiers must be positive
integers, beginning with one and used_ in sequential order.

Each time a question is asked by Query_Sask or query_Sask_unit,
by query_Sparse_unit, its ~nswer is validated for correctness by
validation routine. A validation routine is a subroutine which has
sequence shown below.

or is found
calling a

the calling

declare avalidator entry (ptr, fixed btn1 per, char<•>,
<•> char<•> varying, fi1ed bin<35>> returns (bitC1>>;

true_false a avalidator <Pq, Qid, Pvaltd_ctl1 answer, avalid_args1 code>:

where:

1. Pq <Input>
points to the query data base.

DRAFT: ~AY BE CHANGED 4 01/17/79 AK92

(,..
\. .

z.

3.

•

Qid <Input>
is the identifier of the question being validated.

Pvalid_ctl <Input>
points to the valid_ctl structure described below.
contains information used by the validation routine.

-----..

This st.ructure

4. answer <Input>
is the answer to be validated. The text of this answer may not be
changed in any way.

S. avalid_args <Input>

7.

code

is an array of character string arguments which t~e caller of query_
passed as data to the validation routine. This data may control the
operation of some validatfon routines, or may list specifications
for valid answers, etc. Each validation routine may interpret these
arguments in its own way.

<Output)
is a standard status code describing the failure of the validation
routine. If a nonzero value is returned, then all questioning stops
and the code value is returned to the caller of ouery_Sask,
ouery_Sask_unit or ouery_Sparse_unit. If a zero value is returned,
then the validity of the answer is indicated by the true_false
return value.

true_ false <Output>
wh~n = "1"b, indicates that the answer is valid.
answer is invalid. A value of "O"b should be
nonzero code is also returned.

When = "O"b, the
returned when a

The Pvalid_ctl argument of the validation routine points to the structure
shown below. This structure is declared in query_valid_ctl_.incl.pl1.

dcl valid_ctl
Z version
2 pad1
2 Perror_iocb

Pvalid_ctl
Vvalid_ctl_1

where:

1. version

aligned basedCPvalid_ctl),
fixttd·bin,
bitC36>,
ptr,
pt r"
fixed bin int static

options(constant> init <1J;

is the version number of this structur;. It is currently 1.
the description of Vvalid_ctl_1 below.

z. pad1
is reserved for future use. The caller must set this to ""b.

3. Perror_iocb

See

·points to the I/O Switch Control Block CIOCB) through which an error
can be reported to the user. The IOCB must be opened for
stream_output.

4. Pvalid_ctl
points to the valid_ctl structure.

DRAFT: ~AY BE CHANGED s 01/17179 AK92

!-JUe,.y_

s. Vulid_ct l.1
is a named constant which should be used to check fo,. a st,.uctu,.e
ve,.sion number of 1.

The Query_ facili~y provides four validation routines which are desc,.ibed
below. In addition, the calle,. of query_ may provide ,.outines to perform
specialized tyoes of validation.

1. Quer.y_Sno.validation

2.

3.

performs no validation whatsoeve,.. Any answer is valid, including a null
string.

Que,.y_Sany_value
reQuires that so•e <nonnull string) v•lue be given as the answer.
fu,.the,. validation is performed for the value.

No

Query_Slist.validation
requires that the answe,. be a single word which appears in the List o1
acceotable w~rds passed in the avalid_args array. The array may have one
or more elements, each of which is a list of acceptable words. Each word,
including the first~ must be preceded a~d· followed by a space character.
For example, the list

" y~s no maybe •

defines three acceptable words: "yes", "no" and "maybe". If mo,.e than one
element is given in the avalid_a,.gs array, the elements are logically
combined into a single, large list. The leading and trailing space
characte,.s are reQuired because the answer is validated by a test of the

if iridex<avalid.args(1), " " II answer 11 " ") > 0 t!ien
return ("1"b);

DRAFT: MAY BE CHANGED 6 01/17/?9

..

(\,... 4.

query_

query_Saf_validation
validates the answer by evaluating a command language active string. The
active string is the only element of the avalid_args array. The answer is
substituted into the active string, under control of the do. active
function. For example, the active string

[valid_pathname &f1 -min 1 -max -exists segmentJ

would be evaluated as if

[do "Cvalid_pathname &f1 -min 1 -max 1 -exists segmentJ" answer]

had been typed in a command line. The active string must evaluate to
"true" or "false"• otherwise query_Saf returns a nonzero code argument. If
it evaluates to "true", then the answer is considered valid. Otherwise, it
is conside·red invalid. In the active string above1 the answer would be
considered valid if it contains one and only one valid pathname identifying
an existing segment •

.lio.tn: que.ry_Sask

This entry point asks the user one of the questions defined bY a previous
call to the Query_ entry point. It returns the user's answer.

declare query_Sask entry (ptr1 fixed bin, <*> char<•> varying, per, ptr,
fixed bin<2~), fixed bin(35));

call Query_Sask <Pq, qid, info_prompt, Pask_ctl, Panswer, Lanswer, code>:

where:

1. Pq

2. qid

(Input>
~oints to the query data base.

<Input>
is the identifier of the Question to be asked.

3. info_prompt <Input>

4.

is an array of character strings, any one of which the user can tyoe
on a line by itself to cause the information string associated with
the Question to be typed. query_Sask will then ask the user the
question again. A single null string argument may be given to
disable prompting.

Pask_ct l <Input>
points to the ask_ctl structure described under "Notes" belo~.
structure contains information used by Query_Sask.

This

DRAFT: MAY .BE CHANGED 7 01 /17/79 AK92

s. Panswer <Output)
is a pointer to the answer rtturned for the question. The answer is
stortd in the query data base. When the answer is no longer needed,
the space it occupies can be freed by calling oue~y_sfree_answer.

6. Lanswer <Output>

7. code

is the length Cin characters> of the answer t4 the question. If
Lanswer is Q, the user did not .answer the question and the
question's validation routine accepted ~his fact. However, space
was allocated to hold the null string answer. This spact can be
freed by calling ouery_Sfree_answer when no longer needed.

COutputJ
is a standard status code indicating failure in questioning the
user. The code 111ay have any value: returned by iox_Sput_chars when
asking a question: or by iox_Sget_line when reading an answer: or
by the validation routine: or it 111ay have the following values.

error_table_suni•ple•ented_version
the ask_ctl structure pointed to by Pask_ctl is not a supported
version of the structure. The caller must set ask_ctl.version to
Vask_ctl_1. before calling ouery_Sask. S~e ·"Notes" below for more
information.

error_table_snoentry
the question identified by oid has not yet been defined.

~.a.u.s

The Pask_ctl Pointer argument of query_Sask points to the structure shown
below. This structure is declared in query_ask_ctl_.incl.pL1.

• dcl 1 ask_ct l
2 version
2 5,

(3 brief,
3 ad el i 111s >
3 pad1

2 Pask_iocb
Z Panswer_iocb

Pask_ctl
vask_ctl_1

aligned basedCPask_ctl),
fixed bin,

b i t C 1 > un a l ,
bitC34> unal,
ptr,
pt,.,
pt r,
fixed bin int static

ootions<constant) init (1);

where:

1. version

2. S.brief

is the version nu111ber of this structure. It is currently 1 •.
the description of V1sk_ctl_1 below.

when set to M1Mb indicates that the brief version of the question is
to be asked, rather than the long version.

3. s.adelims
when set to "1"b, indicates that answer delimiters are. to be printed
following the question when it is asked.

DRAFT:. MAY SE C~ANGED 8 01/17/79 AK92

(,,...

4. pad1
is reserved tor future use. The caller must set this to ""b.

s. Pask_iocb
points to the 1/0
question is is asked.

Switch Control Block CIOCB) through which the
It must be opened tor stream_output.

6. Panswer_iocb
points to the I/O Switch Control Block CIOCB) through which the
answer is read. It must be opened for stream_input.

7. Pask_ctl
points to the ask_ctl structure.

8. Vask_ctl_1
is a named constant which should be used to check for a structure
version number of 1.

This entry point groups a series of questions together into a unit. Then
query_$parse_unit can be called to parse an input segment looking for answers to
all questions in the unit. Similarly, query_$ask_unit can be called to ask the
user all of the questions in the unit.

When each unit is detined1 space for a s true tu re pointing to all of its
answers is alloca·ted in the qu~ry data base. A pointer to this structure is
returned to the caller to identify the unit in subseciuent calls
query_Sparse_unit and query_Sask_unit. The st rue: ture. is declared
query~unit_.incl.pl1 as follows.

dcl query_unit aligned based(Pquery_unit),
2 version fixed bin,
2 Nanswers fixed bin,
2 answers CNquery_unit_answers refer (qMery_unit.Nanswers)J,

3 P ptr,
3 L fixed binC21),
3 qid fixed bin,
3 lfne_no fixed bin,
3 code fixed binC3SJ,
3 pad1 <2> fixed bin,

CQUESTION_ANSWERED init(Q),
QUESTION_PREANSWERED

ini t(1>,
QUESTION_NOT_ANSWERED

initC2J,
QUESTION_ANSWERED_INCORRECTLY

initC3)) fixed bin internal static
optionsCconstantJ,

Pquery_unit
Vquery_unit_1

Nquery_unit_answers

DRAFT: MAY BE CHANGED

ptr,
fixed bin internal

initial en,.
fixed bin:

9

static options<constant>

01/17/79

to
in

AK92

.;

Query_

1. version
is the version number of this structure. It 1s current 1.- The
variable VQuery_unit_1 should be used to check this version number
<se.e 15 below>.

2. Nanswers

3. answers

4. p

s. 1..

6. qid

gives the number of Questions/answers"grouped together in the unit,
and therefore determines the size of the unit structure.

is an array of minor structures, each element of which defines an
answer for one of the Questions. The answers are gtven in the order
in which the Questions wer1 d~fintd in the Query.unit. The user may
pr1-answer Qutstions to avoid asking·a QuestiQn in the group whilt
still allowing the pre-answer to be included in the output g1nerated
by Query_Sformat_unit.

points to the answer for a Question. ~hen pre-answering a Qu1stion1
this should point to t~e first l~tter of the calltr's answ•r.

is the length Cin characters> of the answer. When pre-answ1rin9 a
Question, this should eQual the length of the caller's answer.

is the identHier 'of the Question associated with this answer. This
is set by Query_Sadd.unit and should not be changed by the caller.

7. line.no

a. code

9. pad1

is the Line number of 'the line on which Query_Sparse_unit found the
beginning of the question/answer pair.

is a code indica~ing whether the Question has been answered. It may
have to one of the values: QUESTION.ANSWEAED1 QUESTION.PREANSWERED1

·QUESTION.NOT_ANSWERED1 QUESTION_ANSWERED_INCORRECTl..T Csee 101 111
121 13 below>. query_Sadd.unit sets code to QUESTION.NOT.ANSW&RED.
Query.Sask.unit ~ets cdde to QUESTION.ANSWEREOi but whtn an error
occurs while asking the Question, is set~ code -to the standard
status code val~e returned by Query_sask. Query_Sfree.answer and
Query_Sfree.unit.answers set code to QUESTION.NOT.ANSWERED when an
answer is freedi but when the storage occupied by the answer is not
found : in the Query data base, they set code to
error.table.Snot_done. ~hen pre-answering a Question, the caller
should set code to QUESTION.PREANSWERED.

is a reserved field.

10. QUESTION_ANSWEAED
is a named constant that can be compared with code to see if the
Question was answered correctly by a call to Query_Sask.un;t or
Query.Sparse_unit.

11. QUESTION.PREANSWERED
;s a named constant that can be used to set code when the caller
pre-answers a Question.

12. QUESTION.NOT.ANSWERED
is a named constant that can be compared with code to see if the

ORAFT: MAT BE CHANGED 10 01/17/79 AK92.

J

Query_ Query_

Question has not yet been answered.

13. QUESTlON_ANSwERED_INCORRECTLY
is a named constant that can be compared with code to see if the
Question was answered incorre~tly by a call to Query_Sparse_unit.
The answer is returned, even though incorrect.

14. PQuery_unit
points to the Query_unit structure.

15. VQuery_unit_1
- is a n~med constant that can be compared with version to insure that

a version 1 structure is returned by Query_Sadd_unit.

16. NQuery_unit_answers
is used to set the number of Questions which are answered in the
unit when the Query_unit structure is allocated by Query_Sadd_unit.

When a Question has been pre-answered or answered by calling
Query_Sask_unit or Query_Sparse_unit, then that Question will not pe asked in
subseQuent calls to Query_Sask_unit until a pre-answered auestion is marked
QUESTION_NOT_ANSWERED or until the answer of a previously-ask~d Question is
freed by calling auery_Sfree_answer, or auery_Sfree_unit_answers. Similarly,
auery_Sparse_unit will not look for the answer to such a auesiion when it is
parsing an input segnient.

declare query_Sadd_unit entry (ptr, char(•), ptr, fixed bin<35>>;

call Query_S"add_unit (PQ,, auery_group, PQuery_unit1 code>:

where:

1. Pq <Input>
points to the Query data base.

2. Query_grou~ <Input>

3.

4.

is a character string which identifies the auestions to be grouped
together in the unit." It contains a list ~f question identifiers,
or auestion identifier ranges,_ separated by ,spaces. A Question
identifier is just an integer. A range of question identifiers is a
pair of integers separated by a colon. For example, the auery_group

"1 3 5:9 3 13:11 15"

groups together Questions 1, 3, 5, 6, 7, 3, 9, 3, 13, 12, 111 and 15
itTtO a unit in that order.

PQuery_uni t
points
call.

(Output>
to the Query_unit structure for the new unit defined in this

code <Output>
is a standard status code whi~h indicates the failure of unit
definition. It may have one of the following values.

DRAF!: MAY BE CHANGED 11 01/17179 AK92

Query_

error.table.Sbad.arg
the Query_grouo does not ,define any Questions;.

error.table.Snoentry.
One or more of the Questions identified in the Query_group has not
been defined in a call to the Query_ entry point.

trror_table.lbad.conversion
A syntax error or nonnumeric Questio~ identifier w•s found in the
Query_ 9 roup.

This entry point parses an input segment, looking for answers to all of the
Questions in a unit. Answers appear in the input segment, preceded by their
Question as an identifier. For example1 .the Question "Date" with question
deli•iter of ":"and answer delimiter of ":" ~ight appear in the incut segment
as

Date: November 17, 1978

Either the long or short version of the Question may identify an answ~r. Any of
the Question and answer delimiters may delimit the Question and answer. Note
-that whitespace characters (space, horizontal-tab, vertical-tab, newline,
newpage) appearing after the Question delimiter are trimmed off the answer. The
sa•e is true for whitespace characters preceding the answer·delimiter.

As the ingut segment is parsed, the answers found for Questions are copied
into the Query data base t~ preserve their value, even if the input segment is
modi.tied., The values of the Query.unit.answer minor structure are set to
identify the answer. In par ti cular.1 ciuery_uni t.answer. code is set to
QUESTION_ANSWERED or QUESTION_ANSWEREO.lNCORRECTLY for answers found during the
parse.

When parsing the input, Questions appearing more than once in the unit are
answered in t·heir order of appearance in the unit. Answers for Questions not
appearing in the unit are ignored if the s.allow.unknowns flag is set.
Otherwise, they are reoorted as errors to the user. Similarly, duolicate
answers for the same question are ignored if the s.allow.duplicates flag is set.
Otherwise, th~y are reported to the use~ as errors.

Query.Sparse.unit answers only those Questions -which have not been
previously answered (i.e., it answers Questions whose Query.unit.answer.code is
QUESTION.NOT.ANSWERED>. Answers appearing in the input segment for previously
answ•rtd Questions are con$idered to be duplicates. To reparse previously
answered questions, call Query_Sfree.answer1 or Query_Sfree.unit_answers to free
answers supplied by Query.Sparse.unit or Query_Sask_unit. Set
Query_unit.answer.code to QUESTION.NOT.ANSWERED for pre-answered Questions
(those with a code of QUESTION.PREANSWERED>.

When the answers are no longer needed, call Query_Stree_unit.answers to
free the storage which the answers occupy in the Query data base~

DRAFT: HAY BE CHANGED 12 01/17/79 AK92

J.

i,..

.,...
"-'-

Query_ QuerY_

declare Query_Sparse_unit entry Cptr, ptr1 ptr, ptr1 .fixed binC21), -
fixed binC35));

call Query_Scarse_unit CPQ, PQuery_unit, Pparse_unit_ctl1 Pinput1 Linput1
code>:

where:

1 •

2.

3.

4.

5.

6.

C Input>
points to the Query data base.

PQuery_unit Cinput)
points to the unit whose Questions are to be . answered by parsing •

Pinput Cinput>
·points to the input segment to be parsed.

Linput <Input>
is the length Cin characters> of the input segment to be parsed.

Pparse_uni t_ct l
points to
below.

the
This

(Input>
parse_unit_ctl

strue-ture
structure
contains

described under "Notes"
information used by

code

Query_Sparse_unit~

(Output>
is a standard status code describing the failure of the parsing. lt
may have any value returned by an answer validation routine, or one
of the following values.

error_table_iunimplemented_version
the parse_unit_ctl structure
supported version of the

pointed to by Pparse_unit_ctl is not a
structure. The caller must set

_parse_unit_ctl.version to V pa rs e _uni t _ c t L _ 1 be fore c a l L i n g
Query_Sparse_unit. See "Notes" below for more information.

error_table_Szero_length_seg
a value of 0 was passed for ~input.

Query_et_Sdata_missing
the input segment does not contain any non-whitespace characters.

Query_et_Sdata_duplicated
duplicate answers were found for some questions in
~nd parse_unit_ctC.S.duplicate_answers was "O"b.
reported to the user in an error message.

the Query_unit,
The error "'as

error_table_Sdata_improperly_terminated
answers for so111e Questions in the query_unit
with the correct answer delimiter. The
segment was used as the answer, and the error
user in an error message.

Query_et_Sdata_invalid

were not terminated
remainder of the input
was reported to the

answers for some questions in the query_unit were invalid. The
invalid answer is returned, but ouery_unit.answer.code is set to
QUESTION_ANSWEREO_INCORRECTLY for such answers. The error was
reported to the user in an error message.

DRAFT: MAY BE CHANGED 13 01/17/79 AK92

query_

query_et.Sdata_unknown
an unknown Question was found in the input segment. A.n attempt was
made to. find the next known question and to continue parsing the
input segment. The error was reported to the user in an error
message if parse_unit_etl.S.allow_unknowns was "O"b.

The Pparse_unit_ctl pointer argument pf ctuery_Sparse.unit points to the
structure shown below. This structure is declared in
query_parse_unit_ctl_.incl.p&1.

dcl parse_unit_ctl
2 version
2 s,

C3 allow_unknowns,
3 duplicate_answers)
3 pad1

2 Perror.iocb
Pparse_unit_etl
Vparse_unit_ctl_1

aligned based CPparse_unit_ctl),
fixed bi1"11

b i t C 1) un al ,
bitC34> unal,
ptr1
ptr,
fixed bin int static
optionsCconstan~> il"lit C1>:

wher"e:

is the version number of this structure.
the description of Vparse_unit_ctl_1 below.

It is currently 1. See

2. s.allow_unknowns

3.

when set to "1"b, causes u~known answers (answers whdse ouestions
are not defined in the unit) to be ignor"ed. Normally, such unknown
answers are reported to the user as error"s.

s.allow_duclicates
when set to "1"~, causes duplicate answers to be ignored.
answers are .those whose Questions appear mor"e ti111es in
segment than in the unit, or are Questions which
previous~y answered but which also apcear in the input
Normally, duplicate answers ~re reported to the user as an

Ouolicate
ti'le input
have been

segment.
error.

4. pad1

s.

is reserved for future use. The caller must set this to ""b.

Perror_iocb
points to the I/O
can be r•corted
stream_output.

Switch Control Block CIOCS>
to the user. The IOCB

through which an error
must be opened for

6. Pparse_unit_ctl

7.

points to the parse_unit_ctl structure.

Vparse_unit_ctl.1
i~ a named constant whi~h should be used to check
version number of 1.

DRAFT: MAY ee CHANGED 14

for a structure

01/17179 AK92

QUtHy_

This entry point asks the user ciuestions in a unit. The answ·ers are
copied into the Query data base, and the values of the Query_unit.answer minor
structure are set to identify eacn answer. In particular,
query_unit.answer.code is set to QUESTION_ANSWERED for each Question which is
answered.

Each time query_Sask_unit is called, the user is asked all unanswered
questions in the unit. unanswered questions are those whose
query_unit.answer.code value is QUESTION_NOT_ANSWERED. In asking the Question,
this entry point types the brief or long version of the question <depending upon
the setting of ask_unit_ctl.S.brief), then it types the first Question delimiter
defined for the question. The user then types his•answer, followed by any one
of the answer delimiters def1ned for the question. The answer is passed to the
question's validation routine. If invalid, the information string describing
the Question is typed, then the user is asked the question again.

·QUe~y_Sask_unit calls que~y_Sask to asi each question in tile Query_unit.
When a question is answered, query_unit.answer.code is set to QUESTION_ANSWERED
for tnat Question, unless query_Sask returned an nonzero status code tor tnat
Question. In that case1 query_unit.answer.code is set to tnat status code.

query_Sask_unit asks only tnose Questions which have not been previously
answered Ci.e., questions ·with a value of query_unit.answer.code of
QUESTION_NOT_ANSWEREO>. To ask previously answered questions again, use
query_Sfree_answer, or query_Sfree_unit_answers to release the storage occupied
in the query data base by answers supplied by query_Sparse_unit or
query_Sask_unit. Set que~y_unit.answer.code to QUESTION_NOT_ANSWERED for
pre-answered questions <those with a code of QUESTION_PREANSWERED>. When the
answers are no longer needed, call Query_Sfree_unit_answers to free the storage
which the answers occupy in the query data base.

declare query_Sask_unit entry Cptr, ptr, <•> char.<•> varying, ptr,
fixed bin<35>>:

call query_Sask_unit CPq, Pquery_unit, Pask_iocb, Panswer_iocb,
info_prompt, Pask_unit_ctl1 code>:

where:

1 • Pq (Input)
points to the query data base.

2. Pquery_uni t C Input)
points to the unit whose questions are to be asked.

3. info_prompt (Input>
is an array of character stri~gs, any one of which ~he user may type
to ask to be prompted with the information string describing the
question. After prompting, the question is repeated. A single null
string argument may be given to disable the prompting.

DRAFT: MAY SE CHANGED 15 01/17/79 AK92

QUel")'_ Query_

4. Pask_unit_ctl (Input>

s.

points to the ask_unit_ctl structure described under "Notes" below.
This structure contains information used by Query_Sask_unit.

code (Output)
is a standard status code describing the failure
It raay have any value returned by query_sask, or
fol lowing value.

ot Question asking.
it may have the

pointed to by Pask_unit_ctl is not a
1rror_table_sunimolemented_version

the ask_unit_ctl structure
supported version of the
ask_unit_ctl.version to
Query_Sask_unit. See "Notes"

structure. The cal le~ must set
Vask_unit_ctl_1 before calling

below for more information.

The Pask_unit_ctl pointer -argument of Query_Sask_unit
structure shown below. This structure is

point S· to
declared

the
in

Query_ask_unit_ctl_.incl.pl1.

dcl ask_unit_ctl aligned basedCPask_unit_ctl),
fixed bin,

where:

Z version
z s ..

(3 bl" i. f 1-

3 adelimsl
"3 pad 1

2 Pask_iocb
2 Panswer_iiocb

Pask_uni t_ct l
V as k _ uni t _ c t l _ 1

bi t C 1) un al 1

bit(34) unal,
pt r1
gtr1
ptr,
fixed bin int static

ootions<constant> init C1>:

1. version

z. S.brief

is the version number of thi~ structure. It is currently 1. See
the descrioti~n of Vask_unit_ctl_1 below.

when set t~ "1"b indicates that the brief version of the Question is
to be asked, rathe~ than the long version.

3. s.adel ims

4. gad1

when set to "1"b, indicates that answer delimiters are to be printed
following th• Question when it is asked.

is reserved tor future use. The caller must set this to ""b.

5. Paslc_iocb
points to an I/O Switch Control Block CIOC9> through which Questions
are asked. The switch must be open~d for stream_output.

DRAFT: MAY BE CHANGED 16 0111 7 /79 AK92

,,--,.

(,...
\.

Query_ Query_

6.

1.

. a.

Panswer_iocb
points to an 1/0 Switch
user's answers are read.
stream_ input.

Pas k_uni t_ctl

Control Block <IOCB> through which the
The switch must be opened for

points to the ask_unit_ctl structure •

Vask_un;t_ctl_1
is a named constant which should be used to check for a structure
version number of 1.

~1~: Query_Sfree_answer

This entry point frees the storage used for an answer obtained by calling
Query_Sask1 Query_Sask_unit or Query_Sparse_unit.

declare query_Sfree_answer entry Cptr1 ptr1 fixed bin1 ptr1 fixed binC21>1
fixed bin<3S>>:

call Query_Sfree_answer CPQ1 Pquery_unit1 Qid1 Panswer, Lanswer, code>:

where:

1.

2.

3.

Pq (Input)
points to the auery data base.

Pquery·_uni t (Input>

Qid

points to the ciuery_unit stru~ture for the unit containing the
answer to be freed, when the ciuestion was answered by
query_Sask_unit or auery_Sparse_unit. A null pointer should be
given when freeing an answer obtained from query_Sask.

<Input>
is the identifier of the auestion which was asked.

4. Panswer <Input)
points to .the. storage for the answer to be freed.

S. Lanswer C Input)

6. code

is the length <in characters> of the answer to be freed.

<Output>
is a standard status code indicating the failure of the freeing.
may have any of the following values.

I t

error_table_snoentry
the Question defined by qid has not been defined by a call to the
Query_ entry point or does not appear in the query_unit.

error_table_Snot_done
no storage. was found in the query data base for the answer to the
Question.

DRAFT: MAY BE CHANGED 17 01/17179 AK92

QUIH'Y-

This 1ntry point r1leas1s Query data base starage occupied by the -answers
in a _unit. Only unit answers supplied by auery_sask_unit or Query_Sparse_unit
occupy storage. auery_unit.answer.code .is set to QU~STION ANSWERED or
QUESTION.ANSWERED_INCORRECTLY for these Questions. Pr1-answered Questions in
the unit <those with Query_unit.answer.code • QUESTION PREANSWERED> are not
changed. • -

declare auery_Sfree.unit.answers entry (ptr1 ptr1 fixed binC3S>>;

call ~uery_Sfree.unit.answers (PQ1 PquerY.unit1 code>;

where:

1. Pa C Input)
points to the query data base.

2. Pquery.unit <Input)
points to the ~nit whose auestions are to be freed.

3. code <Ou-tput>
is a standard status code desc1ibing the failure of the freeing. It
may have any value returne~ by auery_Sfree.answer.

Ia~: query_Sformat.unit

This entry point writes questions and answers associated with a unit into a
seg•enc in a format which can subsequtntly be parsed by Query.Sparse.unit. The
questions are added to the segment in the order in ~hich they were grouped in
the unit by the query_Sadd.unit call.

For each aues~ion with a value of . auery_unit.answer.code of
QUESTION.ANSWERED. or QUESTION.PREANSWERED1 the long vtrsion of the question h
added to the segment <unless the Sbrief control argument is "1"bl1 followed by
the first question delimiter, the answer, and the first answer delimiter.
Unanswered questions are not put in the segment. Incorrectly answered questions
are p~t in the segment only when format.unit.ctl.S.incorrect.answers is "1"b.

·declare Query.Sformat.unit entry Cptr, ptr1 ptr1 ptr1 fixed binC21>,
fixed oin<21l1 fixed binC35>J;

call auery~Sformat.unit CPq, Pauery_unit1 Pformat.unit.ctl1 Pseg, Lin,
Lout1 code>;

DRAFT: MAY BE CHANGED 18 01/17/79 AK92

I ,..
[.... _ -,....., __

query_ query_

where:

1. p Cl <Input)
points to the query data base.

2. Pquery_uni t C Input)
points to the unit which is to be formatted.

3. Pformat_unit_ctl (Input>

4.

5.

6.

7.

Pseg

Lin

Lout

code

points to the format_unit_ctl structure described under "Notes"
below. This structure contains information used by
query_Sformat_unit.

<Input>
is a pointer to the segment in which the formatted unit is to be
placed. The unit can be appended to the end of existing data by
setting the Lin argument, as described below. If Pseg is a null
pointer, get_temp_segment_ is called to obtain a temporary segment
in which the formatted unit is placed. The caller is then
responsible for calling release_temp_segment_ to release this
segmerit.

(Input)
is the length Cin characters) of data already existing in the
segment. The formatted unit is appended after this data. A value
of 0 should be given to overwrite the segment. This value is
assumed to be 0 it Pseg = nu~l.

(Output>
is the length Cin characters) of the segment after the formatted
unit has been appended.

<Output)
is a standard status code describing the failure of unit formatting.
It may have any value returned by get_temp_segmenc, or one of the
following values.

error_table_Sunimplemented_version
the format_unit_ctl structure pointed to by Pformat_unit_ctl is not
a supported version of the structure. The caller must set
format_unit_ctl.version to Vformat_unit_ctl_1 before calling
query_stormat_unit. See "Notes" below for more inform~tion.

error_table_Scut_ot_bounds
the segment in which the formatted unit was plac~d has overflowed.
Lout is set to indicate how much data is returned, but some data may.
be lost. In particular, the final question/answer pair which was
output may be incomplete.

The Pformat_unit_ctl pointer argument of query_Sformat_unit points to the
structure shown below. This structure is declared in
query_format_unit_ctl_.incl.pl1 •.

DRAFT: MAY BE CHANGED 19 01/17179 AK92

dcl

where:

forniat_uni t_ctl
2 version
2 s,

< 3 brief,
3 incorrect.answers>

Pforniat.uni t.ct l
Vforniat.unit.ctl_1

•

aligned basedCPforniat_unit_ctl),
fixed bin,

bi t < 1 > un al ,
ptr1
fixed bin int static

options<constant> init (1);

query_

1. version
is the version number of this structure. It is currently 1. See
the description of Vformat_unit_ctl_1 below.

2. s.brief
when set to "1"b indicates that the brief version of the Question is
to be used in the formatted output, rather than the long version.

3. s.incorrect_answers
- when set to N1nb indicate~ that incorrectly answered Question/answer

pairs are to be placed in tne formatted· output, in addition to
correctly answered pairs.

4. Pforniat_unit_ctl
points to the format.unit_ctl structure~

S. Vforniat.unit_.ctl.1
is a nanied constant which should be used to check for a structure
version number of 1.

This entry point is called to terminat~ the Query data base when all
questioning is complete.

declare Query.Sterm entry Cptr);

call Query.Sterm CPQ);

where Pq points to the query data base.

bua.1.c

The following program excerpt illustrates the use of several Query_ entry
points.

DRAFT: MAY BE CHANGED 20 01/17/79. AIC92

;-- \ .. __;

)
'-. .../

---r

,,..
\
'·---'

·--. _ _.,·

Query_

census: proc: I* procedure to prompt for census data. •/

dcl

dcl
dcl

%include
dcl

%include
dcl

%include
dcl

Xi nclude
de: l

CLanswer,
(Panswer,

be
answer

Ltemp) fixed binC21),
Pcensus_unit, Pq, Ptemp)

ptr,
fixed binC24>:
char<Lanswer> base~<Panswer>;

DOT (1) char<3> internal static optionsCconstantl
init("\012.\012">,

HT_SP_NL C3>

NL (1)

charC1l internal static optionsCconstant>
i~it("\011", " •, "\012"),

char<1> internal static optionsCconstant>
i n i t C "\ 01 2"),

QM (1) char<Z>· internal static optionsCconstant>
i n i t ("? \ 0 1 2 ..) ;

Query_ask_ct l_;
1 my_ask_ctl automatic like ask_ctl;

Query_ask_unit_ctl_;
1 my_ask_unit_c:tl automatic: like ask_unit_c:tl:

Query_Sformat_unit_ctt_;
1 my_format_unit_ctl automatic like format_unit_ctl;

Query_parse_unit_ctl_;
1 my_Query_parse_unit~ctl

Pq = nulu
Ptemp = null:
on cleanup begin:

automatic like Query_parse_unit_ctl:

I• be prepared to clean up if census
I* taking is aborted.

if Ptemo -= null then
call release_temp_segment_ ("census",

if PQ ·= null then call query_Sterm CPQ);
Ptemp, code);

end:

call query_Sinit <"census", PQ1 code>;
it coae ·= 0 then

I* create query data base.

I* define 4 census ~uestidns.
call query_ CPQ, 1, "Person's Name", "Name",

"Enter name of person being surveyed by the census.",
":", NL1 nothing, "", query_Sany_value, "", code>:

if code ·= 0 then ••••
call Query_ CPq, 21 "Person's Address~, •Address",

•I

"Enter street address, city, state, zip, PO Box or Apt No.",
":", DOT, nothing, "", query_Sany_value, "", code>:

if code~. a then ••••
call Query_ CPq, 3, "Person's Age", "Age",

"Enter person's age in years", ":", HT_SP_NL1 nothing, "",
query_Saf_validation,
"(valid_number &f1 -min 1 -max 1 -integer -from 1 -to 150]",
code>;

if code·= 0 then ••••
call Query_ CPQ, 4, "Person's Occupation", "Occupation",

"Enter occupation from known occupation list.",
":", NL, nothing, "", census_Svalidate_occupation,
">udd>CENSUS>data>lnown_occupations", code>:

if code·= 0 then

DRAFT: MAY BE CHANGED 21 01 /17179 AK92

...
·' ~

query_

call Query_Sadd_unit (PQ1 "1:4", Pcensus_unit1 code);
if code"• O then

I• group Questions 1 thru 4 into a unit •I
I• so we can ask, format and parse all •/
I• at one time. •/'

my_ask_unit_ctl.version = vask.ctt_1;
my_ask_unit_ctl.S • "O"b;
my_ask_unit_ctl.S.adelints a "1"b;
111y_ask_unit_ctl.Pask.iocb • iox_Suser.outgut:
111y_ask.unit_ctl.Panswer_iocb • iox_Suser.ingut:
call query_Sask_unit CPq, Pcensus_unit1 QM,

&ddrC•y_ask.unit_ctt>, code>;
I• ask ~•nsus taker all four questions. •/

my_format_unit_ctl.versio~ ~ Vfor111at_unit_ctl_1:
my_format_unit_ctl.S = "O"b:
my_tormat_unit_ctl.S.incorrect_answers • "1"b;
call auery_Sformat_unit (pq, Pcensus_unit,

addrCmy_tor111at_unit_ctL), Pte111g, Ltemg, code>:
call iox_Sgut_chars Ciox.Suser.outgut1 Ptemc, Ltemp, code>:

I• format/print answers to verify them. •/
I• Since Ptemp is null, formatted output•/
I• is placed in a temp seg. •/

call Query_ (pq, 5, "Edit the answers", "Edit",
"Type ""yes"" or ""y"" to edit census data.

Type ""no"" or ""n"" if data is correct.", "?", HT_SP_NL, n~thing, ••,
query_Slist.validation1 " yes y no n •, code);

if code • • 0 then • ·
I• prepare to ask if user wants
I• to edit the answers.

call hcs_sts_get_gath_name CPtemg, dir, Ldir1 ent~ code);
path • substr<dir111Ldir> 11 ">" 11 enc:

•I .,,

I• get pa~hna111e ?f temp seg to edit it. •/

my_ask_ctl.version • vask_ctl.1:
my_ask_ctl.S • "O"b:
my_ask_otl.S.adelims • "1"b;
my~ask_ctl.Pask_iocb • iox_suser_outgut:
my_ask.ctl.Panswer_iocb • iox.Suser.input:
call query.Sask (pq, s, QM, addr<my_ask_ctl>,

Panswer, Lanswer, code>:
I• Ask ;t answers are to be edited? •/

do.whilt <substr<answer,1 .. 1> '""y");
I• Loop until answers are satisfactory. •i

call Query_Sfree.unit_answers (pq, Pcensus.unit1 code);
;1 code •• 0 then

I• free storage in Query data base •/
I• occupied by current answers. •/

call ed111 (path>:
I• Use edm to edit the answers. •/

call hcs_sscatus_mins CPtemp, O, bc1 code>:
LtemP • divide Cbc1 9, 24, O>;

I• get length of edited answers. •/

DRAFT: MAY BE CHANGED 22 01/17179

, .

~

_)

AK92

•
query_

DRAFT:

my_parse_unit_ctl.version = Vparse_unit_ctl_1;
my_parse_unlt_ctl.S = "O"b;
my_parse_unit_ctl.Perror_locb = iox_suser_output:
call query_Sparse_unlt (Pq, Pcensus_unlt,

addr(my_parse_unit_ctl), Ptemp, Ltemp, code);
/*parse up the edited question/answer
/* pairs. Make sure editing fixed
I• errors rather than creating them.

it code = 0 then doi

•I
•I

*'
call query_Sformat_unit CPq, Pcensus_unit,

addr(my_format_unit_ctl), Ptemp, Q, Ltemp, code);
call iox_Sput_chars Ciox_Suser_output, Ptemp, Ltemp,

code>:
I• reformat and print edited answers. */

call query_Sfree_answer (pq, null, s, Panswer,
Lanswer, code);

if code·= 0 then ••••
call query_Sask .(pq, 5, QM, addr(my_ask_ct l),

?answer, Lanswer, code);
endi I• ask census taker if data is ok now. •/

/* if query_Sparse_unit found errors in •/

end census;

MAY BE CHANGED

I• parsing, it reports the errors. We •/
I• then re-edit without asking user. •/

/* once loop completes, both census
I* taker and ouery_Sparse_unit are
/*happy with the answers.

•I

*' *'

23 01/17/79

query_

AK92

..

:Info: valid_af: valid: 12/28/78 validating active functions

a ct i v e fun c t i on s w h i c h c h e c. k a v a l u e t o d e t e rm i n ..._. This info segment describes
if it is a correctly formed.
include-

object of a given type. These active functions)

vali d_dat e, vdt
valid_number, vnb
valid_pathname, vpn

:Info: valid_word: vw:

valid_picture, vpic
valid_word, vw

12/Z8/78 valid_word, vw

·syntax: Cvw {words} {-control_args}J

Function: validates a set of input words to insure that one or more of the
words is found in a list of acceptable words, or in a named set of
dictionaries. A value of true is returned if the words are valid; false is
returned otherwise.

Arguments:
words

are zero, one or more words to be validated.

Control arguments:
-word STR

··)
•.

specifies that STR is a word, even though it loo~s like a control argument.
-all1 -a

requires that all of the words are valid before a value of true is returned.
A value of true is also returned if no words are given. (This is default.>

-any
reQuires that only one of the words is valid before a value of true is
returned. A value of true is also returned if no words are given.

-maximum N, -max N
requires that no more than N words are given. If more than N are given, a
value of false is returned whether or not the words are valid. (Default =
infinite number of words.>

-minimum N1 -min N

requires that at least N words are given. If fewer than N are given, a
value of false is returned. <Default = O>

-ignore_case
specifics that the case of letters is ignored when comparing the words with
a list of acceptable answers or with dictionary entries •. (Default, case
matters>.

·alphabetic, -aplha
requires that valtd

-number, -nb
words consist of only letters of the alphabet.

requires that valid
-alphanumeric, -alphan

requires that ~alid
•identifier, -id

words

words

consist

consist

only of

only of

digits from a through 9.

alphabetic letters or digits.

requires that valid words meet the constraints imposed upon identifiers in
PL/I source programs.

)
·._J

•

-accept words
,.,-,.- gives a list of acceptable words. At least one word must be given. All of

· the arguments following -accept are treated as part of the Lis~. rh~s
-accept, if present, must be the last control argument.

-dictionary {paths}, -diet {paths}
gives pathnames of one or more dictionaries containing valid words. All
arguments following -diet are treated as pathnames. Thus -dict1 if present,
must be the last control argument and is mutually exclusive with -accept.
If no pathnames are ·given, the dictionaries given in the "dictionary" search
list are used.

Notes: Control arguments in the following lines are mutually exclusive with
other members of the line; only one m~mber oj each line may be used.

-any, -all
-alphabetic, -number, -alphanumeric, -identifier
-accept, -dictionary

Syntax as a command: vw {words} {-control~args}

.,....nfo: valid_pathname: vpn:
\

01/10/79 valid_pathname1 vpn

Syntax: Cvpn {paths} {-control_args}J

Function: validates a set of pathnames to insure that all pathnames are valid.
Pathnames are valid if they are acceptable to the expand_pathname_ subroutine~
and if they meet the existence criteria of the -exists control argument.

Arguments:
paths-

are zero, one or more pathnames to be validated. The star convention is
allowed in final entryname of path.

Control arguments:
-maximum N, -max N

reQuires that no more than N paths are given. If more than N are given, a
value of false is returned whether or not the paths are valid. <Default :
infinite number of paths.>

-minimum N, -min N
reQuires that at least N paths are given. If fewer than N are given, a
value of false is returned. <Default= Q)

-exists type
,,.. checks to see if the P.athnames exist in the storage system as a given type

of entry. Any keyword given under "List of types" below may be given.
-chase

causes link targets to be checked for existence when -exist is given.
-chase allowed only with -exists.

lS'

-all, -a
-r e q u ; r e s t h a t a l l o t t he p at h n a m e s a re v a l i d a n d ex i s t C w h e n - e x i s t s i s ~
used) before a v~lue of true ;s returned. A value of true is also returne)
·if no pathnames are given. CThis is default.>

-any
requi.res that-only one of the pathnames is valid and exists before a value
of true ts returned. A value of true is also returned if no pathnames are
given.

List of types:
branch

segment, multisegment file or directory must exist.
directory, dir

directory mus~ exist.
entry

segment, mul-tisegment tile, directory or link must exist.
f i le

segment or multi segment file must exist.
link

link must exist.

master_directory, mdir
master directory must. exist.

ms f
multisegment file must exist.

nonbranch
link must exist.

nonfile
link or directory must exist.

non link
segment, directory or multisegment file must exist.

no~master_directory, nmdir
directory not a master directory must exist.

nonmsf ·
link, segment or directory must exist.

nonnull_link, nnlink
link must exist to an exist1ng segment, directory or multisegment file.

nonsegment, nonseg
link, multise~ment file or directory must exist.

nonzer~_file1 nzfile
segment or multisegment file must exist, must have nonzero bit count.

nonzero_msf, nzmsf
multisegment file must exist, must have nonzero bit count.

nonzero_segment, nzseg
segment must exist, ~ust have nonzero bit count.

null_link
link must exist, link target must not exist.

segment, seg
segment must exist.·

zero_file,. zfile
segment or multisegment file must exist, must have zero bit count.

_)

zero_msf, zmsf
multisegment file must exist~ must have zero bit count.

zero_segmenf, zseg
~ segment must exist, must have zero bit count.

Notes: If any pathname is not accepted by expand_pathname_, then a·value of
false is returned.

The -any and -all control arguments are mutually exclusive; only one may be
given.

Syntax as a command: vpn {paths} {-control_args)

:Info: valid_date: vdt: 01/10/79 valid_date, vdt

Syntax: Cvdt {dates} {-control_args}J

Function: validates a set of d~te/time specifications to insure that all dates
,,_.. .. e v a l i d a n d t h at on e o r mo r e o f t h e d at e s f a l l s w i t h i n a g i v en t i me p e r i o d ..
\ ~ate/time specifications are valid if they are acceptable to the

convert_date_to_binary_ subroutine.

Ar.guments:
dates

are zero, one or more date/time specifications. If the ~pecification
includes spaces, it must be enclosed in Quotes.

Control arguments:
-from date, -fm date

gives beginning of time. period in which valid dates must fall. The time
period includes the date/time specified by date Cto the nearest
microsecond>. (Default - accept dates from
January 1, 0000 00:00:00.000000 gmt)

-to date
gives end of time period in which valid dates must' fall. The time .period
includes the .date/time specified by date Cto nearest microsecond>. (Default
- accept dates to Dece'mber 31, 9999 23:59:59.9~9999 gmt)

-all, -a

(.__;

reQuires that all of the dates fall within the given time period before a
vatue of true is returned. A value of true is also returned if no dates are
given. CThis--is default.>

. __,.any .
reQuires that only one
before a value of true
dates are given.

of the dates falls within the given time per.iod
is returned. A value of true is also returned if no

:J.7

-maximum N, -max N
requires that no more than N dates are given• If more than N are given,
v a l u e o t ta l s e i s r e t u r,n e d w h e t h e r o r n o t t h e d a t e s a r e v a l ; d • · C D e f a u l t
infinite number of dates.)

-minimum N, -min N
requires that at least N dates are given. If fewer than N are· given, a
value of false is returned. (Default= O>

a
=9'

.J

Notes: if any date is not acceptable to convert_date_to_binary_, then a "value
of false is returned4

Syntax as a command: vdt {dates} <-control_args}

:Info: valid_number: vnb: 01/10/79 valid_number, vnb

Syntax: C v n b {number s} . {- c: on t r o l _a r gs} J

Function: validates character representations of numbers to insure that all
are valid and that one or more·numbers fall within a given range.

Arguments:
numbers

-. '._)

are zero, one or more character string representations of numbers. Integer,
fixed-point or floating-point representations may be given. Numbers are·
assumed to be expressed in base 10, but may be expressed in base 2, 4, 8 or
16 by ending the representation with b1 q, o or x r~spectively. ·For.
floating-point numbers, only the mantissa is expressed in a nondecimal base;
the exponent must be expressed in decimal. This follo~s the PL/I convention
for arithmetic constants.

Control arguments:
-range STR, -rg STR

defines a range in which valid numbers must fall. STR has one of the forms:
lower_bound<X<upper_bound
lower_bound<X

X < u p p e r _ b o u nd
where x is any alphabetic: symbol representing the numbers being validated.
lower_bound and upper_bound are numbers, as described above for number
arguments. The relational operator <= may be used in place of < to specify
inclusive ranges. If STR contains spaces, then it must be enclosed in
quotes. A sample range is: ".314159?6Se+1 < x <= 99".
(Default: -infinity <= X <= infinity}

-fixed
requires that valid numbers be expressed as fixed-point character
representations. A radix point and frac:tional·digits are optional.

-integer
requires that valid numbers be expressed as integer character
rep~esentations. A radix point and fractional d{gits ~re not allowed •

..

•

-float
requires that valid numbers be expressed as floating-point character
representations. A radix point and fractional digits are optional, but an

-,,... exponent is required.

-all, -a
requires that all of the numbers fall within the given range before a value
of true is returned. A value of true is also returned if no numbers are
given. CThis is default.>

-any
requires that only one of the numbers falls within the given range bef~re a
value of true is returned. A value.of true is also returned if no numbers
are given.

-maximum N~ -max N
requires that no more than N numbers are given. If more than N are given, a
value of false is returned whether or not the numbers are valid. (Default =
infinite number of numbers.>

~minimum N, -min N
requires that at least N numbers are given. If fewer than N are given, a
value of false is returned. (Default = O>

Notes: Control arguments in the following lines are mutually exclusive with
other members of the line: only one member of each line may be used.

-fixed, -float, -integer
-all, -any

/,. ntax as a command: vnb {numbers} {-cont rol_args}
\._.

:Info: valid_pic: vpic: 01/10/79 valid_pic, vpic

Syntax: Cvpic pic_spec {values} {-control_args}J

Function: checks to see if one or more values can be edited into a PL/I
numeric or character pictured string. If no values are given, checks to see if
given numeric or ~haracter pictured string is valid.

Arguments:
pi c_sp ec

is a PL/I numeric or character pictured string (picture~.
values

are one or more values to be edited into the picture.
given, the pic~spec itself is checked for validity •

.:'antral arguments:
-value STR, -vl STR

If no values are

specifies that STR is a value to be edited into pic_spec, even though it
looks like a control argument.

-all1 -a
reQuires that all values can be correctly edited into pic_spec before a
value of true is returned. (This is default.> ~

-any)
reQuires that only one value can be correctly edited into pic_spec before a

a value of true is returned.
-maximum N, -max N

reQuires that no more than N values are given. If more than N are given, a
value of false is returned whether or not the values are valid. <Default =
infinite number of values.>

-minimum N, -min N
requires that at least N values are given. If fewer than N are-given, a
value of false is returned. (Default = O>

Notes: ~he -any and -all control arguments are mutually exclusive; only one
may_ be giv~n.

Synta~ as a command: vpic pic_spec {values) C-control_args}

include

et

ec

ec

ec

ec

end

et_macros

Query_et_

data_duplicated,data_dup,
(Duplicate data found.)

data_invalid,data_inv,
(Invalid data found.>

data_missing1data_mis1
<Expected data missing.)

data_unknown~data_unk,

(Unknown data values found.)

