
Poo' :-L
Multics Technical Bulletin MTB-370

To: Distribution

From: Michael Asherman

Subject: Transaction Processing Extensions

Date: 1 May 1978

Transaction Processing Extensions

contents:

Introduction Purpose Summary Recovery Usage
transaction size
explicit synchronization Implementation Cost
storage
processing
1/0
interference
recovery Example
problems without transactions
solution MPM Documentation

Introduction

Considerable interest exists in having a Multics transaction
processing capability. The term has been used so loosely that,
strangely enough, it isn't exactly clear what this means. Does
Multics already support transaction processing? There is no
point in debating over terminology; what are the people who want
this fet1ture really getting at? It has something to do with data
base sharing and recovery, but these are very broad issues, and
there is no agreement on precisely how the concept of a
transaction relates to them.

Purpose

This MTB offers a precise definition to the
"transaction" that is in the spirit of its common usage.
done this, I propose that the featu re be implemented in
by making the specific changes described below.

Summary

term
Having
Multics

A transaction is defined as an atomic operation on a data
base comprised of vfile files. Only indexed files will be

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2 MTB-370

supported in the initial implementation. Arbitrarily complex
procedures can be given the appearance of taking place
indivisibly if they are invoked as transactions, without
requiring any explicit user programming to handle synchronization
and avoid inconsistencies arising from interrupted operations.
The implementation involves using a permanent transaction control
file (tcf) in conjunction with a collection of data base files;
temporary files are used as reference lists while performing
transactions. Vfile automatically takes care of synchronizing
access and adjusting inconsistencies due to interruption at the
level of individual records and index pages, using a before/after
image representation of these items. When one considers the
expense and inconvenience typically associated with solving this
problem, it may come as a surprise that a highly efficient
implementation can be built on Multics with minimal reprogramming
of applications.

Recovery

Recovery from interrupted transactions is handled
automatically by vfile , as it encounters individual items
(records and index pagesT left locked by dead processes. Thus no
explicit user intervention is required, although one has the
option of cleaning up such garbage at any time, so long as the
reference lists are still available.

Usage

The most basic usage of transactions requires only a
knowledge of vfile and the new transact command. One must
define a transaction-control file, and associate an attachment to
this file with the individual data base files via the new
-transaction attach option. Having done this, transactions can
be executed as command lines given to the transact command. Even
if the data base is not shared, this feature may be desirable as
a means of avoiding inconsistencies from the interruption of
complex data base transformations. When the data base is shared,
automatic synchronization provides an additional incentive for
using transactions.

transaction size

If a large transaction can be broken up into several smaller
transactions without jeopardizing the data base's consistency
between parts, this should be done for efficiency. In other
words, one should not use unnecessarily long atomic operations,
although there is no actual limit imposed by the implementation.
Thus, for example, one might break up a background job that
modifies a substantial portion of the entire data base into a
series of smaller transactions. In typical usage, individual
transactions should involve a relatively small part of the entire
data base, but still be sufficiently complex to make the fixed
overhead per transaction small compared to the cost of the entire

MTB-370 Page 3

transaction.

explicit synchronization

Users are never required to lock explicitly, since
synchronization is entirely automatic under transactions.
However, there is a provision for explicit user synchronization
as well, to facilitate enforcing protocols for minimizing
contention and eliminating the possibility of deadlock between
transactions. Unless all transactions observe a conventional
order of modifications to individual data base items, the
possibility of deadlock exists. If arbitrary sequences of
changes may occur in transactions, then deadlock can at least be
detected and prevented, although the situation that calls for
special action and the interference have not been eliminated.
Such a capability for detecting and preventing deadlock does not
presently exist, and I do not propose to deal with the matter any
further at this time; this is not to belittle the issue, but to
avoid delaying the basic TP extensions. When time permits, a
number of improvements should be made to the system set lock
procedure, including deadlock prevention as well as a complete
redesign for better performance.

Implementation

Transactions are atomic because their state of completion is
reduced to the setting of a flag on a tcf entry for the given
transaction number. Several internal vfile changes are proposed
to support transactions. Each record and Index node (page) will
have some additional header words to support having both a before
and an after image. When an item is modified on behalf of a
transaction, only the after image is affected; the item is left
locked until a checkpoint or rollback occurs, indicating the
normal or abnormal completion of this transaction. Every data
base item altered by a given transaction acquires an after image
marked with the transaction's identifying number. Passive
references never need wait or lock in order to examine an item.
If a reference is made while another transaction is modifying the
same object, the passive reference may have to examine the tcf in
order to determine whether the before or the after image applies.
In general, however, the tcf need not be examined, because the
before image always applies except while a checkpoint of a ~
transaction that modified the object is in progress. A temporary
list of references is implicitly maintained by vfile to keep
track of all items either modified or referenced passively in the
course of each transaction. When a subsequent reference is made
to an item for which a previous passive reference occurred in the
same transaction, the fact that this item has undergone an
asynchronous modification in another transaction is automatically
detected and treated as an error. The list of passive references
is always examined at checkpoint time as well. Thus the passive
reference list serves as a basis for verifying the atomicity of
transactions before they are permitted to complete successfully.

Page 4

Reference list entries for modified
checkpoint or rollback time in order to
records and index pages after either
images or discarding their after images.

Cost

storage

MTB-370

objects are used at
unlock any modified

resetting their before

Use of transactions entails some additional cost over the
basic expense of the underlying vfile operations The added
storage requirement is several words per record and index node
allocation; this may be insignificant if the records are long,
but not if the records are very short (i.e. on the order of 10
words or less). With short records, the storage overhead can be
kept small by aggregating logical records into groups stored in
vfile records of a more reasonable size (e.g. pages); in fact,
the implementors of the Multics Data Base Management facility
have proposed such usage. In addition to the fixed overhead per
record, one has the expense of keeping a transaction control
file, and there is temporary storage required for the reference
list files and storage for any after images in addition to the
before images while transactions are in progress. However, this
expense would tend to be small compared to the overall data base
size, and proportional to the rate of file activity.

processing

An additional amount of processing takes place on each
vfile operation in order to add entries into the reference list
for the current transaction. This expense can be reduced to a
small fixed cost per operation, since the reference list would
tend to be very small in comparison to the data base being
referenced. In general, the processing associated with
manipulating the tcf and reference list should be less than or
comparable to that implied by typical data base operations, a
small fraction of the total processing required per transaction.

I/O

No extra I/O is required to guarantee the atomicity of
transactions if they are sufficiently small to keep the data base
pages they touch in core until checkpoint. In the limit of very
large transactions, the extra I/O would not exceed the minimum
I/O (i.e. total I/O can no more than double); however, the
benefit of aggregating half of each modification at checkpoint
time may reduce this additional cost. To be protected from
losing any transactions, one also needs to journalize
transactions before acknowledging their receipt. This requires 1
extra I/O for every N transactions, where N is the number of
transactions accepted in the input queue before acknowledgement.
The implementation has no inherent added I/O requirement for
atomicity, because before images are not copied, but temporarily

MTB-370 Page 5

retained in their initial allocations.

interference

Any number of concurrent transaction may be operating on a
common data base without necessarily interfering with each other.
They may actually benefit from concurrency, to the degree that
commonly referenced pages tend to stay in core because of the
virtual paging behavior. Since passive operations don't wait or
lock, they never interfere with other transactions; only
modifications can lead to interference. Each low level item
modified (record or index node) remains locked until the end of
the transaction, but the files as a whole are never implicitly
left locked. Therefore, the most significant component of
interference arises from multiple transactions attempting to
modify the same low level object at the same time. The larger
the transaction, the longer it will interfere with others
attempting to modify common items. However, at the level of the
file as a whole, transactions do not increase the amount of
contention over the file lock, because they don't leave the file
locked any longer than would be the case without transactions.

recovery

If a transaction is interrupted and not resumed, no
immediate adjustment is needed in order to continue processing
other transactions on the data base, so it is not necessary to
wait in order to recover from pure interruptions. As vfile
encounters individual items left locked by a transaction in a
dead process, the items are adjusted before proceeding with a new
modification. The cost of adjusting any interrupted vfile_
operation is comparable to the basic cost of the operation
itself. Thus the total cost of cleaning up an interrupted
transaction is comparable to the cost of completing the
transaction successfully; this expense may be postponed
indefinitely, being incurred piecemeal through automatic garbage
collection. After a system failure that causes a loss of data,
as well as pure interruption, the recovery procedure is more
involved, unless one is willing to lose some number of
transactions. In such cases, an extra delay will be needed to
restore a complete data base snapshot and/or reapply some number
of journalized transactions. For a more thorough discussion of
recovery in general, see MTB-369.

Example

Consider the following application in a simple banking
system. The data base is a file with singly keyed records, where
the keys give the account number, and the records contain a
number which is the balance in that account. Suppose that there
is also a single record in which the bank's total assets are
maintained; this record corresponds to account number 000000.

Withdrawals might be made through this exec com:

Page 6 MTB-370

withdraw.ec

&command line off io control sw seek head &1 &if [nless [io read
sw 15] &2] &then &goto insufficient-funds io position sw 0 -1 io
rewrite sw [minus [io read sw 15] &21 io control sw seek head
000000 io rewrite sw [minus [io read sw 15] &2] &quit &Iabel
insufficient funds io position sw 0. -1 ioa "Withdrawal refused.
Balance is o;ly $·a" [io read sw 15]

This routine takes two arguments, the account number
followed by the amount to be withdrawn. If the account t~s
sufficient funds, the given amount is subtracted from both this
account, and from the bank's total assets. Otherwise, the
withdrawal is refused, and a message is printed with the
account's present balance. The data base file is assumed to have
been attached and opened for keyed sequential update on an I/O
switch named "sw". - -

problems without transactions

As it stands, there are several potential difficulties in
using withdraw.ec, all of which can be avoided by performing
withdrawals as transactions. For example, if the process that is
performing this operation dies before adjusting the bank's total
assets, but after subtracting from the individual account, then
the data base will be left in an inconsistent state where the
total bank assets figure does not reflect the sum of the
individual accounts. Another potential cause of inconsistency
arises if, for example, we suppose that one may have joint
accounts. In this case, it may happen that several concurrent
withdrawals are attempted on the same account. The concurrent
operations might interfere with each other in such a way as to
yield inconsistent results; e.g. the first withdrawal might have
obtained the current balance just before the second withdrawal
began, and the second withrawal might complete before the first.
If this happens, the result of the second withdrawal might get
overritten on finishing the first, and the net result would be to
lose any record of the second withdrawal.

Besides these cases, one also has the problem of producing a
meaningful report of a cross section of the data base while
concurrent withdrawals are permitted. Unless some further action
is taken, the report may not be a valid snapshot; the subtotal of
individual accounts displayed might not actually correspond to
any instantaneous subtotal that ever existed.

solution

The aforementioned difficulties are eliminated by using the
proposed transaction processing features. This entails
associating a tcf with the data base before opening it, and

,. MTB-370 Page 7

invoking withdrawals as individual transactions via the transact
command. The setup procedure might consist of the following
sequence of command lines:

io attach tcf sw vfile tcf _path -share io open tcf sw
keyed sequentiaI update io attach sw vfile data base path -share
-stationary --transaction tcf sw io -open sw
keyed_sequential_update

A withdrawal is done by typing the following command lines:

assign transaction tcf sw
<acct ~umber> <amount>"

transact tcf SW "ec withdraw

The purpose of using assign transaction is to cause a
transaction number to be printea out before initiating the
transaction, so that in the event of an interruption, there is a
basis for determining whether the most recently issued
transaction has been performed, even though the message
acknowledging this fact may not yet have been produced at the
user's terminal. Thus, after returning from such an
interruption, one would examine the tcf entry for any transaction
whose completion is in question.

MPM Documentation

Draft MPM documentation for the proposed TP related changes
follows.

command: assign_transaction, ate

Function

reserves a unique transaction number for the current
transaction, and optionally prints the new transaction code. The
tcf switch must be opened for modification, so that a new entry
can be created.

Usage

ate tcf sw {-brief , -bf} {t code}

tcf SW

names an I/O switch attached to the transaction control file
(tcf).

-brief

Page 8 MTB-370

optionally suppresses the standard printout of this command.

t code

optionally specifies the new transaction number to be
assigned to the current transaction and inserted into the tcf.
If omitted, the next available unique transaction code will be
assigned.

Output

is of the form: transaction N
where N is the new transaction number.

Reference

See the writeup of the transact command in the MPM.

command: checkpoint, chp

Function

attempts to complete the current transaction on a data base
associated with the given transaction control switch. The
current transaction number becomes undefined after a successful
checkpoint.

Usage

chp tcf sw {-brief , -bf}

tcf SW

names an I/O switch attached to the transaction control file
(tcf).

-brief

optionally suppresses the standard printout of this command.

Output

is of the form: checkpoint: N
where N is the number of the transaction just completed.

Reference

See the writeup of the transact command in the MPM.

command: rollback, rlb

Function

MTB-370 Page 9

undoes all modifications made on behalf of the current
transaction in the specified data base. The transaction number
for this tcf switch is then reset to zero; i.e., the current
transaction becomes undefined.

Usage

rlb tcf sw {-brief , -bf}

tcf SW

names an I/O switch attached to the transaction control file
(tcf).

-brief

optionally suppresses the standard printout of this command.

Output

is of the form: rollback: N
where N is the number of the transaction just aborted.

Reference

See the writeup of the transact command in the MPM.

command: transact, trn

Function

executes a given command line as an atomic transaction on a
specified data base.

Usage

trn tcf sw {-brief , -bf} command line

tcf SW

names an I/O switch attached to the transaction control file
(tcf).

command line

is a Multics command line which need not be enclosed in
quotes unless it contains special characters.

-brief

optionally suppresses the standard printout of this command.

Page 10 MTB-370

Output

is of the form: Done transaction N.
where N is the number of the transaction just completed.

References

See the writeup of the transact subroutine in the MPM.
Also see writeups of the foTlowing related commands:
assign transaction checkpoint rollback transaction code
transaction status

command: transaction_code, trc

Function

prints, and optionally resets the current transaction number
for a given tcf switch. The control file itself is not
referenced or altered by this operation, permitting purely
passive transactions to have only read access to the tcf.

Usage

trc tcf_sw {-brief , -bf} {t_code}

tcf SW

names an I/O switch attached to the transaction control file
(tcf).

-brief

optionally suppresses the standard printout of this command.

t code

specifies the number to be taken as the current one. If
omitted, the current transaction number is unchanged.

Output

is of the form: transaction code: N
where N is the current transaction number (obtained before

changing).

Reference

See the writeup of the transact command in the MPM.

command: transaction_status, trs

Function

MTB-370 Page 11

prints items of information about a transaction for a
specified tcf switch. This includes the transaction number, its
completion status, and optionally counts of passive and
non-passive references.

Usage

trs tcf sw {-brief , -bf , -verify , -vf} {t code}

tcf SW

names an I/O switch attached to the transaction control file
(tcf).

-brief, -bf

optionally suppresses the examination of reference list
entries.

-verify, -vf

causes a check of all passive references made in the
transaction for possible asynchronous changes. If a previously
referenced item has been changed, an error message is printed,
indicating that this transaction will be unsuccessful.

t code

is the transaction number whose status is to be printed. If
omitted, the current transaction is assumed.

Output

is of the form: transaction N passive refs: p, non-passive
refs: n

where N is the transaction number,
p is the number of data base items referenced without

alteration,
n is the number of items modified so far in this

transaction.

Reference

See the writeup of the transact command in the MPM.

entry: transact_$assign_code

Function

reserves a unique transaction number for the current
transaction and returns the new transaction code. The tcf switch
must be opened for modification, so that a new entry can be
created.

Page 12

Usage

call transact_$assign_code (tcfp , cur tcode , code);

declaration

MTB-370

dcl transact_$assign_code entry (ptr, fixed (35), fixed
(35));

arguments

tcfp

points to an iocb for the transaction control file (Input).

cur tcode

is set to the new transaction number (Output).

code

is a standard system error code (Output).

Notes

A transaction number can also be assigned via the
transaction code entry. The user is not required to preassign a
transaction number at all, in which case one will automatically
be assigned upon making the first reference to a data base item
for the new transaction.

entry: transact_$checkpoint

Function

attempts to complete the current transaction on a data base
associated with a given transaction control switch. The current
transaction number becomes undefined if the checkpoint is
successful.

Usage

call transact_$checkpoint (tcfp , cur tcode , code);

declaration

dcl transact_$checkpoint entry (ptr, fixed (35), fixed
(35));

arguments

tcfp

r
.,;

MTB-370 Page 13

points to an iocb for the transaction control file (Input).

cur tcode

is set to transaction number just completed (Output).

code

is a standard system error code (Output).

entry: transact_$rollback

Function

undoes all modifications that have been made on behalf of
the current transaction in a specified data base.

Usage

call transact_$rollback (tcfp , cur tcode , code);

declaration

dcl transact $rollback entry (ptr, fixed (35), fixed (35));

arguments

tcfp

points to an iocb for the transaction control file (Input).

cur tcode

is set to the transaction number just aborted (Output).

code

is a standard system error code (Output).

Notes

The effect of a rollback is logically invisible outside the
current transaction, except possibly in its immediate cleaning up
of accumulated garbage (after images). The transaction code for
a rolled back transaction is not reused. After issuing a
rollback, the caller's transaction number for the given tcf
switch becomes undefined, and the data base is restored to its
state following the last checkpoint.

entry: transact_$status

Function

Page 14 MTB-370

returns various items of
a specified tcf switch. This
its completion status, and
non-passive references.

information about a transaction for
includes the transaction number,
optionally counts of passive and

Usage

call transact $status (tcfp , cur tcode , ts status word
ts_infop , code); -

declaration

dcl transact $status entry (ptr, fixed (35), bit (36)
aligned,

ptr,fixed (35));

ts info

dcl 1 ts info based (ts_infop)
' 2 flags,

3 verify bit (1) unal, I* causes data base items to
be checked */

3 version fixed
'

I* set to current version by user
Input */

2 passive refs fixed (34) , I* Output */
2 non passive refs fixed C 34) , I* Output */
2 paa fixed- ; I* reserved for future use */ dcl

ts info version O static internal fixed options (constant) init
(0) ;-

ts_status_flags

dcl 1 ts status flags based (addr (ts status word)) ,
2 definea bit (-1) unal , I* set if transaction code found

in tcf */
2 status fixed (34) unal; /* O = incomplete , 1 = done , 2

= aborted */

arguments

tcfp

points to an iocb for the transaction control file (Input).

cur tcode

is the transaction number for which status information is
desired, or set to 0 to specify the current transaction. If this
is zero, then the returned value will be the current transaction
number (Input/Output).

ts status word

MTB-370

contains a code defining the
one of the following (Output):
incomplete - in progress, but
successfully checkpointed (can't
(can't checkpoint)

ts_infop

status of
undefined
not yet
rollback)

Page 15

this transaction as
- no tcf entry exists
checkpointed done
aborted - rolled back

points to a structure, ts info, in which the counts of
references made by the transaction are to be returned. If null,
this information is not obtained (Input).

ts_info.verify

if set, causes the list of passively referenced items for
this transaction to be checked for possible asynchronous changes.
If a change is detected, the returr~d code is set to
error table $asynch change, indicating that this transaction will
be unsuccessful (Input).

ts info.version

is the version number for this info structure, which should
be set to ts_info_version_O (Input).

ts_info.passive_refs

is the number of distinct items referenced passively (not
modified) so far in this transaction (Output).

ts_info.non_passive_refs

is the number of distinct data base items modified so far in
this transaction (Output).

code

is a standard system error code (Output).

entry: transact_$transaction_code

Function

returns and optionally resets the current transaction number
for a given tcf switch. The control file itself is not
referenced or altered by this operation, permitting purely
passive transactions to have only read access to the tcf.

Usage

call transact $transaction code (tcfp cur tcode
next tcode , code); -

Page 16 MTB-310

declaration

dcl transact_$transaction_code entry (ptr, fixed (35), fixed
(35),

fixed (35);

arguments

tcfp

points to an iocb for the transaction control file (Input).

cur tcode

is the current transaction
(Output).

next tcode

number (before changing)

is the new transaction number or zero, if no change is
desired (Input).

code

is a standard system error code (Output).

Notes

When a transaction is known to involve no data base
alterations, this entry may be used to initialize the transaction
number to a unique value, thereby avoiding the necessity of
modifying the tcf in order to reserve new code. Unless the
transaction number has been initialized, a tcf entry will
automatically be assigned on the first reference to a data base
item in the current transaction; the default behavior requires
that the tcf be opened for modification.

entry: transact_

Function

executes a given command line as an atomic transaction on a
specified data base. Handlers are established the the cleanup
and program interrupt conditions. The cleanup handler causes the
tr~nsaction-to be rolled back if, for example, the user quits and
releases. The program interrupt handler permits one to rollback
and reexecute the command line by typing pi from command level.

Usage

call transact (tcfp , cur tcode , command line , code);

MTB-370 Page 17

declaration

dcl transact_entry (ptr, fixed (35), char (*), fixed (35));

arguments

tcfp

points to an iocb for the transaction control file (Input).

cur tcode

is set to transaction number just completed (Output).

command line

is a Multics command line which need not be enclosed in
quotes unless it contains special characters.

code

is a standard system error code (Output).

Transactions

definition

A transaction is a unit of processing which has the
appearance of taking place as an indivisible, atomic operation.
Arbitrary procedures involving any collection of vfile indexed
files may be invoked as as transactions via this subroutine.

appearance

A partially completed transaction terminates either by a
successful checkpoint operation, or by a rollback. That is to
say, until a checkpoint occurs, the data base appears unchanged,
except within the current transaction. Any data base
modifications which a transaction makes appear simultaneously,
outside the transaction which makes them, when the checkpoint
takes place.

purpose

There are two major reasons for encapsulating a procedure as
a transaction. The first is to simplify the user's task of
handling inconsistencies that can arise from interrupted
operations which are not resumed (e.g. because of a system crash
or an application program error). Second, in the event that a
data base is shared among independent processes, the entire
burden of synchronizing file access is removed from the user and
automatically managed by the system transaction processing
facility.

Page 18 MTB-370

tcf switch

Each independent transaction server (task or process which
performs transactions) requires an I/O switch that associates the
transactions with a particular data base. This switch is
attached by the user to a permanent transaction control file
(tcf) that is used in conjunction with the collection of files
comprising a single logical data base.

transactionicodes

A transaction has a unique identifying code associated with
its tcf switch. Initially and after a checkpoint or rollback,
this number is zero, indicating that no current transaction is
defined for the given tcf switch. A transaction number will be
assigned automatically when a data base file attached via
-transaction to the tcf switch is referenced, unless a non-zero
code already has been set explicitly.

reference lists

A temporary reference list is automatically maintained with
each tcf switch. This structure, which is implemented as an
indexed file without records, contains the necessary information
for keeping track of passive ~eferences made during the course of
each transaction, so that asynchronous changes that might
invalidate the transaction can be detected. The reference list
also identifies all items modified during each transaction, in
order to clean up the data base at checkpoint or rollback time.

Files

data base

Any collection of vfile indexed files may be defined as a
data base upon which to apply transactions. All that is required
is that a common tcf always be used in connection with references
to any file in the given data base, and that the individual data
base files be attached with the -transaction option specifying a
tcf switch attached to the tcf for the data base.

transaction control file

The tcf is a permanent indexed file containing only index
entries (i.e. no records). The user is responsible for its
creation, but the tcf is implicitly manipulated by vfile and the
various transact routines, so that no explicit user operations
on this file are required. If concurrent transactions are
performed on a common data base, the -share option must be given
in the tcf attchment, as well as in the attachments to the data
base files that are shared.

MTB-370 Page 19

tcf entries

Keys are added to the tcf when a transaction code is
assigned for a new transaction. Each key's descriptor is a flag
indicating the state of logical completion of a single
transaction. Thus the atomicity of a transaction is reduced to
changing the flag on its tcf entry.

Usage

opening constraints

In order to use transactions, the user must first attach and
open the tcf for the data base. The user is also responsible for
attaching and opening all data base files to be referenced before
issuing any transactions, and none of these files should be
closed within a related transaction.

abnormal termination

When a checkpoint is attempted, or upon referencing a data
base item previously read in the same transaction, it is possible
that an error resulting from an asynchronous change in another
transaction will be detected. This situation makes it impossible
to correctly complete the current transaction, and the
transaction must be aborted. To determine whether an unexpected
error was caused by an asynchronous data base change, one may use
the transact $status entry with the verify option.

References

See the writeup of the vfile 1/0 module in the MPM
Subroutines. For a description of the command level interfaces
corresponding to the transact entries, see the writeup of the
transact command.

I/O Module: vfile

Attach Description

control_args

-transaction , -trans tcf _sw

indicates that all operations on this switch are performed
within transactions associated with a control file attached to
the I/O switch named tcf sw. The file must be indexed with
stationary type records. Refer to the sections on the transact
command and transact subroutine described elsewhere in the MPM.

Control Operation

record status

Page 20 MTB-370

CHANGE:insert the following after line: 2 block_ptr ptr unal,

2 last_image_modifier fixed (35) ,

2. lock sw (Input}
CHANGE:replace the last two lines with the following

error table $higher inconsistency The code no room for lock
is returned if the allocated record block is too small to contain
a lock (see "Record Locks" below) The code
higher inconsistency is returned if the lock was set by a
transaction which cannot be adjusted, either because it is
another transaction in the caller's process, or because the lock
was set by a dead process and no tcf entry can be found for the
record modifier.

If the first modification of a record in a transaction is to
lock (and not unlock) via record status, then vfile
automatically initializes an after image for the record with a
copy of its before image. The record ptr returned in this case
points to the after image, so that based manipulations of the
record via its pointer do not affect the before image; this
guarantees that modifications made in this manner can be rolled
back. After image initialization is suppressed by setting
rs info.unlock sw.

3. unlock sw {Input}
CHANGE:add the following-paragraph

When the -transaction attach option applies, records can not
be unlocked explicitly, as they must be left locked until the
transaction completes; then unlocking is done automatically. The
only permissible use of setting rs info.unlock sw under -trans is
in the case where rs info.lock sw-is also set: in which case the
effect is to suppress-setting the record's after image and return
a pointer to the before image allocation, leaving the record
locked. This usage permits explicit synchronization for avoiding
interference and deadlocks without incurring the added expense of
preparing an after image when one has no immediate intention to
rewrite. Based modifications of the record contents should not
be made via the record ptr returned by record status in this
case, but passive based references are allowed. The only valid
way to perform based alterations of a record in a transaction is
by obtaining a po~nter to its after image.

15. modifier {Input/Output}
CHANGE:replace paragraph with the following

if nonzero, this is the
on whose behalf the record
set, the user should set
record status.

identifying number of a transaction
was locked. When rs info.lock sw is
this value to 0 -before calling

17. last_image_modifier {Output}

. ' . •

MTB-370 Page 21

is the transaction number for the most recent modification
of this record. If zero, then the most recent modification was
not made under the -transaction option.

Logically Absent Records
CHANGE:insert after paragraph beginning 'Garbage collection of
keys ••• '

If the -transaction attach option was used, garbage
collection of the last key and record's stationary header is
suppressed. This is done to insure that any passive reference to
the record prior to its deletion can find the record header
afterwards to detect the asynchronous change. Thus, to
completely recover the storage occupied by records deleted in
transactions, one must periodically collect garbage by opening
the file without the -transaction attachment. Only those items
which can't have been referenced by any transactions currently in
progress may be collected.

Record Locks
CHANGE:insert after
rewrite record ••• •

paragraph beginning 'Attempting a

If a record has been locked by a transaction, the above
error codes are suppressed, except for the case of record busy on
an attempt to alter a record locked by a live process.- If the
record's modifier can not be found in the transaction control
file, or if the caller has not used the -transaction attach
option, then the code error table $higher inconsistency is
returned. - - -

Multiple Openings

4. Openings with the -share control argument.
CHANGE:add at end of this section

The code error table $asynch change is returned on a
subsequent reference to an Item previously referenced in the same
transaction, if an asynchronous change is detected; when this is
the case, it is impossible to successfully· complete the
transaction by checkpoint, and the current transaction must be
aborted.

