
MULTICS TECHNICAL BULLETIN MTB- 319

To: Distribution

From: R. W. Franklin/E. Perry

Date: 06/12/78

Subject: Gateway Processor

The Very Distant Host protocol (VDH) project hai been updated and
replaced by the Gateway (GWP) project. MTB-295 described the VDH
project and much of that information is still valid. That MTB
should be read as background information before preceding with
this MTB.

Multics Project Working documentation. Not to be reproduced or
distributed outside the Multics Project.

1.0 GENERAL OVERVIEW
1. 1 ROUTING
1.2 JUSTIFICATION

2.0 SOFTWARE OVERVIEW
3.0 SOFTWARE CATEGORIES

TABLE OF CONTENTS

3.1 CROSS-ASSEMBLERS/COMPILERS AND SIMULATORS
3.1.1 INTEL PL/M CROSS-COMPILER
3.1.2 INTEL MAC80 CROSS-ASSEMBLER
3.1.3 ZILOG PLZ CROSS-COMPILER
3.1.4 ZILOG CROSS-ASSEMBLER
3.1.5 INTERP/80 SIMULATOR
3.1.6 ANALYZER PROGRAM
3.1.7 EPROM BURNING PROGRAM

3.2 UTILITIES
3.2.1 INDENT/TABBIHG ROUTINES
3.2.2 CONVERSION ROUTINES

3.4 OUR MONITOR ROUTINES
3.4.1 DOWN-LINE LOAD
3.4.2 SWITCH SYSTEMS

3.5 X.25 SOFTWARE
3.5.1 THE TRANSITION TABLE
3.5.2 LINE TABLES
3.5.3 MAIN PROGRAM AND SUBROUTINES
3.5.4 ASSEMBLY LANGUAGE ROUTINES

4.0 PROTOCOLS
4.1 HOST TO/FROM GATEWAY PROCESSOR
4.2 GWP TO/FROM NETWORK OR ANOTHER GWP

5.0 HARDWARE OVERVIEW
6.0 HARDWARE CATEGORIES

6.1 HDLC CONTROLLER
6.2 ABS! CONTROLLER
6.3 OTHER SPECIAL HARDWARE

6.3.1 COUNTER TIMER CHIPS (CTCs)
6.3.2 MULTICS USART

,.... 1. 0 GENERAL OVERVIEW

The VDH project was changed to the Gateway project during
the BCA (Blue Cross Association) proposal bid. At that time
Honeywell submitted a proposal to BCA for:

a. A Multics system
b. A packet-switched network using Level-6/06

minicomputers
c. approximately 111 Plan Node level-6 systems which would

interface to the network.

The packet-switched network (b) was to be sub-contracted to
BBN (Bolt, Beranek, & Newman), the Boston-b~s~d consulting
firm that originally designed and developed ARPANET. Since
1969, BBN has developed five other packet-switched networks
based on ARPANET technology. Their most recent offering
uses the Honeywell Level-6 minicomputer with HDLC and X.25
Level-2 protocols in a packet-switched ARPANET-like network
(see figure 7). This was the product which was bid in the
BCA proposal and to which we would have to interface if we
were awarded the contract.

The switchover to interface to a Level-6 BBN network instead
of interfacing to ARPANET itself via the VDH protocol
produced almost identical capabilities. In addition the
design goals and basic decisions, as described in MTB-295,
have changed very little.

The main differences between the old VDH Project and the new
GWP project are:

a. If we connect a GWP to a network, then it is
new Level-6 packet-switched network and not to
ARPANET. Multics may still interface to
ARPANET via the local/distant host interface
using a Gateway Processor.

to BBN's
the real
the real
· .. without

b. The protocol used to interface to the network from a
Gateway Processor or to interface two Gateway
Processors together is the new International X.25 Level
2 Link Access Protocol (LAP) enveloped in HDLC instead
of the VDH binary synchronous protocol.

c. The packaging of the Gateway Processor has changed.
The Gateway Processor is housed in a free-standing,
off-the-shelf, commercial offering of Mostek with one
(possibly two) special board(s) built by us. This unit
can contain one or two Gateway Processors in one
cabinet and uses the Z80 (Zilog-80) microprocessor
instead of the Intel 8080 microprocessor.

Fig u r es 1 , 2 , and 3 in MT B-2 9 5 are s ti 11 v a 1 id w i th the
"VDH" being replaced by "GWP" (for Gateway Processor)~ Note
also that the GWP is a free-standing unit and does not

connect directly to the IOM except via the ABSI cable.

1. 1 Routing

When Process 1 (P1) in one host (figure 3) sends an ARPANET
message to Process 2 (P2) in another host there is a
destination address placed within each message by P1's host
resident Network Control Program (NCP) prior to its
transmission to the network. When we place a Gateway
Processor next to a host (figures 1A,1B,2) the GWP receives
the message containing this destination address from its
adjacent host.

Note now that there are two possible ways to connect hosts
together via GWPs; either with (figure 2) or without
(figures 1A/1B) a network. When a network (BBN Level 6/06
IMPs) is configured (figure 2) then there is only one HDLC
line on the GWP and it is connected directly to the network.
In this case all messages from the host are routed through
that HDLC line to the network with complete disregard of the
destination address contained in the message. When there is
not a network configured (figures 1A/1B), then there can be
from one to three HDLC lines emanating from a GWP and now
the destination address in the message must be taken into
consideration for routing purposes. There is a destination
table maintained in each GWP configured in a non-network
environment. The destination address in each message from a
host is matched with the up to three destination table
entries to determine which HDLC line is to be used.

1.2 Justification

The main goal has always been to provide an interface which
would allow us to connect foreign hosts together yet retain
the ARPANET functionality. One way of accomplishing this
was to interface a micro on one side to the SPecial
Interface (SPIF) cable (connecting a host to an IMP) using
BBN specification 1822 and on the other side interface to an
ARPANET-like IMP using an HDLC X.25 Level 2 protocol.

Serious consideration was given to the use of a Level 6
minicomputer and even to a H316 minicomputer. Arguments
against their use were overwhelming in light of our goals
and included;

a4 Much higher cost for each Gateway Processor
(Minicomputers just cost more than microcomputers).

b. Requirement of a SPIF interface board to be developed
for the Level 6 minicomputer. This would be a major
item requiring engineering and factory (at a minimum)
involvement with a high probability of an enormous cost
(in excess of $300,000).

c. H316 is an obsolete
development of an HDLC
insurmountable task.

d. See MTB-295 for greater

piece of equipment. The
interface for it might prove an

detail

-(/)
0..
~

0 z -
~

r 0:::
0 s: .--
UJ
z
<(

1-·
:::>
0 :c .---;::
a.
3:
(.!)

m .~
•

(/J

u
1-
...J
::::>. r-----
~ : c...

1U :z
I

LL. -a..
(/J

c...
$
(.!)

~
tr.

•. c...
$
(.!)

u.
c...
(/J

I c... I
I u

(/J I 2 u I

L-----
I-
_J

::::>
~

..
Q::

·o

.

~ •

0
f'
M

(/J

u
I-
_J

::::>
~

1-----·
I
I

. I

u.
c...
(/J

I
I

-
c...
$
(.!)

"'
"'-

u. -c...
(/J

T
I
I
I
I
I

a..
u
z

c...
u
z

L _____

•
•
•

~
0

··-··· ..
(/)

. 0..
Q_

. i'
co
<.O
...J

. '\.·
'1!

.. .
0
UJ
I-
(.)

0.. I
~ :
(.!)

LU
z
z
0 ..
u
0::: .. UJ
I-z -

0..
~
(.!)

en
2
UJ
I-
CJ)

>-en
q-

~
0
I-

·o ,.....
M

a.
::>

Iii ,,

..

C,) .
<(·

> -z
::>

0..
~
(.!)

0..
~
(.!)

C,)
Q
C,)

. '

-·
~
0::
0
3:
I-
UJ
z
0 z
:c
I--:r: . . ·-. .

•

c!J
~

ro.I
,~

.~ .,
{

I I

00

I J I
I
I
I

ti
0 -J: J:

t-

a· :c 0 .Cl) N

~ . __ :c

·' . ,;;

. ,.

. ,, ..

'·, ·-: -:.

1-
cn ~
0 :c :c

··,

;~ '.· ,,, .. ,.

f .. '
.. 1_ •'

t ,,

. ;.,

·~·

~

J ~
~

' ;;
/' v

{/

J
7
6
3

-r>
~

0

V'

\
./

..A"l<'I

J;,
0
\"

..
<'

.,
t

I ..;> ..,,,.. tC rl
2 ..>

I ~ :I

" ~ 0- 0

.....;;J (/.. ;!.
v J lfl _J

~ - .J r6 -11 ~)' 7
CY

~

:I, ~
"" 0

··- - ---------·------'----~ __ _t_ __ I ----

().-

<..)

~

£ .5

~ ..-0
'2 "' ~ ~~.AO

-- ti-

~
4.

v c)
()..-

<..)

6l l

_J \- u

j

I
l
I

(/)

J
7
j

./

(_y

For discussion purposes, Figure 4 above functionally depicts
the Gateway Processor.

2.0 SOFTWARE OVERVIEW

The software for the Gateway Processor has the very basic
function of taking standard ARPANET messages from a local or
distant host interface and routing them out the other side
over one (of up to three) HDLC lines and vice versa; i.e.,
it performs a Gateway function of converting from one
network protocol to another (ARPANET local/distant host
protocol to X.25 Level 2 LAP-A protocol).

It allows a host (operating in an ARPANET network mode) to
communicate with another host (also operating in an ARPANET
network mode) without the ARPANET network itself being
present. The gateway Processor can operate in one of two
modes.

a. It can communicate directly with up to three other
Gateway Processors (i.e. no network at all and up to
three HDLC lines) (see figures 1A, 1B, 8) or

b. it can communicate directly to an ARPA-like network
(CITINET) produced by Bolt, Beranek, and Newman (one
HDLC line to the network/). See figure 2.

The software, resident in a GWP, consists of a finite state
machine implementation of the Internationally approved X.25
Level 2 Link Access Protocol, LAP-A. It consists of:

a. The I/O routines required to service a standard ARPANET
local/distant host interface

b. The I/O routines required to service HDLC lines
c. The finite state machine implementation itself

consisting of a main program, subroutines, transition
table, and line tables

d. A debugging monitor which also allows for connection to
an external host for down-line loading, debugging, etc.

3.0 SOFTWARE CATEGORIES

The Software can be divided into five categories. The first
four of these categories are the tools that have been
assembled and/or developed which we require to produce the
X.25 programs described in category 5.

3.1 Cross-Assemblers/Compilers and Simulators.

This software has been produced by the microprocessor
vendors and is written in the FORTRAN language. They have
been installed and are maintained on Multics System M as
part of an unscheduled effort to build a microprocessor
software factory. This includes a lot of compilers and
assemblers for microprocessors that we are not currently
using and in those cases the software will probably not work
without more effort. This includes the Signetics-2650, the
Motorola-6800, the Fairchild-F8, the RCA-1502, etc
microprocessor software. Those that we are currently using
are the Zilog Z80 and INTEL 8080 microprocessors. The
pertinent software for these microprocessors include the;

3.1.1 INTEL PL/M cross-compiler

PL/M is a high-level, PL1-like programming language,
especially designed to simplify the task of system
programming for the INTEL 8-bit family of microcomputers;
the 8008 and the 8080. It provides an effective software
tool suited to the requirements of the microcomputer system
designer and implementor. It gives the programmer control
of the processor sufficient for the needs of system
programming, but provides automatic control of many specific
processor resources; e.g., registers, memory, and stack. In
consequence, PL/M programs can enjoy a high degree of
portability between systems. It has been designed to
facilitate the use of modern techniques in structured
programming. The cross-compiler version is the older
version in that it is not being extended or updated by INTEL
anymore. The X.25 main program and subroutines of our
software are written in this language. A newer
disk-resident version of the PL/M compiler (not a cross
compiler) exists on INTEL'S disk-resident operating system.
It may prove advantageous to use that version in the future
if it proves to generate better code and becomes available
to us.

3.1.2 INTEL MAC80 cross-assembler

This FORTRAN-written assembly program translates a symbolic
representation of 8080 microcomputer instructions and data
into a form which can be executed by the 8080 microcomputer.

The Macro Assembler accepts 8080 assembly language,
including macro definitions and references, as input, and
produces 8080 object code as output. It is designed to run
on any general-purpose digital computer with sufficient
memory and an integer size of 30 bits or more. It is
written in ANSI Standard FORTRAN (1966), and is designed to
be compatible with most standard systems software with
minimal modifications.

3.1.3 ZILOG PLZ cross-compiler

PLZ is Zilog's PL1-like cross compiler and is not yet in a
running state on System M. Since INTEL 8080 code is a
subset of Zilogs Z80 code we have been able to stay with
PL/M while switching to the Z80 microprocessor from the
INTEL 8080 microprocessor. We will continue to attempt to
get PLZ running and then determine if it is generating
better code or not.

3.1.4 ZILOG cross-assembler

This FORTRAN-written program accepts Zilogs Z80 . asse.ml;>ly.
code and translates it to an object format which matqhes the
INTEL 8080 object format.

3.1.5 INTERP/80 Simulator

INTERP/80 is a FORTRAN IV program which provides a s6ftware
simulation of the INTEL 8080 CPU, along with -execution
monitoring commands to aid program development of an BOBO
program. It accepts machine code produded by the !NTEL.8080
Assembler or PL/M 8080 compiler, along ~ith ~xecution
commands from a time-sharing terminal, card reader, or disk
file. The execution commands allow manipulation -0f the
simulated 8080 memory and CPU registers. In addition·,
operand and instruction breakpoints may be set tQ stop
execution at crucial points in the program. Tra.cing
features are also available which allow the CPU operation to
be monitored. It provides symbolic reference to storage
locations as well as numeric reference in various. number
bases.

3.1.6 ANALYZER Program

The Analyzer program is a Multics PL1 program which accepts
as input a transition table and a set of control arguments
and produces a matrix output for a specified target machine.

3.1.7. EPROM Burning Program

We have loaded a program from paper tape onto Multics which
gives us the capability of down-line loading the EPROM
burning program into the microcomputer so that we may

produce our own EPROMs.

NOTE that the object format created by all four cross
assemblers/compilers listed above are consistent in that the
same loader can load all four.

3.2 Utilities

A hodgepodge of utilities exist on Multics to perform
services such as

3.2.1 Indent/tabbing routines to indent assembler or compiler
source files

3.2.2 Conversion routines to allow the source to be written in
lower case while the compilers and assemblers require upper
case

3.3 Mostek Monitor routines

The Gateway Processor uses a Mostek SDB-80 Software
Development Board. A standard feature of the SDB-80 is a
complete package of development software aids which are
resident in the five MK-34000 2K*8 ROM memories located on
the board. This firmware includes a sophisticated operating
system, debug package, assembler, and text editor. Among the
many features provided are execute and breakpoint commands,
console routines for examining and/or modifying memory and
port locations, object load capability for both absolute and
relocatable object modules, I/0 driver routines for a
variety of standard peripheral devices, and channeled I/O
for user defined peripheral drivers. The presence of this
software in ROM provides instant access to these development
aids, eliminating the time-consuming requirement of loading
the software from some peripheral device into RAM. Another
key feature of having the development aid software in ROM is
that the entire RAM space is available for the user's
programs. This set of software is currently being used in
our debugging mode but the question as to whether it will
remain in the released product has not been addressed.

3.4 Our Monitor Routines

We have developPd a sma11 monitor, tailored after Mosteks
Monitor, to accomplish additional functions we need for a
debugging environment. This monitor allows us to connect to
Multics with the microcomputer between the terminal and the
host (Multic~ e.g.); i.e., the micro is acting as a black
box in a mode transparent to Multics and the user until
certain control characters it is looking for are input. The
monitor provides us with the following functions;

3.4.1 Down-Line Load

When a control-escape character is input, our monitor
assumes that Multics (or whatever host it is connected to)
is beginning to transmit an object file to the terminal;
i.e. we have issued a print of the object file or we ar~ in
an editor and have requested a print. The command to the
host is complete except the carriage return character has·
not yet been typed so the host has not yet begun to transmit
the object file. The ~onitor will issue the carriage return
character to the ho.st, turn off the terminal, and begin
looking for an object format record. Any line beginning
with a colon in column 1 is considered an object format
record and will be loaded into memory by the monitor. If ~
checksum error is encountered the load is aborted by ~endin~
a break to the host, turnirig on the terminal, and exitting
from the down-line load into the transparent mode. Correct
completion ·is a~sumed when a ~ecord with a zero count is
encountered. At that time the terminal is placed back
on-line and the monitor returns to the origtn·a1 t.ra·nsparent
mode. · . ·

3.4.2 Switch Systems

When a control Q character is input, a jump to Mosteks
monitor is executed · making available the Mostek debuggi.ng·
commands. At this time the line connected to Multics ls
ignored; i.e., no characters typed in are transmitted to the
host and any characters sent out from the host a~e ignored
by the micro. It is imperative then to defer Multics
messages prior to doing this so that they will not be lost.
Resumption of the transparent mode is affected· by
transferring back to our monitor.

3.5 X.25 Software

We have develope& programs which accept the ARPANET
local/distant host interface on one side and the X.25 Level
2 Link Access Protocol on the other (s~e figure 4). This
body of software is the heart of the Gateway Processor and
the reason for its existence.

The X.25 Level 2 Link Access Protocol is the LAP-A v~rsion
(2-way Simultaneous Asynchronous Response Mode ARM) as
defined in Appendix A of the Standard Network Access
Protocol (SNAP) specification for Datapac. ·It has been
implemented using a Finite State Machine concept with
machine independent transition tables. This approach lends
itself to an easy upgrade to LAP-B (Asynchronous Balanced
Mode) or Level 3 (virtual call) when/if they are
desired/required. In fact it may be possible to have both
the LAP-A (ARM) and LAP-B CABM) capabilities expressed
within the same transition table. The X.25 program itself
can be broken into four areas; th~ main program and

subroutines, the transition table, the line tables, and the
assembly language routines. There have been two prior
developments similar to this outside of the Multics project
(but in HIS) to generate an X.25 program. Most of our GWP
implementation is based on their work. The following is
background information on those efforts.

The Analyzer program, described in 3.1.6 above, was written
by B.Chittenden to accept as input the Finite State Machine
Transition Tables (as defined by R.Hay) and produce matrix
tables as output dependant upon the specified target
machine. An implementation effort on the Level-6
minicomputer was then undertaken by R.Hay, R.Crawford, and
S.Ramsdell to prove the validity of the tables and the
concept. They developed a Main Program, Subroutines, and a
set of HDLC routines and debugged them using a transition
table. That transition t?ble had been run through the
Analyzer program specifying the Level-6 as the target
machine. After a minimum of testing a comparable effort was
begun on a Multics PL1 version. It was written by
K.Marietta and was checked out using TTY simulated I/O and a
transition table that had been run through the Analyzer
specifying Multics as the target machine. That program is
currently being tested by having one line table drive
another and vice-versa and is also being modelled (using
SIMSCRIPT techniques) by an outside contractual consultant.
The GWP was then begun using all of the above as its base.
The GWP software. has been produced by implementing a Finite
State Machine, event-driven, set of programs. The
components of the X.25 software can be placed into 4
categories which are;

3.5.1 The Transition Table

The Transition Table is where the definition of the X.25
Level 2 Link Access Protocol is expressed. The protocol is
defined by a set of machine independent states, inputs, and
outputs. All possible combinations are described for
states, inputs, and outputs thus the term Finite State
Machine. The Transition Table, together with parameter
options, is run through the ANALYZER program on Multics to
produce a two-dimensional array specific for the INTEL 8080
microcomputer. This array, indexed by state and input,
yields a new state and action routine(s) as output. The
Transition Table, together with the state diagrams,
completely documPnt the X.25 Level 2 Link Access Protocol.
The Analyzer program accepts options such as:

a. Range of input parameters
b. Word size in bits of target machine (e.g. 8 bits).
c. Language of target machine (.e.g. PL/M).

3.5.2 Line Tables

Each possible (up to three in the initial GWP hardware
implementation) HDLC X.25 line keeps its particular data in
a line table dedicated to line dependent information. Items
such as current state, flagi, X.25 sequence numbers, timers,
input/output queue pointers, supervisory frame buffers, etc
are maintained in each table. Basically a line table is
analagous to an MCS TIB for a particular line. There are
approximately 100 bytes of information in a line table.

3.5.3 Main Program and Subroutines.

The main program and subroutines are written in PL/M and
comprise the dispatcher or executive. The Main Program
initializes everything and, once started, is event-driven.
It contains all of the interfaces to the assembly written
routines for I/O, debug, get events, etc., and manages the
queues and buffer space. -There are currently 95 possible
actions which invoke one or more of 60 subroutines. Events
which drive the main program are;

a. Frame received (Information, Supervisory, or
unnumbered)

b. Output Complete - i.e. a line, in transmission, has
just finished transmitting a complete message.

c. Output Available - The GWP has just received a complete
message from the Host computer.

d. Timeouts - There is a timer associated with each HDLC
line which is set and reset as defined in the X.25
protocol definition. The timer is continuously
running; i.e. once it is stopped due to an expected
event occurring it is immediately restarted. The
single timer for each line can thus be used for both
timeout and idle timer purposes. One Counter Timer
Component (CTC) chip is used for each HDLC line. The
chip itself has four 8-bit counters which can be used
separately or in combination. One channel of the CTC
is used to control the baud rate of the HDLC chip while
the other three channels are tied together to provide a
timer with a maximum time period of 6.83 * 256 seconds
using a 2.458 Mhz system clock. The time period is
variable depending on the baud rate of the HDLC chip,
the protocol, and what exactly is being done at the
time. Normal T1 timeout periods are set to slightly
greater than three times the duration of time it takes
to transmit the longest length message over that HDLC
line.

e. Disconnects

Each event that is passed to the main program states; what
type of event this is, the line table to which it applies,
and other pertinent information.

3.5.4 Assembly Routines

The assembly routines are written in the Z80 microprocessor
machine language and consist of the I/O, event-queue, and
interrupt routines.

4.0 PROTOCOLS

The GWP takes standard ARPANET messages from a host computer
and transmits them to another GWP or to a BBN network. The
protocol used to transmit the standard ARPANET message is
different on each side of the GWP.

An ARPANET message can vary in length from 32 up to 8095
bits; the first 32 of which are control bits called the
leader. The leader is also used for sending control
messages between the host and its IMP. The remainder of the
message is the data, or the text.

4.1 Host to/from Gateway Processor

The protocol accepted by the GWP from the host local/distant
cable is defined by BBN specification 1822. The BBN 1822
specification defines the asynchronous bit serial handshake
protocol implemented by all ARPANET SPecial Interface (SPIF)
units. The "information" transmitted via this protocol
consists of standard ARPANET local/distant host messages.

4.2 GWP to/from Network or another GWP

The protocol used to interface a GWP to a BBN Network or to
another GWP is as shown in Figure 5.

'';" ,(=\
_: -·-··-~·--·-1

-- -- ------- --- I ~- -1
c_ I f\ R ~T\~~~ \"\t. SS AGE ~ R. c:_ I \: ·.

I •.. -\.

where:
F = HDLC flag = 7E (hex)
A = HDLC address byte (used in X.25 protocol)
C = HDLC _ control byte. Used for X.25 Level-2 LAP

information.
ARPANET message = Regular Message (up to 8160 bits)
CRC = 16 bit (2 byte) SDLC polyhomial X(16) + X(12) + X(5)

+ 1 •

This is the Internationally approved X.25 Level 2 Link
Access Protocol (LAP-A) enveloped in HDLC for transparency
at the bit level. X.25 Level 2 LAP-A is defined to be a
2-way simultaneous, asynchronous response mode (ARM)
protocol.

5.0 HARDWARE OVERVIEW

Figure 6 is a top view of a dual Gateway Processor cabinet.
It contains a four board Gateway processor in each half of
the cabinet. The cabinet, power supply, SDB-80, and RIO
boards are standard, off-the-shelf Mostek products. The
HDLC Controller and the ABS! Controller are on prototype
boards which contain the hardware shaded in figure 4 (not
the UART which is on the SDB-80 board itself). The first
GWPs are designed and produced by the Gateway Project.

The RIO board is not available until the end of 1978 and
will contain 16K of EPROM and a USART. If it is not
available in time then we will have to (on a temporary
basis) functionally produce it ourselves. The point to be
made here is that all hardware is off-the-shelf, standard
commercial products except for the two controller boards
produced by us.

The stand-alone Gateway Processor connects to another GWP or
an X.25 network via a standard 25-pin EIA RS-232-C cable.
Each Gateway can provide up to three such connections if
configured in a non-network environment but only one such
connection if configured to a BBN network.

Each Gateway also connects to the IMP side of one special
interface (SPIF) cable. The other end of the SPIF cable
connects to any computer vendor's ARPANET local or distant
host interface. For Honeywell Series 60 systems the cable
connects to an ABS! unit, which is itself cabled to two
common peripheral channels in an !OM. The ABS! unit and
ABS! SPIF cables are commercially available from private
vendors.

The Gateway provides either a local or distant host
interface to an ARPANET Host. A panel switch on the
Gateway selects the desired interface. Certain other panel
controls may prove desirable as the prototype Gateway is
developed. These include switches to force a "Host Down" or
"IMP Down" condition.

0
0.-.

ol
l.IJ

3

6.0 HARDWARE CATEGORIES

6.1 HDLC CONTROLLER

Currently the HDLC Controller consists of one transmitter
and one receiver with the necessary EIA RS-232-C compatible
interface signals to comply with CCITT Recommendation
X.21bis (physical level of X.25). The logical HDLC
interface is managed by a software programmable Zilog or
Mostek SIO chip. Channel A of the SIO (at I/0 Ports 24 and
25, hex) serves as the receiver. Channel B (at Ports 26 and
27, hex) serves as the transmitter. The SIO manages flag
generation and detection, automatic zero-insertion and
deletion, and automatic CRC generation and checking. The
EIA RS-232-C Data Carrier Detect (DCD) and Clear To Send
(CTS) signals are monitored continuously. Changes of state
on these signal lines can cause interrupts. Programming
techniques and pertinent electrical characteristiQs are
described in Zilog's "SIO Product Specification, March
1978."

Two direct memory access (OMA) chips permit CPU-independent
data transfer. Programming techniques are described in
Zilog's "DMA Product Specification." The "ready" inputs of
the DMA's should be programmed as "active low." The
receiver OMA is located at (hex) Port 34, the transmitter
DMA at port 30.

A Counter Timer Component (CTC) generates the baud rate for
both the SIO receiver and transmitter. Its I/O Port is 2C
(hexadecimal). Programming specifications are available in
the Mostek 3882 data sheet. The ZC/TO output of channel
zero is divided by two and applied to the SIO baud-rate
clock input. The system clock runs at 2.458 Mhz. Thus
proper selection of the pre-scaler value and the block count
will determine most any standard baud rate. The baud rates
for X.25 transmission are totally under software control.
For MR7.0 any standard rate up to 76.8 kBaud can be used in
the X.25 network. Higher rates can be achieved through
additional hardware. The table below illustrates the range
of transmission rates and how they are achieved.

Baud Rate CTC Mode Pre-scaler Block Count
300 Counter +16 256

1200 Counter +16 64
4800 Counter +16 16
9600 Counter +16 8

19.2k Counter +16 4
38.4k Counter +16 2
56.0k Timer 22
76.8k Counter +16 1

6.2.0 ABS! CONTROLLER

The Gateway Processor (GWP) Asynchronous Bit-Serial
Interface (ABS!) controller is logically split into two
elements, a receiver and transmitter. Serial data from the
host enters the GWP through an input shift register in the
receiver. An output shift register in the transmitter sends
serial data to the Host.

The ABS! controller has three entities that are under
program control: (1) an 8-bit transmitter data buffer,
(2) an 8-bit receiver data buffer, and (3) an 8-bit
command/status re~ister. In addition, a Counter Timer
Component (CTC) provides interrupt prioritization and
interrupt vectors. Data and the command/status registers
and the CTC are accessed by the GWP CPU as I/O ports. Port
channel numbers are shown below:

Logical Port Physical Port No. (hex)
ABS I com ma nd Is ta t_u_s........_ __ ---=1-=0,....--------
ABS I receiver data 14
ABS! transmitter data 18
ABS! CTC 1C-1F

The ABS! discipline controls the incoming data rate so that
receiver overruns cannot occur. Both the receiver and
transmitter have a shift register and a data buffer register
to increase data throughput.

6.2.1 Receiver Operation

Following the receipt of the Enable ABS! Receiver command
the receiver raises the "Ready for Next Host Bit" signal on
the GWP-Host interface. Serial data bits sent from the Host
are shifted into the receiver's input shift register. When
8 bits have been received they are loaded into the receiver
data buffer, and: (1) the "Receiver Data Available" status
bit is set, (2) the receiver's ready line goes low, and
(3) an interrupt is signalled (only if it is enabled).

When the receiver data port is read (by an I/0 input
instruction, o~ ~MA read) the "Data Available" status bit is
reset, and the ready line goes high. Upon receipt of the
next 8 bits the receiver will not accept any more data from
the Host if the receiver buffer is full (has not been read).
If (or when) the receiver buffer is empty data is again
loaded into the receiver buffer from the input register.
The cycle continues to repeat until the "Last Host Bit"
signal appears on the interface.

When the last bit of the message is shifted into the input
register the receiver performs any necessary padding to
produce a full 8-bit byte. One additional byte is generated
if necessary (see BBN Report #1822). As the final byte of
the message (including padding bytes) is loaded into the
receiver buffer the "End of Message" (EOM condition) status
bit is set. This bit will not be reset until the receiver
is enabled again. As usual, the "Data Available" status bit
is also set when the last mes~age byte is loaded into the
receiver buffer. However, this bit is reset when the data
port is read. If the EOM interrupts are enabled, an
interrupt is signalled. The receiver enters the disabled
state, and will keep the "Ready for Next Host Bit" interface
signal low un-til enabled.

6.2.2 Transmitter Operation

Once enabled, the ABS! transmitter attempts to transmit to
the host all data words output to the transmitter data port.
No data should be output until the transmitter is enabled.
During the transmission of the last bit (lsb) of the last
message byte the ABS! transmitter raises the "Last Imp Bit"
signal on the Host-GWP interface. This signals the host
that the message is complete.

The transmitter has one buffer register that loads an output
shift register. A data word output to the transmitter data
port is loaded into this transmitter buffer, causing the
"Transmitter Buffer Empty" status bit to reset, and the
transmitter ready line to go high. If the shift register is
empty the data word is immediately transferred into it.

The movement of data from the buffer to the shift register
causes: (1) the "Transmitter Buffer Empty" status bit to be
set, (2) the ready line to go low, and (3) an interrupt to
be signalled (if enabled). If the transmitter has been
given the "Last Byte Follows" command before a data byte is
output, only the first event (1) occurs. If.the shift
register is not empty the data word remains in the buffer
until the shift register empties. The CPU reads the status
register to prevent overwriting this data.

The transmitter detects the last byte of the message by
explicit notification from the GWP CPU. The CPU sends the
"Last Byte Follows" command to the command/status port prior
to the output of the last message byte to the transmitter
data port. When the last byte has been transmitted through
the output shift register the "End of Message" (EOM) status
bit is set, indicating that the transmitter is disabled and
will not acknowledge the "Ready for Next IMP bit" signal
from the host. The EOM bit remains set until the
transmitter is enabled. The transmitter should not be
enabled for the next message transmission until the

EOM/Disabled status bit is set at the end of the current
message. Note that all messages transmitted by the ABS!
transmitter must contain an integer number of 8-bit bytes.
No bit padding is performed by the transmitter.

6.2.3 Status

Status information available at the command/status port is
shown below. Most of the status bits are self-explanatory.
Note that the bits indicating the EOM condition also
indicate the disabled state. Both receiver and transmitter
EOM status bits are set by a GWP power-up or GWP reset. The
"Disable ABS! Receiver" and "Reset ABS! Receiver" commands
set the receiver EOM status bit, the corresponding
transmitter commands set the transmitter EOM bit in a
similar fashion.

The two error flags are set when the Host or the GWP
disconnects its "Master Ready" from its "Ready Test" ABS!
interface signal. Once these status bits are set they
remain set until cleared by indivdual "Clear Receiver Error
Flag" and "Clear Transmitter Error Flag" commands. The two
"Master Ready State" bits are set if their respective
"Master Ready" and "Ready Test" signals are connected.
Otherwise the bits are reset. The data bit numbering shown
is not Honeywell standard numbering. "DO" refers to the
least significant bit.

Bit Meaning
Der Receiver data available
D1 Receiver at End of Message(EOM)/Receiver Disabled
D2 Host or GWP ABS! has been down; Receiver Error flag
D3 GWP Master Ready state
D4 Host Master Ready state
D5 Transmitter Buffer Empty
D6 Transmitter at End of Message(EOM)/Transmitter Disabled
D7 Host or GWP ABS! has been down; Transmitter Error flag

6.2.4 Commands

The commands and their bit values are given below. An "x"
implies a don't care condition. The command byte can be
logically split into three fields. A single command byte
output to the command/status port can specify one action to
be taken for each of these fields. The three low-order bits
of the command byte (DO-D2) specify transmitter elem•nt
commands. The next three higher-order bits (D3-D5) specify
receiver element commands, while the two highest-order bits
(D6-D7) specify general ABS! controller commands.

,... Bit DO refers to the least significant bit.

Command Field

DD DOD ODD
76 543 210
xx xxx 000
xx xxx 001
xx xxx 010
xx xxx 011
xx xxx 100
xx xxx 101

xx 000 xxx
xx 001 xxx
xx 010 xxx
xx 011 xxx
xx 100 xxx
xx 101 xxx

00 xxx xxx
01 xxx xxx
10 xxx xxx

Command

Transmitter NOP (Null command)
Disable ABS! Transmitter
Enable ABS! Transmitter
Reset ABS! Transmitter
Clear Transmitter Error Flag
Last Byte Follows

Receiver NOP (Null command)
Disable ABS! Receiver
Enable ABS! Receiver
Reset ABS! Receiver
Clear Receiver Error Flag
Interrupt on Receiver Data Available

NOP (Null command)
Set ABS! Master Ready
Reset ABS! Master Ready

Enable Commands

The enable commands put the transmitter or receiver into
operation. The EOM/Disabled status bit is reset, indicating
an active, enabled element. The "ready" lines to the OMA
chips are always high (inactive) when an element is
disabled. Once enabled, the ready lines assume their
correct state.

Disable Commands

The disable commands force the EOM/Disabled status bit to be
set. No other alteration of the transmitter or receiver
occurs. Any partially received or partially transmitted
bytes remain in the shift registers. Data should not be
read from or written to the data buffers when the elements
are disabled; the results of data buffer I/O when an element
is disabled are indeterminate. The disable command halts
receiver or transmitter activity. An ensuing enable command
will continue that activity.

Reset Commands

A reset command clears all internal registers and prep~res
the receiver or transmitter for correct operation. In the
receiver the EOM/Disabled status bit is set, the "Receiver
Data Available" bit is reset, the ready line goes inactive,
and the Error Flag is reset. In the transmitter the
EOM/Disabled status bit is set, the ready line goes

inactiv•, and the Error Flag is reset, but the "Transmitter
Buffer Empty" bit is set. The reset element is put into a
disabled state. Note that neither reset command disables or
resets the interrupt structure (see "Interrupts" below). To
reset the interrupts a hardware reset or software resets to
specific CTC channels are required.

Clear Error Flag Commands

Following a disconnection of the Host's or GWP's ABSI
"Master Ready" and "Ready Test" signals, the error status
bits are set. The "Clear ... Error Flag" command resets the
status bit. Two separate flags with individual resets
permit differential handling of an error condition by the
receiver and transmitter. Note that both status bits can be
reset with one command if desired.

Interrupts

Interrupts from the ABSI controller are actually generated
by the CTC chip. If interrupts are desired this chip must
be programmed with a block count of one, interrupts enabled,
in the appropriate channels. For CTC programming
information, see the MOSTEK MK3882 data sheet. Channel zero
of the CTC (I/O Port 1C) handles the interrupts generated by
the receiver and transmitter error conditions (see "Clear
Error Flag Commands" above), channel one (I/0 Port 1D)
handles receiver interrupts, and channel two (I/O Port 1E)
handles transmitter interrupts. The CLK/TRG input of each
CTC channel should be programmed to decrement the CTC
counter on a rising edge. Interrupts may be enabled and
disabled by commands to the CTC channels.

If transmitter interrupts are enabled the transmitter will
generate an interrupt signifying it is ready to accept data.
The first interrupt will occur immediately after the "Enable
ABS! Transmitter" command is given. Thereafter an interrupt
occurs every time the transmitter data buffer empties.
However, no interrupts are generated after the last byte
(preceeded by the "Last Byte Follows" command) is loaded
into the data buffer. Two interrupt modes are possible for
the receiver. Following a power-up or GWP hardware reset
the receiver exists in an "Interrupt on End-of-Message"
mode. An interrupt will be generated when the last byte of
the received message (including any padding) is loaded into
the receiver data buffer. The "Interrupt on Receiver Data
Available" command sets the receiver into the other
interrupt mode. Subsequently, interrupts are generated
whenever a new byte is loaded into the receiver data buffer.
This interrupt mode is canceled by a power-up reset or GWP
hardware reset only (receiver and transmitter resets do not
affect it).

• p

Master Ready Commands

The "Set Master Ready" and "Reset Master Ready" commands
connect and disconnect the GWP's ABS! Master Ready and Ready
Test signals, respectively.

6.2.5 DMA (Direct Memory Access) Operation

The ABS! transmitter and receiver DMA chips should be
programmed for active-low ready signals. The ready signals
are partially generated from the "Transmitter Buffer Empty"
and "Receiver Data Available" status bits. If the receiver
or transmitter is disabled, its ready signal is a logical
one, or high level, signalling the "not-ready" condition.

The receiver will not signal a "ready" condition once the
last message word has been read from its data buffer. Thus
the size of the received message can be determined from the
receiver DMA block count register. Similarly, the
transmitter will not signal a "ready" condition when its
transmitter data buffer goes empty if it has been given the
"Last Byte Follows" command. The transmitter DMA block
count register should contain less than the number of bytes
in the message to be transmitted. If it contains one less,
for example, the DMA block count runs out (and an interrupt
may be signalled by the DMA chip) when the ABS! transmitter
has accepted all but the last message byte. The CPU then
outputs the "Last Byte Follows" command to the ABS!
controller command/status port before output of the final
message byte.

6.3 Other Special Hardware

6.3.1 UARTS and USARTS

The Gateway Processor prototype contains additional
interfaces used for test and development. These interfaces
may be included in the eventual product; that decision must
be made as development progresses. The Mostek SDB-80 board
contains a UART and free-edge connector to a standard
RS-232-C interface. The prototype utilizes this connection
to provide a console teletype interface. An additional SIO
chip and associated line drivers and receivers establishes a
TTY interface for cabling the Gateway to a Multics system.
The monitor routine (resident in EPROM) manages this Multics
connection, providing a normal terminal interface and
down-line loading capability at 1200 baud.

6.3.2 Counter Timer Components

The X.25 software uses Counter Timer Components (CTC'S) to
monitor certain timing constraints in the X.25 protocol.
One CTC is provided for each X.25 connection. Three of the
four channels of the CTC are wired together to create a
three-channel timer. The rema1n1ng channel is used to
generate the transmission baud rate for the X.25 connection.
The three-channel timer may generate CPU interrupts upon
time-out. The maximum time period for the three-channel
timer (with a 2.458 Mhz system clock) is in excess of 29
minutes.

l) ' '
· &1 LEVEL 6 INTERFACE MESSAGE PROCESSOR

..... ~::
,·-:

..

- -~- - "'

• 1··_--

UPT04
IMP-TO-IMP
HDLC
LINKS

~

~-

.. . ' .

.. -..C

DISKETTE
FOR .

,

.•

LEVEL 6 CENTRAL

PROCESSOR

WITH ·

64K WORDS OF

MEMORY

INITIALIZATION.

."..·:.

. •.·.i~., .
~~_ .. :.-:
..:· t

"-·~

. ~:- .. -.. ·-
. ..::

UP TO 12
IMP-TO-HOST
HDLC LINKS

·.LEVEL 6 IMP:

-~~ ~
--ir·

r':~.
\ .. .' . .
. . ,. -... .

-.">;.r
. ~- .

)· .···:

'~·· ,•. ·.

- MONITORS HOST & LINE TRAFFIC
- DISTRIBUTED ADAPTIVE ROUTING

"(ALTERNATE ROUTING & LOAD LEVELING)
. - SELF-MONITORING DATA~ NETWORK

. MEASUREMENT CENTER _ .
- POWER FAILURE DETECTION . :-.C,,>:~;, · ..
-.AUTO SHUTDOWN al RESTART T' · ... ·' ..

- TOTAL THROUGHPUT OF.._... 100Kb/SEC.

. ~·;.~: ~

... " :..· .. . ' ...

.. '~:f::

~;:i.:.·

.··~-~~-?
·_;.·~:\:=ti)~·~: -:#. ~:.~ . ·. :~}·1· .. \~ . i£~~:.~(J~";·,,tii:

.. '.~t.·
' +·~~~.

·;;

.;...::;
!.-···

·,·.
-....~·- ~

}.···
·.;, ·\:-.· . ~. - ...

. ··-~ .. :7

II DESIGN APPROACH ,

_,
·· . .:. .. : ..

.. --"

.· . .•. ~: ·~.

·-~:: :
. ..
~··

•.,.;.-, ..
>r·;.;: t .~:.. .. • • • ,.. ..; ;: ·•. • ~ w

MULTICS - llOM I

:;!W

_.·

'_/~ -:~: ·;· .. :;~~~~:

)

..... - ~·.·

~.<~ .. :: ... -: .. ;:

-·'1: . t.~:. -_-_::,
.• ·-

'. ~.,·· . ,...._

I ;:.t;t: .. ~. ?;~ ~~!. ;'.t ;, .. · ·'

.•

~
SPIF I

I L~~IC X.25

LEVEL 2

.:;:
. : ~-

~-~<~!, . ,_. .~ ~~f~~l

\:' ,' '\"" ··• ().. ~

)

,

I s I
. : I

, I
T

-~ _... ..

''"~-

I
I

.I
'

i
I
j

UP TO 3 NETWORK
CONNECTIONS

:.Jt·:. ,._7" ... ,_,., ~.

)

