¥TB-:84 Page 1

Tot Distribution

From: Steve Herbst
Gary Palter
Olin Sibert

Subjectt Installing read_mail and send_mail

Date: 25 July 1978

The read_mail command has been under intensive development
at MIT for several years. It has won popularity as a means of
selectively reading, deleting, saving and forwarding messages.
Honeywell customers have lately been asking for all of these
features, and want to see a version of read_mail installed in the
standard system,

The widely~used read_mail command, availabhle at MIT as
>udd>kPD01>ReadMall>read_mail, was developed by Ken Pogran,
Charlie Davis and Roy Planalp. Other mail reading commands that
have gone intc the proposed design are John Klensin’s check_mail
at MIT and Jim Falksen’s mail_read at Phoenix. All of these
process messages sent by the installed mail command.

An important feature of each of these mail-reading programs
is the ability to peruse message text. Headers have been
inserted in the message to identify the subject (for quick
perusal), the original sender and date-time sent (preserving them
when. the message 1s saved in another mailbox), and the varilous
recipients (for tracing correspondence).

There is a companion program to read_mail called send_mail.
It was developed at MIT by Doug Wells and is available as
>udd>PDU>Palter>!ibrary>o>send_mail. This command automatically
generates header fields that read_mail understands. It also
allows editing of the message at any time before transmission.
The read_mail command calls it +to forward messages and send
replies.

"Together, read_mail and send_mall form a compatible and
flexible mail subsystem. The useful features they provide are
invisible to novice users but are easily activated.

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Fage 2 MTE-384

In summary, these features are?

1. Selective printing, listing, And deleting of messages hy
number, author, date, subject, and substrings of the message
text.

2, Selective saving of messages 1In specified mailboxes and
ASCII segments, with the original author and date-time
preserved in a header.

3. Forwarding and replying tc messages.

4, Editing of messages both before transmission and after
saving.

5. Sending to a list of addresses contained iIn one or more
ASCII segments.

6. Sending a message, as an Aafterthought, to acdditional
destinations not specified on the command line.

The rest of this document contains a summary description of
read_mail and send_mail intended for the Introductory User’s
Guide, an MPM document on each command, and an appendix on ARPA
hetwork mail. ’

Certain of the features described here will not appear 1in
the initial release. These are the & and | logical connectors in
message specifiers and the majority of request functions. The
only request function that will work in the 1initial release 1{s
execute (e),

In the future, mail addresses not otherwise recognized will
be looked up 1In a system-wide mail table. This table will
contain default projects for registered persons, default mailbox
patnnames, and aliases that users establish for themselves. The
mail table will be a secure database 1in which wusers can read
selected fields of all records but can change only thelr own
records., '

MIB-384 Page 3

Introduction

The Multics mail system consists of two commands, read_mail
and send_mail. Their calling sequences and internal request
syntax are very similar.

USING read_mail

A typical use of read_mail is to read your own mall. Type
"read_mail" or Mrdm" at command level and you will either see
"You have no mail." or see "You have N messages." and be
prompted for a read_mail request by the string “read_mail:".

To read mail in another user’s mailbox, type ‘'read_mail
PERSON.,PROJECT" or ‘“read_mall PATHNAME". You can save messages
in auxiliary mailboxes, for example, and read them by snecifying
pathnames to read_mail.

Several of the common read_mail requests are 1list, print,
delete, log and quit.

The 1list request lists all the messages in a summary with
one line per message. The summary line contains the message
number, used in specifying a particular message to read_mall, the
date it was sent, who it was sent by, and the subject of the
message if the sender specified one.

The print, delete, and log requests all take the same set of
arguments. If no arguments are specifled, they operate on the
current message, which 1s automatically set to | upon entry to
read_mail. They accept message numbers, keywords, and match
strings, for example: "print 1 2 3", ¥delete all', and "“log
/paycheck/". The print request prints messages, the delete
request deletes them, and the 1log request saves them in A
mailbox.

The mallbox used by the log request is called your log box.
It nas the name PERSON.sv.mbx, where PERSON is your registered
Person identifier, and resides in your home directory. Since the
log box is different from your mailbox, you will normally not see
logged messages when reading mail.

The command line "“read_mail ~log" reads messages that have
been saved by the log request. This command line behaves like
"read_mail" but operates on your log box 1instead of on vyour
default mailbox.

The quit request exits read_mail and returns to command
level. Before exiting, it completes any changes to the mailbox

that were made by read_mall requests, for example, deleting
messages.

Page 4 MTB-384

A typical dialogue with read_mail follows. The user’s input

is preceded by a ! character.

read_mail
You have 4 messages.

read_mail: ! 1list

Lines Date Time From : Sub ject

l. (3) O07/17/78 13348 rerkins.Kingdom birds

2. (1Y O7/717/778 20:18 Kojak.NYPD Come clean I

3. (2) 077187178 09323 Boop.Bedoop

4, (1) 07718778 11:51 Holmes.YARD Don’t get ex
read_mail: ! print |

1. (3) 07717778 13348 Perkins.Kingdom birds

I found these two Left-Hinged Shrieking Cranes on my front
step this morning and don’t know what to do with them.
ant some birds? .

read_mail: ! deletes print all
2. (1) 077217778 20318 Kojak.NYPD

Come clean I know you’re in there. Where’s start_dump.plli?

3. (2) 07/18/78 09223 Boop.Bedoop

Boody ooby doodoop scoop rezoolyada zoop yoodoo,
bleeby shooby oogie bloop boobyop ocop!

4. (1Y 07718778 11351 Holmes.YARD

Don’t get excited. Kojak doesn’t know what he’s talking about.

read_mail: ! log 3% delete all
All messages have been deleted.
read_mail: ! quit

r 1034 1,342 4.198 153

In this example, the user invokes read_mail, gets a summary

listing the mailbox contents, prints all the messages, logs the
third one, and deletes them all.

MTB-284 . ' Page ©

Another useful feature 1is the retrieve request. Since
read_mail operates on a copy of the mailbox, messajes that have
been deleted with the delete request do not actually get deleted
until the quit request is issued. It is therefore possible to
retrieve a deleted message by number before quitting.

Thus, if you use the delete request and unexpectedly see
BAll messages have been deleted.", you can "retrleve all" to get
back any messages that were deleted by mistake. Message numbers
are constant within a single invocation of read_mail. That is, A

message listed as number 4 remains number 4 until the quit
request is issued.

Messages can be specified several different ways. If no
message 1Is specified, the <current one 1is assumed. Message
specifiers can be numbers, keywords like "all" and ““next", and
regular expressions as in the qedx editor. Some examples are:

print 1:5 Print messages | through 5.

delete | 4 7 Delete messages 1, 4, and 7.

print all Print all messages,

log previous Log the message before the current one.

delete /Frankston/ Delete all messages containing
the string '"Frankston".

Most of the requests and keywords have abbreviations to ease
typing, for example:

kequestss
print pr
delete dl
list ls
log (no abbreviation)
quit q
retrieve rt

Keywordss
all a
previous p
next n
first f
last 1
current C

Page 6

Many other
section on read_mail
like the log
specified, the write
segment,

sends a reply to
particular message.

a

‘The help reques
Type "help request
REQUEST_NAME" to
other help arguments

describe a request,

MTB-384
requests are described 1in the M4PM Commands
. Four more are the save request, which acts

request but saves messages in whatever mailbox is

request, which saves messages in an ASCII

the gedx request, which edits messaqges (for example, to
add extra notes hefore saving tnem),

and the reply request, which

11 the recipients and the senders of a

t prints information on the use of read_mail.
s" to see a list of requests, help
and "help *" for a list of

Summary ¢
read_mail {input-spec} {(-control_args)
wheres
l. input-spec s a single input specifier, either a
PERSON.PROJECT 1identifier or the pathname of a
mailbox. If this argument is not present, read
the wuser’s own mailbox. If it is -log, read the
user’s log box.
2. control_args can be:
-list, -1s print a summary before entering the
request loop.
-print, -pr print the messages before entering the
request loop.
-total, -tt print the number of messages and return,
without accepting requests.
Requestss
cdelete, dl delete specified messages.
help print information about read_mail.
list, 1s print a summary of the messages.
log save messages in the log bhox.
print, pr print messages.
qedx, ax edit messages.
quit, g exit read_mail.
retrieve, rt un-delete messages.
save, SV save messages 1n save boxes.

write, w

write messages to ASCII files.

MTB-384 Page 7

USING send_mail

The companion function to read_mail 1s send_mail. This
command facilitates the composition and transmission of a message
to one or more mailboxes.

To send mail to Greenberg.Multics, you types
send_mail Greenberg.Multics

The‘send_mail command prompts "Subject:* and accepts a single
line, then it prompts "Message:" and accepts the message text.
There are three ways to terminate the text.

A line consisting of a period (".%") sends the message as is.
The character sequence \f invokes the gedx editor on the text
that has been typed. The character sequence \q causes send_mail
to type the prompt "send_mail:" and accept requests from the
terminal.

The log request saves a copy of the message to be sent 1in
the user’s log box. The save request saves a copy in a specified
mailbox whose name ends in .sv.mbx. The write request saves a
copy in an ASCII segment whose name ends in .mail.

The gedx request, like \f in input mode, enters the qedx
editor with a copy of the message text in the buffer. Unlike the
gedx invoked from command level, this one does not require you to
type w (write) to reflect changes in the buffer to the actual
message text. These changes are automatically made in the text
to be sent.

The send request sends the message.

The quit request exits send_mail and returns to command
level. If the message that has been composed has not been sent
anywhere, send_mail asks "Do you wish to send the message?" and
accepts a yes or no reply. If the message has been sent, you are
simply returned to command level.

Page 8 MTB-384

The following is & sample dialog with send_mail. The user’s
input 1s preceded by a ! character,

! send_mall Sibert.PDO Palter.PD0O -log

Subjects ! New Model Biplanes
Message?

are a great improvement over the old traditional 707’s, since
they are stabler and carry many more people.
what do you think??

-— Uld Reliable
\f

I y$s/modal/model/
/model/

we got a big shipment of the new modal biplanes. I think these

we got a big shipment of the new model biplanes. I think these

! s/model/Teflon-coated/

! .2s5/stabler/more stable/
]

¢« q

send_mail: ! send

Mail delivered to your log box.
tail delivered to Sibert.pDO.
Mall delivered to Palter.PDU.

send_mail: ! save biplanes
Mail saved in >udd>AeroProj>SkyKing>biplanes,.sv.mbx

send_mail: ! quit
r 1052 791 4,132 109

[wo other requests are print, which orints the message, and
log, which saves a copy of the message in the same log box used
by read_mail. If the -log control argument is specified on the
send_mail command 1line, the message 'is automatically saved in
your log box when it is sent.

To send a message contained in a file, say:?
send_mail USER.PROJECT =-input_file PATH
To send "carbon conies" to secondary recinients while
sending to one or more primary recipients, use the -cc control

argument on the send_mail command line.

the remaining control arguments and requests are described
under send_mail in the MPM Commands document.

MTB-384

Summary:

Page 9

send_mail {addresses) {-control_args)

where:

1. addresses

are PERSON.PROJECT identifiers and pathnames of
mailboxes, If no address arguments are present,
expect the "send" request to specify a
destination.

2. control_args can bes

-cc ADDRESS

send a carbon copy to ADDRESS.

-input_file PATH, -1if PATH

~-log

send mail contained in a segment.
save a copy of the message in the log box.

-subject STRING, -sj STRING

Requests:

help

log

print, pr
gedx, gx
quit, g
save, SV
send
subject, sj
write, w

specify a subject for the message.

print information about send_mail.
save a copy in the log box.

print the message to be sent.

edit the message to be sent.

exit send_mail.

save a copy of the message.

send the message.

specify a subject string.

save a copy in an ASCII fille.

Page 10 _ MTB-384

MPM:

Names send_mail, sdm

This command transmits a message to one or more recipients
specified by Person.Project identifier or mailbox pathname. It
either accepts an input file or reads text from the terminal,
then elther sends the message or reads requests for editing,
copYing and sending. The message is automatically prefixed by a
header, whose standard fields give the authors, the intended
recipients, and a brief summary of the contents. These fields
are understood by the read_malil command.

Usage

send_mail {(addresses) {-control_args)}

l. addresses are described in detail under Addresses below.

2. control_args can be interspersed with the addresses and are
among the following:

-acknowledge, =-ack

-brief, -bf
—-cc ADDRESSES
~-fill

-from ADDRESSES

-header, -he

-in_reply_to STRING, =irt STRING
-input_file PATH, =-if PATH
-line_length N, =11 N

-log

-long, =-lg

-message_id, -mid
-no_acknowledge, ~nack
-no_fill, -nfi

-no_header, =-nhe

-no_log

-no_me ssage_1id, -nmid
-no_request_loop, -nrqgl
-no_subject, -nsj

-prompt STRING

~-reply_to ADDRESSES, -rpt ADDRESSES
-request_loop, -rql

~save PATH, -sv PATH
~subject STRING, -sj STRING
-terminal_input, -~ti

~to ADDRESSES

MTB-384 Page 11

Notes

Any addresses appearing on the command lihe before the first
-cc, -from, -reply_to, or -to control argument are considered
primary recipients of the message. (See the description of the
-to control argument below.)

The -cc, -from, -reply_to, and ~to control arguments apply
to all subsequent addresses until the next of these control
arguments is given. Any other intervening control arguments do
not affect this interpretation.

For example, the sequence?
addrl -from addr2 addr3 -~cc addr4 -to addr5

causes addr! and addr5 to be processed by -to, addr2 and addr3 to
be processed by ~from, and addr4 to be processed by =-cc.

If conflicting control arguments (for instance, —header and
-no_header) are specified, the last one takes effect.

Addresses

Addresses are used by send_mail to identify both the authors
and the recipients of a message. An address refers either to a
mallbox, by pathname or owner, or to several mailboxes listed in
an ASCII mailing list segment.

The permissible forms of address aret

-mailbox PATH, -mbx PATH
-user PERSON.PROJECT
-mailing_list PATH, -mls PATH
STRING

-mailbox PATH,
-mbx PATH

specifies a mailbox pathname. The .mbx suffix 1s added
to PATH 1f it 1s not present.

~user PERSON,PROJECT

specifies a user as an address. The corresponding
mallbox pathname is:?

>udd>PROJECT>PERSUN>PERSON . mbx

This control argument is useful when a segment named
PERSON.PROJECT.mbx exists in the working directory.

Page 12 MTB-384

-mailing_list PATH,

-mls °PATH '
finds addresses in the mailing list designated by PATH.
The suffix .mls is added to FATH if it is not present.
The mailing 1list 1s an ASCII segment containing one
address per line. Any of the acceptable forms of
address can be used. Note that a malling list can
refer to other mailing lists. (No mailing list is used
twice recursively.)

STRING

is any argument that does not begin with a minus sign
(=), If it contains either of the characters > or <,
it is interpreted ass |

-mailbox STRING

If STRING does not contain » or <, it 1is interpreted
ass:

~user STRING

Addresses can be qualifiéd by the -comment control argument.
The use of -comment does not affect the destination of the
message.,

—-comment STRING'

-cmt STRING
places STRING in the header field associated with the
address (including -mailbox, -user, and -mailing_list)
directly preceding. If this control argument does not
directly follow an address, STRING 1is placed by itself
in the header fileld most recently referred to.
Comments are enclosed 1n parentheses.

For example, the command line:
sdm Palter.PDO -comment "send_mail person"
creates the header fileld:

Tot Palter.PDO (send_mail person)

MiB-384 Page 13

Control Arguments

~acknowledge,

-ack causes send_mail to request that a message be sent to
the user of send_mail by each recipient of the message
after they have read the message. The user’s name Is
placed in the Acknowledge-To header field. (See

Hedders below.)

-brief,
-bf suppresses printing of the messages

Mail delivered to ADDRESS.
when mail is sent.

~cc ADDRESSES :
causes subsequent ADDRESSES to be added as secondary
recipients of the message. Mail 1s sent to these
addresses when the send request 1is 1issued with no
arguments. (See Requests below.) These addresses are
placed in the cc header fileld. (See Headers below,)
There are no secondary recipients by default.

-fill causes the text of the message to be reformatted
according to "fill-on" and "align-left" modes 1in
compose, before sending, entering the -editor, or
entering the request loop. The line length used is 72
unless specifed by the ~line_length control argument.
If the ~-fill control argument is not specified, the
message text 1s left unchanged.

-from ADDRESSES
causes subsequent addresses to be added as authors of
the message. These addresses are placed in the From
header field, overriding the user’s name placed there
by default.

~header,

-he causes a message header to be generated by send_malil.,
This is the default.

~in_reply_to STRING,

-irt STRING
causes STRING to be placed in the In-Reply-To field of
the header. This field is not present by default.

-input_file PATH,

~-1if PATH
sends a message contained in a file., The file is sent
without entering the request loop unless -request_loop
(-rql) is specified. If —input_file is not specified,
the user is prompted for the message text ("Messages"),

Page 14 MTB-384

~line_length N,

-11 N specifies a line length to be used when adjusting text
via -fill or the fill request. The default line length
is 72.

-log causes a copy of the message to be sent to the user’s

log box, the mailbox named PERSON.sv.mbx in the home
directory. The user’s name 1is added to the <c¢c header
field. (See Headers below.) ‘

-long,
-1g causes the '"Mail delivered to ADDRESS" message to be
printed when mail 1s sent. This is the default.

-message_id,

-mid adds a Message-ID field to the header, containing a
unique 1identifier for the message. This field is not
present by default. (See Headers below.)

-no_acknowledge,

-nack prevents send_mail from requesting that each recipient
of the message acknowledge reading the message. This
is the default.

-no_Tfill
-nfi ! causes the message text to not be adjusted as described
above for ~fill. This 1s the default.

-no_header,

~nhe causes the normal message header to not be added to the
me ssage . The only header fields added are those
explicitly requested by control arguments or requests.

-no_loyg specifles that a copy of the message is not to be sent
to the user’s log box. This is the default.

-no_message_1d, ‘
-nmid specifies that a Message-ID field is not to be added to
the header. This is the default.

-no_request_loop,

-nrqgl causes the message to be sent without -entering the
request loop. If an error occurs while sending the
message, the request loop is entered anyway. This is
the default.

~-no_sub ject,
-ns j specifies that a Subject field is not to be added to

the header.

MTB-384 " Page 15

-prompt STRING
causes the request loop to be prompted by STRING(N)$,
where N 1is the recursion level if greater than one,
instead of the default prompt ‘“send_mail(N)s", If
STRING is "*, the user is not prompted.

-reply_to ADDRESSES,

-rt ADDRESSES
causes subsequent addresses to be added to the Reply-To
header field. This field is not present by default.
(See Headers below.)

-request_loop,

-rql causes the request loop to be entered before sending a
file via =input_file (-if) or after "." is typed to
terminate the 1input text. The default is to
automatically send the message and quit.

~-save PATH,

-sv PATH
causes a copy of the message to be sent to the save box
PATH. The suffix .sv.mbx is added to PATH if it is not
present. If the save box does not exist, the user 1is
asked whether to create 1it. The user’s name with a
comment containing the entry name of the save box 1is
added to the cc header field. (See Headers below.)

-subject STRING,

-5 STRING
causes STRING to be placed in the Subject field of the
header. If STRING is " no Subject field is created.
If this control argument is not specified, the user is
asked for a subject with the prompt "Subjects¥®, A
blank response .causes the Subject field to be omitted.

~termiral_input,

-ti causes *the user to be prompted for the message text
("Message:®), The wuser then types the message text
terminated by a line consisting of a period (».,"),
This is the default.

—to ADDRESSES

causes subsequent ADDRESSES to be added as primary
recipients of the message. Addresses not preceded by
any of the above control arguments are also primary
recipients., All of these addresses are placed in the
To header field (see Hgaders below). Mail is sent to
them when the send request is issued with no arguments
(see Requesis below). There are no primary recipients
by default.

Page 16 MTB-384

Headers

Messages created by send_mall begin with a message header.
This header contains information used by the read_mail and
send_mall commands to facilitate listing, saving, forwarding, and
replying to messages.

The message header is separated from the text by one or more
blank lines. It consists of one more more fields. Each field
consists of an identifier, a <coclon, and one or more entries.
Multiple entries are separated by commas. If a field is too long
to fit on one line, it is continued on successive lines. (See
the following example.)

A sample header 1s:

Date? 25 May 1978 14:54-EDT

From: Palter.PDO

Subjectt headers in send_mail

Tos Sibert.PD0, Herbst.Multics,
{mbx >udd>PD0O>Palter>mlsys.sv}

cct Greenberg.Multics

ADDRESSES IN HEADERS

Several header flelds contain lists of addresses. There are
three distinct formats used. for an address in a header field:?

PERSUN.PROJECT
specifies a user identifler. It is generated by the
-user form of address or a STRING address that is not a
mallbox pathname.

{mbx PATH}
specifies a mailbox pathname. The .mbx suffix 1{s not
included in PATH.

{list PATH}
specifies a mailing list pathname. The .mls suffix 1is
not included in PATH. '

In addition, any of the above can be followed by a comment
in parentheses. This comment is supplied by the -comment control
argument. For examples

{list >udd>PDO>Palter>mlsys} (Mail System Developers)

MTB-384

Page 17

HEADER FIELDS

The standard header fields are listed below in the order
they appear. The first two are always present. The others are

optional.

Date

From

Sender

Reply-To

Subject

contains the date and time when the message was first
transmitted, for examples

5 June 1978 23:45-EDT

contains a list of addresses identifying the author(s)
of the message. If -from 1s not spscified and the from
request 1is not 1ssued, this fleld names the user who
invoked send_mail. :

contains the address of the user who actually sent the
me ssage. This field 1s <created only {if the -from
control argument or the from request is used,

contains a list of addresses to which a reply should be
sent. When present, read_mall uses the addresses given
In this field instead of the addresses in the From
field as recipients of a reply request. This fileld 1is
created only if the -reply_to control argument or the
reply_to request is used.

contains a brief description of the contents of the
message. This field 1is present only if a non-null
string is given to the =-subject control argument, a
non-blank 1line 1is given to the "“Subject:" prompt, or
the subject request is 1issued with one or more
arguments.

In-Reply-To

To

contains an ASCII string describing the message to
which this message is a reply. This field is present
only 1if the =-in_reply_to <control arqgument or the
in_reply_to request is used.

contains a 1list of addresses naming the primary
recipients of the message. The send request when
invoked with no arguments sends the message to all of
these addresses. This field is created only if primary
recipients are specified on the command line or 1f the
to request is used.

Page

cC

RS

MTE-384

contains a 1list of addresses naming the secondary
recipients of the message. The send request when
invoked with no arguments sends the message to these
addresses. This fileld 1is created only if the =-cc
control argument or the <¢c¢ request 1is wused, or |if
elither =-save or -loy is specified, in which case a cc
field entry is created for the person creating the
message, with a comment containing the name of the
mailbox being saved into, as int:

Sibert.PDO (mail_system.sv)

Acknowledge-To

This field contains an address to which an
acknowledgement message should be sent after someone
receiving this piece of mail reads it. This field 1s
generated only when the —acknowledge control argument
to send_mail is used.

liessage-ID

contains a unique character string identifier for the
message. This string is generated by send_mail, and is
useful when reading messages to detect multiple copies
of the same message.

fitedistributed-Date
Redistributed-By
Redistributed-To

specify information about the forwarding of the
me ssage. These fields are added only by read_mail’s
forward request.

ﬁ

MTB-384 | | | Page 19

Terminal_ Lnput

Unless —input_file (-if) 1is specified, send_mail prompts
with "lessaget" and reads text from the terminal. Three
character sequences are recognized in terminal input:

A line consisting of a period (".") causes send_mall to send
the message and quit. If the message cannot be sent, send_mail
enters its request loop.

A line containing the characters \f causes send_mail to
enter the gedx editor. The remainder of the line following the
\f is treated as editor requests. When qgedx 1is exited, the

request loop is entered. See the description of the qedx request
below.

A line consisting of the characters \q causes read_mail to
enter its request loop.

Request laop

Requests are prompted by the default string "send_mail:" or
by a user-settable prompt string (see the -prompt control
argument above). If the user has invoked send_mail recursively,
the prompt also <contains & recursion number, for example
“send_mail(3)s", This example 1indicates that there are two
interrupted 1invocations of send_mail In the process as well as
the current one.

The quit request. terminates the request loop and exits
send_mail. Requests are available to edit (qedx or gx), reformat
(fill or fi), and transmit (send) the message. Requests are also
available to modify the header fields.

A request line beginning with "..% is treated as a special
escape used to pass commands directly to the Multics command
processor. Except for removing the leading "..", send_mall does
not process this line in any way before passing it on.

The request line consisting of a single period (",") causes
send_mail to print "send_mail (N) re: SUBJECT", where N is the
current recursion level if greater than one and SUBJECF is the

subject field if one was specified.

The request line consisting of "?" prints a summary of the
avallable send_mail requests and request functions.

Request lines have 1dentical syntax to Multics command lines.
Arguments containing spaces or other command language characters
must be quoted., Iteration is specified by means of parentheses.
Semicolon (3) is used to separate multiple requests on a line.

Page 20 MTB-384

brackets invoke send_mail request functions, which act 1like
Multics active functions but are chosen from an internal set.
These return character strings that are useful within the context
of send_mail. The execute (e) request function can be used to
invoke Multics active functions from within send_mail.

when an error occurs executing a request, the request 1s
aborted and sny other requests on that line are discarded.

The available send_mail requests aret

7
apply {(-CONTROL_ARG} STRINGS,

ap {-CONTROL_ARG) STRINGS
cc {ADDRESSES)
execute STRINGS, e STRINGS
fill (-CONTROL_ARG), fi {(-CONTROL_ARG)
from (ADDRESSES)
help {STRING)}
in_reply_to {(STRINGS), irt {(STRINGS)
list, 1s
log .
me ssage_1id, mid
print {-CONTROL_ARG), pr {-CONTROL_ARG)}
qgedx {-CONTROL_ARG), gx {-CONTROL_ARG)
quit {-CONTROL_ARG), g {(-CONTROL_ARG)
remove {ADDRESSES} (-CONTROL_ARGS)
reply_to (ADDRESSES), rpt (ADDRESSES}
save PATH, sv PATH
send {ADDRESSES) {-CONTROL_ARGS}
subject {STRINGS}, sj {(STRINGS)
to {ADDRESSES)
write PATH

The available request functions are:

cc
execute STRINGS, e STRINGS
from

in_reply_to, irt

me ssage_id, mid

reply_to, rpt

subject, sJ

to

MTB-384

Page 21

REQUEST DESCRIPTIONS

LN

Print a summary of the available send_mall requests.

apply (~CONTROL_ARG) STRINGS,
ap {(~-CONTRUL_ARG} STRINGS

Place the message in a temporary segment in the process
directory. Concatenate STRINGS with intervening spaces
and append the pathname of the temporary segment. Pass
this concatenated command line to the Multics command
processor. When the command 1line has completed,
replace the message 1n send_mall with the contents of
the temporary segment.

If the -header (~he) control argument 1s specified,
operate on the header and the text. If -no_header
(-nhe) or no control argument is specified, operate on
the text only. Control arguments must precede the
STRINGS.

If the message header is changed by the command 1line,
send_mail parses it and updates the lists of primary
and secondary recipients, authors, reply addresses,
etc, ‘

This request can be used to.edit the message with an
arbitrary editor, for example:?

apply teco

cc {ADDRESSES)

If any addresses are specified, add them to the list of
secondary recipients of the message. Mail is sent to
these addresses when a subsequent send request is
issued with no arguments. The addresses are added to
the cc field, which is created if necessary.

If no addresses are specified, 1list the secondary
recipients of the message.

The cc request function returns the list of secondary
recipients, which are separated by commas and spaces.
It returns " if there are no secondary reclpients.

Page 22

MTB-384

execute STRINGS,

¢ STHINGS

Pass the concatenation of STRINGS with iIntervening
spaces to the Multics command processor. This request
is different from ".." because it is first parsed as a
send_mail request line. The send_mail request
interpreter expands send_mail request functions, strips
quotes, and performs 1teration before the line is
passed on to the command processor. Therefore, the
request line:

e iloa_ [subject]

prints the contents of the subject field, whereast
esloa_ [subject]

produces the error messages YYSegment sublject not

found.". The ",." escape should normally be used to
eXxecute Multics command lines from within send_mail.

The execute request function can be used to 1invoke a
Multics active function from within send_mail. The
request lines

save [execute datel

saves the message in a save box Wwhose name 1is the
current date.

fill {-CONTROL_ARG),
t1 {(~CUNTROL_ARG)

Reformat the message text according to ¥fill-on" and
"align-left" modes 1In compose. If the —-line_length N
(=11 N) control argument is specified, wuse N as the
line length. Otherwise, use the value specified to the
-line_length control argument on the send_mail command
line, or 72 if -line_length was not specified.

from (ADDRESSES}

If any addresses are specified, add them to the list of
authors of the message. The addresses are added to the
From field of the header.

If no addresses are specified, list the authors of the
me ssage.

The from request function returns the list of authors,
which are separated by commas and spaces.

NTB-384 Page 23

~ help {(STRING)

Print information about the send_mail command. If
specified, STRING is the name of a send_mall request or
one of the topics "requests", ‘'control_args", and
"changes". If STRING {is ", print the 1list of
avallable send_mail topics. If STRING 1is not
specified, print introductory information on the use of
send_mail followed by a list of topics.

in_reply_to {STRINGS),

irt {STRINGS)
If STRINGS are supplied, replace the In-Reply-To field
of the message (if any) with the concatenation of the
STRINGS with intervening spaces. Otherwise, print the
current In-Reply-To field of the message.

The in_reply_to (irt) request function returns the
In-Reply-To field of the message, or " if there is

none.
list, _ _ :
ls Print a summary of the message in the format produced
by read_mail. (See the read_mall command 1in this
document.)
"- log Save a copy of the meSsage in the wuser’s 1log box

(PERSON.sv.mbx). This request creates the log box {f
it does not already exist.

message_id,

mid Print the Message-ID field of this message, creating
the field if necessary.

The message_id (mid) request function returns the
Message-ID field, creating it if necessary.

print {(-CONTROL_ARG},

pr {-CONTROL_ARG}
Print the message. If the -header (-he) control
argument 1s specified, print the header and the text.
If -no_header (-nhe) or neither 1s specified, print
only the text.

gedx {~CONTROL_ARG},

qx {-CONTROL_ARG)
Invoke the qedx editor to modify the message. If the
-~header (-he) control argument is specified, edit both
the header and the text. If -no_header (-nhe) or
neither 1s specified, edit only the text.

Page 24 MTB-384

The gedx w (write) request is not necessary to reflect
changes in the message to send_mail. An additional
request, Q@ (quit-force), is added to gedx to return to
send_mail without reflecting any changes made during
editing.

If the message header 1is changed during editing,
send_mail parses it when qedx returns and updates the
lists of primary and secondary recipients, authors,
reply addresses, etc. Requests to send_mail (subject,
reply_to, etc.) are recommended over gqedx requests for
changing header fields.

quit (-CONTROL_ARG},

q {(~CONTROL_ARG)
Exit the send_malil command. If the message has not
been sent, or if 1t has been modified by gedx since it
was last sent, and if the -force (-fc) control argument
is not specified, query the user before exiting.

remove {(ADDRESSES) {-CONTROL_ARGS)
At least one ADDRESS or one control argument must be
specified.

Delete from the 1list of primary and/or secondary
recipients any ADDRESSES appearing before the first
-cc, -from, -reply_to, or ~to control argument.

Delete ADDPESSES appearing after -cc, ~from, -reply_to,
or -to from the specified field. Delete the entire
field if the control argument is followed by -all.

If the =-in_reply_to (-irt), -message_id (-mid), or
-subject (-sj) control argument is specified, delete
the appropriate field entirely. The presence of this
class of control argument does not affect the
interaction of ADDRESSES and the other control
arguments.

For example, the request linet

remove -subject Palter.PDD -from CRDavis.CSR
Sibert.PDO ~to Herbst.Multics

deletes the Subject field from the message, removes
Palter.PDO from both the primary and secondary
recipient 1lists, removes Herbst.Multics from the
primary recipient 1list only, and removes CRDavis.CSR
and Sibert.PDO from the list of authors of the message.

MTB-384

f“ reply_to {

Page 25

ADDRESSES) ,

rpt {(ADDRESSES)

save PATH,
sv PATH

If any addresses are specified, add them to the list of
addresses to use when sending a reply to this message.
These addresses are also appended to the Reply~To fleld
of the header, which is created if necessary.

If no addresses are specified, list the addresses to
receive replies.

The reply_to (rpt) request function returns the list of
reply addresses, which are separated by commas and
spaces. It returns "* if there ars no reply addresses.

Save a copy of the message in the indicated save box.
The suffix .sv.mbx 1s added to PATH if not already
oresent. If the save box does not exist, the user 1s
asked whether to create it.

send {(ADDRESSES) {(-CUNTROL_ARGS)

If no arguments are specified, transmit the message to
the primary and secondary recipients.

If any ADDRESSES are specified, transmit the message to
these ADDRESSES without adding them to the header.

The control arguments -log and -save PATH (~sv PATH)
cause a copy of the message to be placed in the log box
and specified save box, respectively.

subject {STRINGS),
sj {STRINGS)

If any STRINGS are specified, replace the Subject field
of the message (if any) with the concatenation of the
STRING with intervening spaces. Otherwise, print the
Subject field of the message.

to {(ADDRESSES)

If any ADDRESSES are specified, add them to the list of
primary reciplents of the message. Mail 1is sent to
these addresses when a subsequent send request 1s
issued with no arguments. The addresses are added to
the To field of the header, which 1is created if
necessary.

If no ADDRESSES are specified, 1list the primary
recipients of the message.

The to request function returns the 1list of primary
recipients, which eare separated by commas and spaces.
It returns “" if there are no primary recipients.

Page 26 MTB-384

write PATH (-CONTROL_ARG)
Append the message complete with header to an ASCII
file, in a format acceptable to the —-input_file option
of read_mail. The suffix .mail 1is added to PATH if it
is not present. The =—-extend and -~truncate (—~tc)
control arguments accepted by the file_output command
can be specified.

NTB-384 - Page 27

hame: read_mail, rdm

This command provides a facility for examining and
manipulating the contents of a mailbox. By default, it operates
only on mail and send_mail messages, ignoring interactive
messages from the send_message command. The read_mall command
enters a loop reading requests from the terminal. These requests
enable the wuser to selectively 1list, print, delete, save,
forward, and reply to messages.

Usage .
read_mail {(input-spec} (-control_args)

where:

1. input-spec Is a single input-spec of one of these formst

STRING

-log

-save PATH

-sv PATH

-malilbox PATH

~-mbx PATH
-input_file PATH

-1f PATH

-user Person.Project

2. control_args are selected from among the following:

-brief, -bf
-header, -he
-interactive_messages, -im

-list

-long, -lg
~no_header, -nhe
~-oWn

-print, -pr
-prompt STRING
-quit

-total, -tt

Fage 21 MTE-384

loput=-specs

An input-spec tells read_mail where to read from. It
specifies either a mailbox or an ASCII file produced by the
read_mail write (w) request. If no input-spec aopears in the
command line, the user’s default mailbox
(>udd>PROJECT>PERSON>PERSON.mbx) 1is read. Since only one source
can be read at a time, it is an error to include more than one
input-spec in the read_mail command line.

-input_file PATH,

-if PATH causes read_mall to read from the ASCII file named
PATH instead of from a mailbox. The .mail suffix
is added to PATH if it is not present. This file
is assumed to have been produced by the read_mail
write (w) request. If read_mail 1s unable to
parse the file, it prints an error message and
exits.

-log causes read_mall to read from the user’s log box
instead of from the user’s mailbox. The log box
is the mailbox PERSON,.sv.mbx in the home
directory. ‘

-mailbox PATH, '

~mbx PFATH causes read_mail to read from the mailbox
specified by PATH 1instead of from the user’s
default mailbox. The .mbx suffix is added to PATH
if it is not present. '

~-save PATH,

-sv PATH causes read._mail to read from the malilbox PATH
instead of from the user’s default mailbox. The
suffix .svembx is added to PATH 1if it is not
present. This control argument is equivalent to
—mailbox PATH,sv"'. :

-user NAME.PROJECT

causes read_mail to read from the specified user’s
mailbox. This control argument 1is wuseful 1if A
segment by the name PERSON.PROJECT exists in the
working directory.

STRING is any argument that does not begin with a minus
sign (=). If it contains either of the characters
> or <, it is the pathname of a mailbox. The .mbx
suffix 1is added if it is not present. If STRING
does not contain > or <, it 1is 1interpreted as
Hemailbox STRING", and if no such mailbox exists,
it is interpreted as "“"-user STRING",

MTB-384 Page 29

Control Arguments

~brief, -bf causes read_mail to be terser when printing
informative messages.

-header, -he causes message headers to be printed by the print
(pr) request to read_mail. (See the section on
Headers in the description of the send_mail
command.) By default, these headers are omitted
and a brief header line is printed, along with the
subject line (if one was present), as 1ins

3. (24) Q77227778 123120 Herbst.Multics subject

—interactive_messages,

-im causes read_mail to operate on interactive
messages as well as mall messages. The default is
to ignore interactive messages.

-list, -1s . prints 'a summary of the messages 1in the mailbox
before entering the request loop.

-long, -lg causes read_mail to print the full text of 1its
informative messages, as opposed to —~brief. This
is the default.

-no_header, :

-nhe causes headers to be omitted when printing
messages via the print (pr) request. Instead, a
brief header line is printed giving the message
number, the sender, and the date-time sent. This
is the default.

-own causes read_mail to operate only on the user’s own
me ssages Instead of on all the messages. This
control argument can be useful when examining
someone else’s mailbox.

-print, -pr prints the messages 1in the mallbox before the
entering the request loop.

-prompt STRING
changes the prompt for read_mail request lines to
STRING(N):, where N 1is the recursion level 1f

greater than one. The default prompt is
"read_mail(N)sn, If STRING is ", the user is not
prompted.,

-quit causes read_mall to exit after performing any

operations specified by control arguments. The
default is to enter the request loop.

Page 30 MTB-384

-total, -tt causes read_mail to print the total number of
messages in the mailbox (including interactive
ones if -interactive_messages 1s specified) and
quit. The request loop is not entered.

Bequests

When 1Invoked, the read_mail command goes into a loop
accepting requests. Requests are available to list, print, edit,
save, forward, and reply to messages In the mallbox. The quit
request terminates the loop and exits read_mail.

A line beginning with ", is treated as a special escape
used to pass commands directly to the Multics command processor.
Except for removing the leading "..", read_mail does not process
the line in any way before passing it on.

A line consisting of a single period (".") causas read_mall
to print "read_mail (N): PATH #M", where N 1s the current
recursion level if greater than one, PATH 1is the pathname of the
mailbox being read, and M 1s the number of the current message or
"{EMPTYI" if all messages have been deleted.

A line consisting of "?" prints & 1list of +the available
read_mall requests.

Kegquest lines have identical syntax to Multics command
lines. Arguments contailning spaces or other command language
characters must be quoted. Iteration is specified by means of
parentheses. Semicolon (3) is used to separate multiple requests
on a line.,

. Brackets invoke read_mail request functions, which act 1like
Multics active functions but are chosen from an internal set.
These return character strings that are useful inside read_mail.
The execute (e) request function can be used to invoke Multics
active functions from within read_mail.

nhen an error occurs executing a request, the request Iis
aborted and any other requests that were present on that line are
discarded.

MTB-384 ' Page 31

MESSAGE SPECIFIERS

Message specifiers refer to messages in the mailbox. They
are composed of message numbers, keywords, the arithmetic
operators + and -, and gedx-type regular expressions for string
matching. Ranges are composed of two expressions separated by
colon (t), for example?

6tlast-3

Message numbers are integers. These are assigned by
read_mail when 1listing or printing the messages in the mailbox.
Messages, including deleted messages, keep their numbers during
an invocation of read_mail. '

The available keywords and their short forms are:?

first, £
last, 1
previous, p
next, n ’
current, ¢
all, a

The tirst four are used llke message numbers, for example:?
|

last-1

The Ycurrent" message is initialized to | and changed by
various requests. The %"all" keyword denotes the range of all
messages, and is equivalent to first:last.

Simple regular expressions are character strings enclosed in
slashes (/). Slashes inside the match string must be preceded by
\c. More complicated expressions can be built from simple ones,
the connector & for logical AND, and the connector | for logical
UR. Any of these expressions can be preceded by a keyword, for
example?

last/artificial/&/intelligence/

which specifies the last message containing both of the strings
"artificial® and "intelligence™.

Because of the syntax of the request language, regular
expressions contalning special characters such as quote, space,
and parenthesis must be enclosed in quotes.

Page 32 MTB-384

Keywords can be used as prefixes for regular expressions.
As prefixes, they mean the first, last, previous, or next message
matching the given regular expression. The message specifier
current/STRING/ is undefined if the <current message does not
matcn STRING. If a regqular expression is not prefixed with a
keyword, the default keyword is M"allw,

Normally, message specifiers refer to messages that have not
been deleted. The '"all" keyword refers to =all undeleted
messages, and Y"first" refers to the first undeleted message. If
the -all control argument is specified to a request, however,
deleted messages are included in the ranges.

If a range 1s specified and -all 1is not specified, there
must be at least one message within the range that has not been
deleted. For instance, if the mailbox orilginally had 20 messages
in it, and 10 and 12 are the only ones left, it 1is nperfectly
valid to say #"print 4:]in, This request prints only message
number 10,

The values used for "last", UVfirst", Pnext", and ‘'oprevious®
also <change depending on whether —-all is specified. If -all is
not specified, they refer only to existing messages. Therefore,
in the example above, the request line "print last-4:1" is the
same as 'print 10 12Y and the request line “print last-431 -all"
is the same as "print 16320 -all%". The last two request lines
print deleted messages.

Some examples of message specifiers ares

] me ssage number |

133 messages | through 3

/foo/ all messages containing the string "foo"
last-3 the third from last message

1-331 the last four messages

next+4 the message five after the current one
p=2 three messages previous

cic+4 the current message and the next four
c+lsl the next through last messages

/a/\/b/ all messages containing either "a" or "b#
"1/ it /% the last message containing * it ®

M1B-384 Page 33

The available read_mail requests are listed below. The
string SPECS stands for message specifiers and ADDRESS stands for
a mail address.

7
apply {(-CONTROL_ARGS} STRINGS,
ap {(—-CONTROL_ARGS)} STRINGS
cc {(ADDRESSES) {(-CONTPOL_ARGS)}
copy {(SPECS) PATH, cp (SPECS} PATH
delete {(SPECS}, dl {(SPECS)
execute STRINGS, e STRINGS
fill {SPECS) ({(~CONTROL_ARG), fi (SPECS) {(~CONTRUI._ARG)
forward SPEC ADDRESSES, fwd SPEC ADDRESSES
from {(ADDRESSES) {(-CONTROL_ARG}
help {(STRING)
in_reply_to (STRINGS) {-CONTROUL_ARG},
irt {STRINGS) {(-CONTROL_ARG)
list (SPECS), ls {SPECS)
log {-CONTRUL_ARG) {SPECS)
message_id (SPECS), mid {SPECS)
print (-CONTROL_ARG) {(SPECS), pr {(-CONTROL_ARG) (SPECS)
gedx {(-CUONTROL_ARG), gx {-CONTROL_ARG)
quit, g
remove {(ADDRESSES}) {(-~CONTROL_ARGS)
reply (SPECS}, rp <{SPECS)
reply_to {ADDRESSES) {(-CONTROL_ARG},
rpt {ADDRESSES} (-CONTROL_ARG)}
retrieve {SPECS), rt {(SPECS)
save {-CONTRUL_ARG) {(SrECS}) PATH,
sv {—-CUNTROL_ARG) {SPECS) PATH
subject (STRINGS) {(~CONTROL_ARGS}),
sj (STRINGS) {(-CUNTROL_ARGS)
to {ADDRESSES) {-CUNTROL_ARGS)
write (SPECS) PATH, w {SPECS} PATH

1he avallable read_mail request functions are:?

cc {(SPEC)

current {(-CONTROL_ARG}, ¢ {(-CONTROL_ARG}
date (SPEC), dt (SPEC)

execute, e

first (-CONTROL_ARG), f {(-~CONTROL_ARG)
from (SPEC)

in_reply_to (SPEC}, irt (SPEC)

last {-CONTROL_ARG), 1 {(-~CONTROL_ARG}
message_id (SPEC), mid (SPEC) .

next {-CONTRUL_ARG), n {~=CONTROL_ARG)
previous {(-CONTROL_ARG}, p {-CONTROL_ARG)
reply_to {(SPEC), rpt (SPEC)

subject (SrPEC}, sj (SFEC)

to {(SPEC)

Page 34 MTRE=384

KEQUEST DESCRIPTIONS

The various read_mail requests are described below. For a
description of headers and header fields, see the section
entitled Headers under the send_mail command in this document.

7 Print a summary of the available read_mail requests.

apply (-CUNTRUL_ARGS} STRINGS,

ap {=CONTROL_AKGS) STRINGS
Place the current message or the single one specified
by -message SPEC (-msg SPEC) in a temporary segment in
the process directory. Concatenate STRINGS with
intervening spaces, and append the pathname of the
temporary segment. Pass this concatenated command line
to the Multics command processor. KWhen the command
line has completed, replace the message with the
contents of the temporary segment.

If the -header (-he) control argument 1is specified,
operate on the header and the text. If —-no_header
(-nhe) or neither 1s specified, operate on the text
only. Control arguments, including -message SPEC (-msg
SPEC), must precede the STRINGS.

cc {(ADDRESSES) {(-CONTROL_ARGS)

Add the specified addresses to the cc header field. If
no addresses are specified, print the contents of the
cc field. The control argument -message SPEC (-msg
SPEC) causes this request +to operate on specified
me ssages instead of on the current message. The remove
request can be used to delete addresses from the
header.

The cc request function must be invoked on a single
message and returns the cc header field, or "% if there
is none.

copy (SFECS) PATH,

cp {SPECS) PATH
Copy the specified messages verbatim into the mailbox
designated by PATHd. The .mbx suffix is added to PATH
if it. is not present. Unlike the save and log
requests, this request does not add Date and From
header fields if they are missing.

current {(-CONTROL_ARG),

¢ {(~CONTROL_AKG) ‘
This request function returns the number of the current
message, or O if the current message has been deleted.
If -all 1is specified, it returns the number of the
current message whether or not that message has been
deleted, or 0 if thare are no messages.

MTB-384 , Page 35

date (SPEC},

dt (SPEC)
This request function must be invoked on a single
message and returns the Date field.

delete {SPECS)

dl {SPECS}
Delete the specified messages. If no messages are
specified, delete the current one. Deleted messages
can be retrieved before exiting read_mail by using the
retrieve (rt) request.

execute STRINGS,

e STRINGS
Pass the <concatenation of STRINGS with intervening
spaces to the Multics command processor. This request
is different from ".." because it is first parsed as a
read_mail request line. The read_mall request
interpreter expands read_mail request functions, strips
quotes, and performs iteration before the 1line . is
passed on to the command processor. Therefore, the
request:

e iloa_ [subject]
prints the contents of the subject fleld, whereas:
.o loa_ [subject]

produces the error messaget "Segment subject not
found.". The ".." escape should normally be used to
execute Multics command lines from within read_malil.

The execute request function can be used to 1invoke a
Multics active function from within read_mail. For
example:*

save [execute datel

saves the current message in a save box whose name 1is
the current date.

fill (SPECS) {(-CONTROL_ARG}

fi (SPECS) (~CONTROL_ARG}
Reformat the text of the specified messages according
to Ufill-on" and "align-left" modes in compose. If no
messages are speclified, reformat the current one. If
~CONTROL_ARG is =line_length N (or =11 N), use N Aas the
%ine length. Otherwlse, use the default line length
2.

* Page 36 MTB-384

tirst (-CONTROL_ARG)},

f {-CUNTRUL_ARG)
This request function returns the number of the first
me ssage that has not been deleted, or O 1f all messages
have been deleted. If -all is specified, it returns
the number of the first message whether or not that
message has been deleted, or O if there are no
messages.

forward SPEC ADDRESSES,

fwd SPEC ADDRESSES
Forward the messages indicated by the single message
specifier to ADDRESSES. This request adds three fields
to the header to record where the message came froms
Redistributed-Date, Redistributed-RBy, and
Redistributed-To. Iteration 1s needed to give more
than one message specifier.

from (ADDRESSES) {~CONT ROL_ARG)
Add the specified addresses to the From header field.
If no addresses are specified, print the contents of
the From fleld. The —-message SPEC (-msg SPEC) control
argument causes this request to operate on specified
messages instead of on the current one.

The from request function must be invoked on a single
message and returns the From header field, or " if
there is none.

help (STRING)

Print information about the read_mail command. If
specified, STRING is the name of a read_mail request or
one of the topics ‘'requests'", “control_args", and
“'changes". If STRING 1is "x", nprint the 1list of
available read_mail topics. If STRING 1is not
specified, print introductory information on the use of
read_mail followed by a list of topics.

in_reply_to (STRINGS) {-CONTROL_ARC),

irt (STRINGS) (-CONTROL_ARG)
If STRINGS are specified, replace the In-Reply-To field
(if any) with the concatenation of STRINGS with
intervening spaces. If no STRINGS are specified, print
the contents of the In-Reply-To field. The -message
SPEC (-msg SPEC) control argument causes this request
to operate on specified messages instead of on the
current message,

The in_reply_to (irt) request function must be 1invoked
on a single message and returns the In—-Reply-To field,
or " if there 1s none.

MTB-384 ' - Page 37

last (-CONTROL_ARG),

1 {-CONTROL_ARG}
This request function returns the number of the last
message that has not been deleted, or O if all messages
have been deleted. If —all is snecified, it returns
the number of the last message whether or not that
message nas been deleted, or O if there ~Are no
me ssages.

list (SPECS),

ls {SPECS}
Print a summary 1line for each of the specified
me ssages, for example:

3. (52) 07/10/78 14120 Sibert.PDO sub ject

log (-CONTROL_ARG) {(SPECS)}

Save the specified messages in the user’s log box, the
mailbox named PERSON.sv.mbx in the home directory. Add
Date and From header fields to those messages that do
not have them. If the control argument -delete (-dl)
is specified, delete the messages after logging them,
If no messages are specified, operate on the current
one.

me ssage_id (SPECS}

mid {(SPECS)
Print the Message—~ID fleld of the specified messages,
creating this fileld if necessary. If no messages are
specified, use the current one.

The message_id (mid) request function must be invoked
on a single message and returns the Message-ID field,
or " if there iIs none.

next {-CONTROL_ARG},

n {-CONTROL_ARG)
This request function returns the number of the next
message that has not been deleted, or 0O if all messages
have been deleted, If -all is specified, it returns
the number of the next message whether or not that
message has been deleted, or O if there is no next
me ssage.

previous {-CUNTROL_ARG),

p {=CONTRUOL_ARG) ‘
This request function returns the number., of the last
previous message that has not bheen deleted, or O if All
messages have Dbeen deleted. If ~all 1s specified, it
returns the number of the previous message whether or
not that message has been deleted, or O if there 1is no
previous message.

Page 38 MTB-384

print (-CONTROL_ARG) {(SPECS)

pr {(-CONTROL_ARG) {SPECS)
Print the specified messages. If the -header (-he)
control argument is specified, print the header and the
text. If -no_header (-nhe) or neither is specified,
print only the text, preceded by a summary line as
printed by the list request.

gedx {(-CONTKUOL_ARG},

gx {-CONTROL_ARG)
Invoke the gedx editor on the current message. If
~CONTROL_ARG is =~header (-he), edit both the header and
the text. If ~-CONTROL_ARG 1is =-no_header (-nhe) or
missing, edit only the message text. The w (write)
request to gedx is not necessary to reflect chanjes to
the actual message. An additional request, Q, 1s added
to gedx to return to read_mail without reflecting any
changes made during editing.

The -message SPEC (-msg SPEC) control argument can be
followed by a message specifier indicating a single
message, in which case the specified message is edited
instead of the current one.

quit,

q
Exit the request loop and the read_mail command.

remove (ADDRESSES) (-CONTROL_ARGS})
At least one ADDRESS or one control argument must be
specified,

Delete ADDRESSES appearing before the first -cc, -from,
-reply_to or -to control argument from both the To and
cc header fields.

Delete ADDRESSES following -c¢, -=from, -reply_to, or
-to from the specified field. Delete the entire field
if the control argument is followed by -all.

If any control argument 1is -in_reply_to (-irt),
-message_id (-mid), or -subject (-sj), delete the
appropriate field entirely.

The -message SPEC (-msg SPEC) control araument causes
this request to operate on specified messages instead
of on the current one.

The reply_to (rot) request function must be invoked on
a single message and returns the Reply-To field, or "®
if there is none.

‘TB-284 Page 39
~ MIB-38

reply {(SPECS) {-CONTROL_ARGS},

rp {SPECS) {-CONTROL_ARGS}
Allow the user to reply to the specified messages. A
header is constructed for each reply, naming the sender
of each message as the primary recipient of the reply
and the reciplents of each message as the secondary
recipients of +the reply. The text of all the replies
is the same. Prompt for "Messaget", accept a message
text ending with ",", and then enter the send_mail
request loop. When the quit request 1is 1{issued to
send_mail, the user is returned to read.mail.

A copy of the reply 1is automatically sent to the user’s
log box, unless =-no_log 1is specified or =-save PATH
causes it to be saved elsewhere.

reply_to {(ADDRESSES)} {-CONTROL_ARG},

rpt {ADDRESSES} {(-~CONTROL_ARG)
Add the specified ADDRESSES to the Reply-To header
field. If no ADDRESSES are specified, print the
contents of the Reply-To field. The -message SPEC
(-msg SPEC) control argument causes this request to
operate on specified messages instead of on the current

r one.

The reply_to (rpt) request function must be invoked on
a single message and returns the Reply-To field, or "t
if there is none.

retrieve {(SPECS)

rt (SPECS)
Cause the specified messages, if deleted, to be
un—-deleted. This action 1s allowed until the request
loop is exited. When the user exits read_mail, Aall
me ssage -~ deleted by the delete (dl) request are
actually deleted from the mailbox and cannot be
retrieved,

save {(-CONTROL_ARG) {(SPECS} PATH,

sv {-CONTROL_ARG) {SPECS) PATH
Save the specified messages in the mailbox designated
by PATH. The suffix .sv.mbx is added to PATH if it is
not present. If the save box does not exist, the user
1s asked whether to create it. Date and From fields
are automatically added to any messages that do not
have them. These fields preserve information about the
origin of the message. If the control argument -delete
(-dl) 1is specifiled, delete the messages after saving

~ them. I[f no messages are specified, operate on the

current one.

Page 40 MTB~384

subject {STRINGS) {(-CONTRUL_ARGS}),

sj (STRINGS) {(-CONTROL_ARGS)}
If STRINGS are supplied, replace the Subject field (if
any) with the concatenation of STRINGS with intervening
spaces. If no STRINGS are specified, print the
contents of the Subject field. The -message SPEC (-msg
SPEC) control argument causes this request to operate
on specified messages instead of on the current one.

The subject (s]J) request function must be invoked on a
single message and returns the Subject field, or " if
there is none.

to (ADDRESSES) {(-CONTROL_ARGS)
Add the specified addresses to the To field. IT no
ADDRESSES are specified, print the contents of the To
field. The -message SPEC (-msg SPEC) control argument
causes thls request to operate on specified messages
instead of on the current one.

The to request function must be 1invoked on a single
message and returns the To field, or """ if there is
none.

write {(SPECS) PATH,

w (SPECS) PATH
Append the specified messages to the ASCII segment
designated by PATH. The suffix .mail is added to PATH
if it 1s not present. If no messages are specified,
write the current one. Add Date and From fields to any
messages that do not have them. The =-extend and
-truncate (-tc) control arguments accepted by the
file_output command can be specified.

MTB-384 ' Pace 41

Appendix A
ARPA Network Usage

This appendix describes the changes and extensions made to
the read_mail and send_mall commands to accommodate messages sent
over the ARFPA Network.

These changes and extensions take effect on any system where
the ARPA Network host number recorded 1in 1installation_parms 1s
not equal to -1. They fall into three categories:

address format
header format
me ssage transmission

Each category is discussed below,.

Addresses

Addresses are extended to include a designation of the ARPA
Network host where the mailbox is located. An address can be
either local or foreign. The =-mailbox and -mailing_list forms of
address are valid only for 1local addresses, although foreign
addresses can be 1included In mailing lists. Foreign addresses
must be of either the -user or the STRING form.

An extension is made to the ~user and STRING forms of local
address. If the mailbox >udd>PROJECT>PERSON>PERSON.mbx cannot be
found, or if the STRING supplied as an address does not contain a
period, the address is checked against the ARPA Network Maller’s
address table. This table is simply- a directory of 1links to
mailboxes. 0Only If this check fails 1is an error message printed:

No mailbox for ADDRESS.

Fage 42 MTB-384

Three new address qualifiers (control arguments) Aare added
to distinguish between local and foreign addresses. Two of these
qualifiers are global 1in that .they apply to all subsequent
addresses in the command or request line. The third 1s local
(like =-comment) and 1is used to temporarily override the global
qualifier presently in force.

~local This global qualifier specifies that all subsequent
addresses on the command or request line are local
addresses. The local system is the machine on which
the user has 1invoked send_mall. This is the default
global qualifier.

-host HUSTID
This global qualifier specifies that all subsequent
addresses on the command or request line are foreign
addresses on the ARPA Network system I1dentified by
HUSTID. HOSTID 1is any string acceptable to the
host_id_ subroutine and can be an ASCII host name, a
decimal number, or a hexadecimal number preceded by Aan
& character. If HOSTID specifies the 1local system,
this qualifier specifies that subsequent addresses are
local addresses.

-at HUSTID

This local qualifier specifies that the 1immediately
preceding address 1is a foreign address on the ARPA
Network host identified by HOSTID. However, if HCSTID
specifies the local system, the immediately preceding
address 1s a local address. This qualifier can appear
either before or after the —-comment qualifier (if any)
associated with this address.

For example, assuming that the local system is MIT-Multics, the
command/request line fragmentt

Palter .,PDC ~host MIT-MC GMP CRD Sibert.PDO
-at MIT-Multics MAIL-USERS

specifies that Palter.PDO and Sibert.PDO are local addresses and
GMP, CRD, and MAIL-USERS are foreign users on the MIT-MC system.

MTB-384 ' Page 43

Header Eormat

The message header format chosen for use by the Multics mail
system is very similar to the standard format for message headers
described in the ARPA Network Protocol Handbook. As a result,
only minor changes need be made to support the ARPA Network.

The message header parsing algorithm used by read_mail must
be extended slightly to handle several differences In the syntax.
These differences are not clearly defined and are not discussed
here.

The only change to the format of message headers produced by
send_mail 1s the format of the address entries 1in the From,
Sender, Reply-To, To, cc, Redistributed-By, and Redistributed-To
IieldS.

The three forms of address hecome:

STRING at HOSTID
"{mbx PATH)" at HOSTID
"{list PATH)" at HOSTID

where HUSTID is the official ARPA Network host name of the system
on which the specified mailbox(es) reside,

All message headers produced by send_mail when using the ARPA
Network contain the "at" phrase. To avoid unnecessary confusion,
the various read_mail and send_mail requests that print the
header or sections of the header do not pnrint the "at" phrase if
HUSTID names the local system.

For example, the sample header shown in the Headers section
of the send_mail document is changed slightly to accommodate the
AHPA Network:

Date: 25 May 1978 14:54-FDT

Froms Palter.PDO at MIT-Multics

Subject: headers and other features of send_mail
Tos Sibert.PDD at MIT-Multics,

Herbst.Multics at MIT~-Multics,
"{mbx >udd>PDU»Palter>mlsys.sv)"
at MIT-Multics,
ccs Greenberg.Multics at MIT-Multics

However, the to request of send_mall or read_mail still
prints:
To: Sibert.PDO, Herbst.Multics,
{mbx >udd>PDO>Palter>mlsys.sv)

Page 44 MTB-384

Message Ir.an;m.is_sinn

The transmission of messages to local addresses 1is not
changed by the addition of ARPA Network suoport. The user’s
process adds the message to the specified mailboxes i1immediately
upon execution of the send request in send_mail or the forward
request in read_mall. '

Due to access and cost considerations, messages heing
transmitted across the ARPA Network may not be delivered by the
user’s process. If a message cannot be sent right away, the
message complete with header is placed into a segment in a pool
directory (>udd>Daemon>send_mail_pool) and this segment is queued
for delivery by the ARPA Network Mailer. The user is informed of
this fact by the message:?

Mall queued for delivery to ADDRESS.

rather than the normal "Mail delivered..." message. When the
ARPA Network Maller succeeds or fails in delivering the messaqge,
it sends a message to the user.

Finally, the ARPA Network Mailer periodically examines its
internal queues and deletes segments that are no longer of use
from the pool.

