
.. ~-~ (l\7<><~ 9~
MULTICS TECHNICAL BULLETIN MTB- 400

To: Distribution

From: Leroy M. Brown

Date: December 7' 1978

Subject: The Multics Data Dictionary

INTRODUCTION

The purpose of this document is to describe the Multics Data
Dictionary (MDD). It will define the terminology, commands, and
subroutine interface associated with the MDD.

A Data Dictionary is a tool for the management and control of
the data resource of an enterprise. It can also be thought of as
a tool used to list, describe, and locate each data element in
an enterprise. It provides a method to store in a central
location all definitions of data within an enterprise together
with their attributes for the purpose of controlling how data is
created and used. In this manner the total collection of data on
which an enterprise depends is improved. A data dictionary is a
basic tool within the database environment that assists
management, database administrators, analysts, and application
programmers in effectively planning, controlling, and evaluating
the collection of data resources.

Multics Project working documentation. Not to be reproduced
or distributed outside the Multics Project.

MTB-000 page 2

DESCRIPTION

The Multics Data Dictionary (MDD) is a free standing data
dictionary. That is, all input to the dictionary is manual. The
Data Administrator will be responsible for the integrity of the
data. However, MDD is designed so that it could eventually
evolve into an integrated dictionary.

The Data Dictionary Manager (DOM) provides the user access to
the data dictionary via subroutine calls. The subroutines can be
called from any programming language which supports a subroutine
call. The subroutine interface allows the user to store,
retrieve, modify, and delete data in the data dictionary.

The DDM also supports a dictionary query language. The MOD
commands allow the user to perform "ad hoc" queries on the data
dictionary. It also provides for creation and maintenance of the
data dictionary. The MOD provides several reports on entities in
the data dictionary.

BENEFITS

The MOD provides the user with a number of capabilities.
These capabilities can be very beneficial when used effectively
throughout an an enterprise.

The MOD can be used to help reduce unplanned redundancies in
an enterprise. If a programmer needs to name an entity and
doesn't know that a nama exists for that entity, the entity will
be renamed. This creates redundant and inconsistant data in the
enterprise. The MOD provides a centralized data base of all data
names, descriptions, and usage.

In system development MOD provides
components of a project to speak the
components will become more compatible.
the system development process.

the means for all
same language. The

This will save time in

System maintenance time can be kept at a minimum. All the
data names will be documented in the dictionary.

The system can be audited to see where ·various entities are
used. The system can keep track of which entities are used by a
particular entity and which entities use the entity.

DATA ADMINISTRATOR

MTB-000 page 3

The Data Administrator (DA) shall be responsible for
maintaining the data dictionary. All input to the data
dictionary should be channeled through the DA.

The DA sets the classifications and statuses of the entities.
He then sees that the statuses are kept up to date. The DA is
responsible for recovery procedures and backup files for the data
dictionary.

Throughout this document we refer to the user. The DA can be one
or a group of users. The DA is the only user that modifies the
data dictionary.

MTB-000 page 4

ATTRIBUTES

Name

The name attribute is the dictionary term for an entity.
It can have a length of 1 to 32 non-blank characters. The
valid characters are alphabetic, numeric, hyphen, and the
underscore. The first character must be alphabetic.
Though an entity may have many names in an enterprise, it
should only be referred to with one dictionary name. The
dictionary name need not be the name used in the enterprise.
The entity's name must always be given when storing an
entity into the data dictionary.

Description

The description attribute is an English language definition
of the entity. It can be up to 256 characters in length.
Any characters may be used in the description.

The description entity can be searched on keywords.
When using the Where Clause, the kwid (keyword in
description) function is used to refer to keyword strings
in the description of entities in the data dictionary.
Each keyword string can be up to 32 characters in length.

State

The state attribute is the curent usage mode of an entity
It is a 15 character string deTining the status of the

entity. During development an entity could be in a test
state. After the development process is complete and the
entity is being used, this could be considered production
state. The valid states of an entity are defined by the
Data Administrator.

Owner

The owner attribute is the person or group that is
responsible for the entity. The owner is a 1 to 32
character string which may be a person or group name.
When storing a name with embedded blanks, the name must be
enclosed in quotes. The owner of a database would be the
data base administrator.

Loe

,..

,lii.\.

MTB-000
page 5

The loc attribute is the location (pathname, cat/file, etc~)
of the entity. A loc name can be up to 168 characters.
Validator

The validator
procedure for
length.

encode

attribute is
an item. It

the location of a validation
can be up to 168 characters in

The encode attribute is the location of the procedure used
to encode the value of the item entity.

decode

The decode attribute is the location of a procedure used to
decode the values of the item entity.

Data type

The data type attribute
internal -representation of
fixed bin, fixed dee, etc.

File size

The file size attribute is
a file. The file size is
O<=x<=2**71

Access method

is a pl1
a data

description of the
item i.e. character,

the number of words currently in
an integer number x such that:

The Access method attribute indicates the method in which a
file is accessed i.e. sequential, indexed, random, etc.
It is a 1 to 15 character string specifying an access method
type. If the entity is a database the access method is the
DBMS.

Language

The language attribute
a module or program
character string.

Date created

is the type
is written

of programming language
in. It is a 1 to 15

MTB-000
page 6

The date created attribute is the date the entity was
created. -The input is of the forms acceptable by_ the
convert_date_to_binary_ subroutine.

Date modified

The date_modified attribute is the date which the entity was
last updated. The input is of the forms acceptable by the
convert_date_to_binary subroutine.

Class

The class
entities.
belong to
number of

attribute is a name given to an association of
All of the entities associated with payroll

the payroll class. An entity may belong to any
classes. The class is a 1 to 15 character string.

The type attribute is the name of the kind of entity. It
can only be one of the valid entity types as discussed in
the section on entities.

Usage

The usage attribute is the name where an entity's alias name
is used. It is a 1 to 32 character string.

Index flag

The index flag attribute specifies whether or not an item is
an index. When the item entity is the child of a link
relation, the user can denote whether or not it is an index.
If the item is an index, the string "yes" follows the item's
name. If not the string "no" follows the name. The default
is "no".

Alias name

The alias name attribute is the name of the entity as used
in the places specified by the usage attribute.

MTB-000 page 7

SYSTEM COMPONENTS

ENTITIES

Name: item,i

The item entity is the lowest component of data which may be
defined in the data dictionary.

Attributes

(name, desc, state, owner, data_type, val, encode, decode)

Where:

1 • name

2. des c

3. state

4. owner

is the name by which the item is referred to in the
dictionary.

is a description of the item.

is the mode of usage which the item is in.

is the person responsible for maintenance.

5. data_type

6. val

7 • encode

8 . decode

is a pl1 description of the internal representation
of the data item.

is the location of the validation procedure.

is the location of the encoding procedure for the
values of the item.

is the lo cat ion of the decoding procedure for the
item.

Name: group,g

MTB-000
page 8

A group is composed of a set of related items and/or groups.

Attributes

(name, desc, state, owner)

where:

1 • name

2. des c

3. state

4. owner

is the name by which the group is referred to in the
dictionary.

is a description of the group.

is the mode of usage which the group is in.

is the person responsible for maintenance.

Name: record,rec

A record is a collection of groups and/or items that are in some
way related.

Attributes

(name, desc, state, owner)

where:

1 . name

2. des c

3. state

is the name by which the record is referred to in the
dictionary.

is a description of the record.

MTB-000 page 9

is the mode of usage which the record is in.

4. owner
is the person responsible for maintenance.

Name: file,f

A file is a collection of one or more records.

Attributes

(name, desc, state, owner, date_created, date_modifies, loc,
file size, access_method, file type)

where:

1 . name

2. des c

3. state

4. owner

is the name by which the file is referred to in the
dictionary.

is a description of the file.

is the mode of usage which the file is in.

is the person responsible for maintenance .

5. date created
is the date the file was created.

6. date modified
is the date the file was last.updated.

7. loc
is the loc name of the file.

8. file size
is the number of words currently in the file.

9. file_type
is the type of file (sequential, random, etc.).

10. access method

MTB-000

is the method in which
ansi_tape, etc.)

page 10

the file is accessed. (vfile,

Name: database_view,dbv

The database view is the object file produced by a source file
that is a subset of a database. A subset of the database would
be a subschema, data_submodel, etc.

Attributes

(name, desc, state, owner, date_created, date_modified, loc)

where:

1 . name

2. des c

3. state

4. owner

is the name by which the database view is referred to
in the dictionary.

is a description of the database view.

is the mode of usage which the database_view is in.

is the person responsible for maintenance

5. date created
is the date the database view was created.

6. date modified

7. loc

Notes

is the date of the last update to the database view.

is the location of
database view.

the object file for the

Files which are linked to the database view include the source
file that describes a subset of the database and other files
associated with that subset.

,..

MTB-000

Name: database,db

The database entity
physically placed and
system.

Attributes

is a collection of records
retrieved by a data base

page 11

which are
management

(name, desc, state, owner, date_created, date_modified, loc)

where:

1 . name

2. desc

3. state

4. owner

is the name by which the database is referred to in
the diction?ry.

is a description of the database.

is the mode of usage which the database is in.

is the person responsible for maintenance .

5. date created
is the date the database was created.

6. date modified
is the date the database was last updated.

7. loc
is the location of the database.

Notes

Files that are linked to the database entity include the database
source file

and other files associated with the database.

MTB-000 page 12

Name: report,rpt

The report entity is an an output which is to be generated by a
program.

Attributes

(name, desc, state, owner)

where:

1 . name

2. desc

3. state

4 . owner

is the name by which the report is referred to in the
dictionary.

is a description of the report.

is the mode of usage which the report is in.

is the person responsible for maintenance .

Name: module,m

The module is a group of computer instructions that perform a
function that is called by a program.

Attributes

(name, desc, state, owner, date_created, date_modified, loc)

where:

1 . name

MTB-000

2. des c

3. state

4. owner

page 13

is the name by which the module is referred to in the
dictionary.

is a description of the module.

is the mode of usage which the module is in.

is the person responsible for maintenance

5. date created
is the date the module was created.

6. date modified
is the date of the last update to the module.

7. loc
is the loc name of the module.

Name: program,p

The program entity is a
manipulates data.

collection of processable code that

Attributes:

(name, desc, state, owner, date_created, date_modified, loc,
language)

where:

1 . name

2. desc

3 • status

4 • owner

is the name by which the program is referred to in
the data dictionary.

is a description of the program.

is the mode of usage which the program is in.

is the person responsible for maintenance.

MTB-000 page 14

5. date created
is the date the program was written.

6. date modified
is the date the program was last updated.

7. loc
is the loc name of the program.

8. language
is th e sou r c e language which the program is written
in.

Name: system,s

The system is a collection of programs
accomplish a major function.

Attributes

(name, desc, state, owner)

where:

1 . name

and modules that

is the name by which the system is referred to in the
dictionary.

2. desc
is a description of the system.

3. state
is the mode of usage which the system is in.

4. owner
is the person responsible for maintenance .

Name: user,u

The user entity is a person or group which interacts with an
entity.

,...

MTB-000 page 15

Attributes
-
(name, desc)

where:

1 . name
is the name by which the user is referred to in the
dictionary.

2. desc
is a description of the entity.

Notes

The user entity may have any entity linked to it. It is the only
entity which may have all entity types linked to it.

RELATIONS

Name: alias, a

Alias names are various names which rename an entity within an
enterprise.

Attributes

(name, type,usage,alias name)

where:

1 • name
is the dictionary name of the entity.

2. type
is the type of entity.

3 . usage
is where the alias name is used.

4 . alias name
is the name that is used.

MTB-000
page 16

Name: class

The class relation assigns an entity to one or more categories.

Attributes

(name, type, class)

where:

1 • name

2. type

3. class

Name: link

The link
entities.

Attributes

is the dictionary name of the entity.

is the type of entity.

is the name of a department or category to which an
entity belongs.

relation
It links a

allows the user to link entities to other
child entity to an parent entity.

(name1, type1, name2, type2, index flag)

where:

1. name1
is the entity name for the parent entity.

2. name2
is the entity name for the child entity.

3 . type1
is the entity type for the parent entity.

MTB-000 page 17

4. type2
is the entity type for the child.

5. index flag
is a code which denotes an index. It is used when
item is the member entity, otherwise it is ignored.

** See table-1 on following page.

,..

MTB-000

Table-1:

item

group

record

file

database
view

database

module

report

program

system

user

Entity Linkage Table

item

group
I
I

record

file

database
view

database

x x

x x

x

x

x x

x x x x x x

module

report
I
I

program
l system
I I
I I

: user

x

x

x

x x

x x

x x x x

page 18

,.

MTB-000 page 19

SYSTEM FUNCTIONS

WHERE CLAUSE

The modify, delete, and print functions may specify a where
clause. The where clause sets the conditions required to
identify an entity. The where clause consist of terms of the
form attribute name followed by a relational operator followed by
a string or constant. This can be expanded by using parentheses
and the logical operators.

valid relational operators are:

= equal to
= not equal to
> greater than
< less than

>= greater than or equal to
<= less than or equal to

valid logical operators are:

&
I
I

"

logical and
logical or
logical not

The descriptor attribute is denoted by
descriptor). The user can specify
keywords in the descriptor.

the name kwid(keyword in
an entity with certain

** For a list of entities and associated attributes see Table-2.

MTB-000 page 21

COMMAND DESCRIPTION

Name: multics_dd, mdd

The multics dd command is used to enter the data dictionary
facility. -The mdd commands allows retrieval and update
operations to be performed on a data dictionary.

Usage

multics dd

where path is the pathname of an input file with data dictionary
requests.

After the data dictionary facility has been entered, the user can
~ create a data dictionary or open a previously opened data

dictionary. Only one data dictionary may be open to a process.

,.

Multics dd Requests

The remainder of this section contains descriptions and examples
of the multics dd requests.

Request: store, s

This command allows the user to store
Data Dictionary. The entities may be
file of entities may be stored.

Usage

entities into the Multics
stored one at a time or a

store entity_type {string1 ••. stringn} {control_args}

where:

1. entity_type

MTB-000 page 22

is one of the entities as described in the section on
entities.

2. stri ngi
are the values of the attributes to be stored.

3. control_args

Notes

-file path, -f path
A file of the same entities that are to be

stored. The attributes names are not needed, but the
attributes must be in the order of the attributes as
shown for the entity in the section on entities.

-delimiter char, -d char
Separates each attribute of the entity found in

the file by the character char.

The name attribute must always be given. After the user has
given the attributes he wishes to store, the system will prompt
him for the alias, class, and link relations.

If no attributes are given, the system will prompt him for
each attribute and relation. Each attribute that is not given a
value is assigned a blank value before being stored.

Examples:
(system output is underlined)

1. Store the item entity grade into the dictionary.

store i
Name? grade
state? test
desc? "The grade is part of the student's record. It shows his level
of achievement."
owner?
val?
crara type? char (1)
alias?
class? student records

2. Store the record entity employee_rec into the dictionary.

store red employee_rec p "" "Jones"
alias? emprec in fortran employee in programa

MTB-000 page 23

class? accounting payroll benefits
link? -items employee_name"yes" badge_id cost center -group address

Request: print, p

This command allows the user to print some or all of the
attributes of an entity at the terminal.

Usage

print type {attr1 ••• attrn} {where_clause} {control_args}

where:
1 • type

2. attri

is the type of entity or relation.

is the name of the attribute the user desires to
print.

3. where clause
is an expression which specifies the conditions
required to identify the entities the user wishes to
print.

4. control arg

Example:

--output file path, -of path where path is the
pathname of a file to which the output is written.

1. Print the records in production status that have the keyword
ball in the description.

print red -where (state=p) & (kwid=ball)

2. print the name of all records in the dictionary.

print red name

Request: delete, d

This command allows the user to delete an entity or relation from
the dictionary.

MTB-000

Usage

delete type where clause

where

1 . type
is the type of entity or relation.

2. where clause

Notes

is an expression which specifies
required to identify the entities
user wishes to delete.

page 24

the conditions
or relations the

If an entity is deleted, all
entity are also deleted.

relations associated with that

Examples:

Delete all of Pearson's programs.

delete p -where owner=Pearson

Request: modify,m

This command allows the user to modify attributes of an entity or
add relations to an entity.

Usage

modify type {attr1 ... attrn} {rel1 ..• } where clause

where:

1 . type

2. attri

3. rel i

is the type of entity to be modified or relation
added.

is the name of the attributes to be modified.

MTB-000 page 25

is the name of the relation to be added.

4. where clause

Notes

is an expression which
required to identify the
modify.

specifies the conditions
entities the user wishes to

The system will prompt the user for values of the attributes to
be modified. A list of all the entity names will be printed to
ask the user if the modifications are ok before changes are made.

Examples:
(system output is underlined)

Change the owner and the status of the data model entity db1.

modify db owner state -where name=db1;
new owner? Dorsett
new state? p

Request: create_dd,cr

This command allows the user to create a data dictionary.

Usage

er path

Where path is the pathname of the data dictionary.

Request: open, o

This command allows the user to open a data dictionary.

Usage

open path

MTB-000 page 26

where pathname is the pathname of the data dictionary.

Notes

Only one data dictionary may be open to a process.

Request: close, c

This command allows the user to close a previously open data
dictionary.

Usage

close

~equest, q: quit, q

This command allows the user to exit the MDD facility.

Usage:

quit

Request: execute, e

This command allows the user to execute multics commands
from within the MDD facility.

U.sage

execute command

Where command is one of the multics commands.

Reports

MTB-000 page 27

Request: locate,l

This command allows the user to locate the entity types of a
given name.

Usage

locate name

Where name is a data dictionary name.

Example:

Locate the name temp1

locate temp1

Entity type

record
file
database view

Request: write_glossary, wg

The write glossary command will write a report of the entities.
It will give the name, description, status, and classification of
each entity.

Usage

write_glossary {entity_type1 entity_typen} control_arg

where:

1. entity_typei
is the type of entity.

2. control_arg
-output file path, -of path

where path is the pathname for the output.

MTB-000 page 28

Notes

If no type is specified, all types are printed.

Format of a glossary output can be found in appendix A

Request: print_catalog, pc

The list catalog command gives a report on an entity or group of
entities:-

Usage

print_catalog entity_type {-where clause} {name1 ... namen} {control_args.

where:

1. entity type
- is the type of entity.

2. where clause

3. namei

is an expression which specifies the conditions
required to identify the entities the user whiches to
print the catalog of.

is the dictionary name of the entity.

4. control args
--output file path -of path

where path is the name of a file to which the output
is directed.

Information given:

1. Which entities are members
2. Type of member
3. Which entities are owners
4 . type of owners
5. alias names used

MTB-000 page 29

6. where these names are used

Example of a catalog output for employee_rec record:

References
name
address
pay_no

Referenced-by
med insurance
employee_prof ile

Alias
emprec
employee

type
item
group
item

type
file
file

Where
fortran
database

MT.B-000 Page 30

SUBROUTINES

Entry: mdd_$store

This entry allows the user to store data into the data
dictionary.

Usage

declare mdd_$store entry options (variable);

call mdd_$store (type, attr1 , •.. ,attrn, code);

where:

1. type (input) (fixed bin (35))
is a code which specifies the type of entity or
relation to be stored.

2. attri (input) (char(*))
is an attribute peculiar to the type of entity as
decribed in the section on entity type. If relation
type, this is an attribute associated with the
relation type as described in the section on
relations.

3. code (input) (fixed bin (35))
is a standard status code.

Entry: mdd_$retrieve

This entry allows the
dictionary.

Usage

user to retrieve data from the

declare mdd $retrieve entry options (variable);

call mdd $retrieve (type,
code);

attr1 , ... , attrn, where clause,

MTB-000 I
Page 31

where:

1. type (input) (fixed bin (35))

2 . attri

is a code which specifies the type of entity or
relation to be retrieved.

(output) (char(*))
is the attributes peculiar to the type of entity as
described in the section on entity type. If relation
type, this is the attribute associated with the
relation type as described on the section on
relations.

3. where clause (input) (char (*))
is an expression which specifies the conditions
required to identify the entities which the user
desires to access.

4. code (input) (fixed bin (35))
is a standard status code.

Entry: mdd_$locate

This entry allows the user to find the dictionary type of a a
given entity name.

Usage

de c 1 are md d _ $1 o cat e (ch a r (3 2) , ch a r (1 6) , fixed bin (3 5)) ;

call mdd $locate (name, type, code);

where:

1 • name (input)
is the dictionary name the user whiches to locate.

2. type (output)
is the type of entity.

3. code (output)
is a standard status code.

MTB-000
Page 32

Entry: mdd_$modify

This entry allows the user to modify data in the dictionary.

Usage

declare mdd_$modify entry options (variable);

call mdd $modify (type, string1 , ... ,stringn, where_clause,
code);

where:

1. type (input) (fixed bin (35))
is a code which specifies the type of entity or
relation to be modified.

2. attri (input) (char (*))
is the attribute peculiar to the type of entity as
decribed in the section on entity type. If relation
type, this is the attribute associated with the
relation type as described on the section on
relations.

3. where clause (input) (char (*))
is an expression which specifies the conditions
required to identify the entities which the user
desires to access.

4. code (output) (fixed bin (35))
is a standard status code.

Entry: mdd_$delete

This entry
dictionary.

Usage

allows the user to delete data from the

declare mdd $delete entry options (variable);

Page 33
MTB-000

call mdd $delete (type, where clause, code);

where:

1. type (input) (fixed bin (35))
is a code which specifies the type of entity or
relation to be deleted.

2 • where clause (input) (char (*))
is an expression which
required to identify the
desires to access.

3. code (output) (fixed bin (35))
is a standard status code.

Entry: mdd $open

s p e c i f i es th e
entities which

conditions
the user

This entry allows the user to open a data dictionary. Only one
data dictionary may be open for each process.

Usage

declare mdd $open entry (char(168),fixed bin (35), fixed bin
(35)) ;-

call mdd $open (path, code)

where:

1. path (input) (char (168))
is the dictionary's pathname.

2. code (output) (fixed bin (35)
is a standard status code.

Entry: mdd $close

This entry closes a previously opened data dictionary.

Usage

MTB-000 1p age 34

declare rndd $close entry(fixed bin (35));

call rndd $close(code);

Where code is a standard status code.

' MTB-000

Appendix A

DATA DICTIONARY GLOSSARY

ITEMS

name

pay-no

phone no

}ROUPS
name

address

:!ust address

class

accounting
payroll
personnel

class

personnel

accounting

'

state

p

t

state

p

p

-,
Page 35

description

The employee's pay number

The home phone numbers of the employees

description

This is the employee's address. It is the
mailing address for the employee's checks and
other confidential information.
This is the customer's address. It is the billin
address for the customer.

