—

v
MILTICS TFCHNICAL RULLETIN MTB=34K7
To: Distribution

From: Robert S. Coren

Dates NI/20/7¢8

Subject: High-speed Terminal Input

INIRQDUCTIQN

This MTB discusses the introduction of a feature in MCS to
allow interactive asynchronous terminals to transmit input at
maximum channel speed. The principal purpose for this feature is
to provide support for screen terminals that have the capability
of transmitting part or all of a screen in response to a single
keystroke. (The feature may also be useful for terminals such as
the TermiNet 1200 that may have a cassette attachment.) Tt is
assumed that most terminals eauipoed with this feature precede
and follow the data thus transmitted with a recognizable pair of
characters (such as STX and ETX); every terminal that we know
about that has a "transmit” key does so.

Full-screen input has been casually referred to as "block
mode input" or "block transfer”., henceforth, however, we wiltl
use the term "frame input” to describe this feature, in order to
reserve the term "block mode"” for matters relatinag to the use of
ipc_$hlock,

In order to provide frame input, we have had to solve most
of the internal problems associated with user—-settable break
characters., The user interface for this more general feature has
yet to be specified, accordingly it will not be in the initial
implementation, nor will it be addressed directly in this
document., The plan is to provide frame input 3in MR6.5, and
possibly to provide general user-settable break characters 1in
ez, 0.

T e Am e P W T e TR G G e T e G em R e R e W NS G MR W W W e W R SR W e R SR R G R fE G R G e YR S Gm Am Eh NP R e R e R W W ee e e e

Multics Project working documentation. Not to be reproduced or
distributed outside the Multics Project.

MULTICS TECHNICAL RULLETIN MTR-267

BEEAK_CHABACIEERS

The concept of a break character on Multics exists at
several levels. In the FNP, a break character causes an interrunt
from the <channel (this interrupt is simulated by software for
LSLA channels) and indicates that an interrupt is to be sent to
the central system to inform it that input is on its way. In
dn35S, the ring-0 interrupt handler, the presence of a break
character in input data indicates that a wakeup is to he sent to
the nprocess using the channel if that process nreviousl!ly
attempted to read when there was no input available, In
tty_reads, the ring N call-side routine, a break character is used
to delimit the niece of input to be transltated, converted, and
returned to the user ring. Finally, tty_qet_Lline, after callinag
hecs_%tty_read, does not generally return to i1ts caller until it
has read a break character out of ring 0,

For asynchronous line types, the only break character
recognized by current software at all these various levels is the
newline character. (The FNP also interrupts on formfeed so that
output can be restarted on channels using paje-length checking.,
but these formfeeds are intercepted by dn35S and do not cause
wakeups.) In order to implement frame input, it must be made
possible to recogqnize additional break characters at all Levels
in a consistent fashion.

Other problems exist 1in the present implementation. Since
every newline typed causes the FNP to interrupt the <central
system, and (on asynchronous HSLA channels) every newline typed
causes the FNP itself to be interrupteds a wuser who bhits the
"transmit" key of his/her 1200-haud terminal when the screen
contains A series of successive newlines generates an FNP
interrupt approximately every R milliseconds, and the FNP cannot
keep up. This can result in loss of connection, and occasionally
results in FNP crashes.

We cannot prevent the user from generatiny these interruptse.
hut there are two things we can do: we can modify the HSLA
software to detect that the FNP is fallting behind, and avoid
damage to the system (or lasting damage to the channel's
connection); and we can provide the user with a way to send a
full screen without generatina excessive interrupts.

MULTICS TFCHNICAL RULLETIN MTR-367

SUKMARY OF _PROPOSED_NEW_EEAIURE

For the purposes of this discussion, a frame is defined as a
hlock of arbitrary 1input, starting with a pre-specified
“"frame-bezin" character and ending with a opre-specified
"frame-end'" character, which may be transmitted at channel speed,
A new tty_ mode, framei (for "frame input'"), so2ecifies that the
user expects to aqgenerate frame input from the terminal;, a new
order, "set_framing_chars”, specifies the frame-beqgin and
frame-end <characters (which need not be different from each
other), 1f the user is in framei mode and has set (nonnul)
framing characters, any occurrence of the frame-heqin character
is assumed to mark the beoinning of a framz; the frame-end
character becomes the only break character, so no further input
interruots are generated until a frame-end character appears, The
user's process can either read the entire frame by calling
iox_%qget_chars, or read the input line by line (as at present) by
calling iox_%aet_Lline, as explained below.

USER_INIEBEACE

Specificatiop_of_framing_Characters

As indicated above, the framing characters are specified by
the set_framing_chars order, which causes them to be stored both
in rina N and 1in the FNP. In addition, se propose to add a
"framing_chars" keyword to the terminal type snecification in the
TTF so that reasonable defaults <can be supplied for terminal
types (such as the Delta NPata 400N) whose framing characters are
known. The framing characters associated with the terminal type
will be dincluded in the structure used by the set_terminal_data
order used by tty_ and the answering service to 1initialize a
terminal when setting its type. To allow frame input to work in
rawi mode, the framing characters must always pe specified in the
terminalt's code.

If no framing characters have been specified, either in the
TTT or o>y explicit order, then frame input cannot be recognized
and may not be accepted. In addition, frane input s only
recognized if framei mode is on as well.

MULTICS TECHNICAL SULLETIN MTB-367

Use_of_iox_%get_Llipe_and_iox_%get_chars

The gqget_line entry of the tty_ I/0 module will continue to
work the way it does todays, i.e.r, it will not return to its
caller wuntil a newline character is read out of ring 0 (unless
the caller's buffer fills ups, in which case the contents of the

huffer are returned alonn with a status code of
error_table_%long_record), A chanae, however, is being proposed
in the meaninag of the aet_chars entry. In the present

implementations, this entry does not return to 1ts caller until
the caller's buffer is futl. There is no known software that
currently uses this entry, and it seems useful tn make get_chars
coqnizant of the concept of break characters,

Fssentiatly., we propose that get_chars work in analogous
fashion to qet_Lline, except that it uses any currently-defined
break <character as 1its delimiter. Thus in the normal default
case, where newline is the onlty break character, it would behave
exactly the same as get_Lline; in framei modes, it would return an
entire frame if frame input was presznt.

The table below summarizes the behavior of iox_%get_chars
under the proposed scheme. N is the character position of the
first break character in the (converted) inputs/ R is the size in
characters of the calter's buffer, '

no break present break present, break present.,
N <= R N > B8

catl inc_%block return N return B
characters characters and

error_table_%$lona_record

o
—
©
g}
=
[]
[
[fe]
i
1=
o]
(]
t
—
D
;o
K
| a4

As a future extensions, we propose a3 mechanism that will make
it possible for a user to call Jiox_%get_chars and be certain of
not going hlocked in tty_ (without having to use the read_status

order)., A new mode, blocki ("block for input"), would specify
that tty_ should call ipc_%block when it has no input to return,
For compatibility with current implementations, the normal

default would be for blocki mode to be on. The effect of turning
hlocki mode off would be to cause tty_get_chars and tty_get_Lline
to return 0 characters in the circumstanc2s in which they
currently call ipc_%htock. It would then be up to the caller to

-

)

MULTICS TFCHNICAL BULLETIN MTB~-367

decide when or if to go blocked for input.

It should be noted that blocki mode is different from atl
modes defined so far for tty_ in that it would be known in the
user ring only, and would never bhe passed on to ring . This

would regquire some modifications to the way modes are set and
reported.

The only existing entry into ring 0O to read terminal input
is hcs_%tty_read. If a newline is present in ring 0, this entry
returns all characters up to and including that newline (assuming
that the caller's buffer is bigq enough to hold them), if no
newline is oresent, however, it returns whatever input is present
(again, uo to the length of the caller's buffer)., Ffurthermore.
it ignores newlines in rawi mode, and returns whatever is
available,

We propose to retain the tty_read entry with its present
behavior for purooses of compatibility, while adding two new
entries: hcs_Stty_get_line and hcs_$tty_get_chars. These two
entries are intended to be called by the corresponding entries in
tty_, and to behave the way the tty_ entries ds in “blocki mode.
In other words, hcs_Stty_get_Line returns O characters if there
is no newline in rinog 0, even in rawi mode;, otherwise it returns
all characters up to the first (non-escaped) newline. Similarly,
hcs_S$tty_get_chars returns 0 characters if there is no break
character (however defined) in ring 0/ otherwise it returns all
characters wup to the first break character. 30th entries return
error_table_%long_record if the apnropriate break character is
present but the caller's buffer is too small to include it.

It is in hecs_%$tty_get_chars that the Multics side of frame
input 1is implemented, Specifically, whenever a frame-begin
character 15 seen, the normal break character (newline) 1is
ignoreds and the frame-end character is used as the sole break
character. When a frame is completed, the normal break character
is reinstated until another frame beqgins,

Several things should he noted about this scheme. It
eliminates the necessity for a kludae that presently exists in
the get_tine entry of tty_, whereby it checks the input provided
by hcs_%tty_read to see if it ends in ASCII newline ynless the
termiral is in rawi mode’ this allows 2PL to read ERCHDIC input in

MULTICS TFCHNICAL RULLETIN MTB=-367

rawi mode. Under the praposed scheme, tty_ can trust any input
returned to it by hcs_Stty_get_Lline to end in newline, since
otherwise hcs_%tty_qget_Lline would have returned 1 characters. The
second point is that, in order for the scheme to work in rawi
mode, break characters must be known in ring) in the terminal's
(untranslated) code. This is already true of n1ewline (assuming
the terminal's code for newline based on line type) because it is
used to determine how much input ‘to translate and convert at
once, and the specification of the set_framing_chars order makes
it true for the frame-end character as well,

The retention of hcs_%tty_read serves the purposes of
special-purpose 1/0 modules (such as bisync_) that wish to do all
interpretation of input in the user ring. Ry calling
hcs_%$tty_read in rawi mode, they can use ring 0 as a completely
transparent data pipe. Finally, the answering service (i.e..,
astty_) <can be changed at a later date to call hcs_$tty_get_Line
rather than hcs_%tty_reads since it is really interested 1in
complete Llines, and currently helijeves that that is what ring 0
is sending it (which is wusually true).

It should be pointed out that unier present FNP
implementation it is very rare that input not ending in a break
character finds its way into Multics memory, s5 that the current
ring 0 software usually does what is wanted. We are not prepared.,
howevers, to quarantee that such inout will peyer appear, and in
fact we are considering modifications, described Llater in this
MTR, that will increase the frequency with which such "partial”
innput appears in rina 0.

ENP_CONSIDERAIIOQNS

The issue of generating excessive HSLA interrunts by
inputtina a screen full of newlines has been mentioned above,. By
using framei mode « a <careful user can avoid this problem, To
cover the case of a careless or malicious wuser who hits the
transmit key without entering framei mode and specifying framing
charss, the HSLA software will be modified to detect that it 1is
not keeping up with the channel, and drop receive mode on the
channel right away. When this hapnenss, a few 3FEL characters are
sent to the terminal to warn the user that the input is not being
received properly. Receive mode 1is restored if the user hits
QUIT,; if this has not happened within 10 seconds, a QUIT s
signalled automatically, and receive mode is restored.

MULTICS TECHNICAL RBULLETIN MTB-367

Another possible source of trouble s frame input on a
channel in echoplex mode. The nature of the FNP implementation of
frame recognition is such that when a frame-begin <character
appears in framei mode, echoplex is automatically disabled for
the duration of the frame. In the case of a user who, as above.,
neglects (inadvertently or otherwise) to Leave echoplex or enter
framei mode before hitting the transmit key, the software can be
modified to recognize =excessive echoplex interrunts (which are
distinguishable from break-character interrupts) and take the
channel out of echoplex mode.

ENP_Buffer Space

There 1is a rather crude mechanism 1in the current FNP
software to prevent a runaway channel, or a foolish or clever
user, from devouring all the FNP buffer space by filling the FNP
with input. This is done by taking the channel out of receive
mode, as described above, whenever it has more than a certain
number, known as the "exhaust Limit"”, of input buffers allocated.
The present limit is rather too small for most known screen
sizes; in any <casesr, it is not clear that it is safe to allow a
channel to have the entire contents of some arbitrary terminal's
merory in FNP memory all at once.

We propose to get around this problem by greatly increasing
the exhaust Llimit, and establishing a smaller Llimit <called the
"pre-exhaust” Llimit. When the pre-exhaust linit is reached, the
FNP interrupts the central system and sends it the accumulated
input, while continuing to accept further input from the channel,
This will allow larage frames to be input without choking the FNP,
Tt will also result in arhitrary "partial” input being sent to
Multics memory. A4s indicated above, we intend to modify the
central syster software so as not to process this input until it
is "complete,”

The remainder of the MTR consists of draft documentation
describing the new features of the tty_ T1/0 module and the TTF
specification.

tty_ tty_

Get_chbars_Qperation

The get_chars oneration returns characters only if a break
character has been sent from the terminal, in which case it
returns all characters up to and incltuding the first break
character, The break character is normally newline unless the
channel i1s in framei mode and the frame—-begin character has bheen
input, in which <case the break character is the frame-end
character (see the descriptions of framesi mode and the
set_framing_chars orders, helow). If the caller's buffer is too
small to contain all the characters up to and including the break
character, as many characters as can fit 1in the buffer are
returned, along with a status code of error_table_%$long_record.

W kok ok ook ok

(to be added under "Global Orders')

set_framing_chars

snecifies the pair of characters that the terminal
generates surrounding input transmitted as a block
or "frame'". These characters must be specified 1in
the character <code used hy the terminal. This
order must be used for framei made (see nelow) to
be effective. The info_ptr must point to a
structure with the followina format:

del 1 framing_chars aligned,
2 frame_begin char (1) unaligned,
2 frame_end char (1) unaligned:

cet_framing_chars

causes the framina characters currently in use to
be returned (see the set_framinag_chars order,
above). If no framing <characters have been
supplied, NUL characters are returned. The
info_ptr must point to a structure like the one
described for the set_framing_chars order’, this
structure is filled in as a result of the call,

tty_

tty_

* ok ok ok ok kK

(to be added under "Modes Operation')

framei, “framei

speci fies that the user's terminal is capabhle of
transmitting a block or "frane" of input all at
once in response to a single keystroke. The
system may not handle such input correctly unless
framei mode is on and the set_framing_chars order
has been issued,

set_tty set_tty
(additional control arquments)
-frame framing_charss —fr frarming_chars
chanaers the framing characters used in framei mode to
thase specified hy framina_chkars, The framinag_chars
araument 1s a ?-character si{rina cansisting of the
freamep~thagin character and the frape~end characters, 1n
that nrripr, FTheeoe characters must he specifiad In
the ¢haracter eode of the terminal , Thev may a2
entered 35 netal e5caADe S 1f necessary, 1f tre
frame-hpagin character is srecified a6 a4 hlank or as 'a
N charagter, the frame-henqin character 18 not
chanaged; i f the frame-end rharacter i Tmitted,
sppcified ae 3 hiliank, or sperijifiod g% a M UL
chbaractor, th p frame-on-d character 7% not chanaed,
the framing characters have nn effact untess framei
meole in on, Tt its an errnor to set one of the framinag
charscters to "It untess the nther one ig also ML,
“nrint_frame, -pr_fr
prints the frarirag characters for the terminal,
(Tnsert gynder Notens hatween steps S5 and 6)
If the -frame control arqument is specified, set the framing
characters.
(ITnsert under Notes netween steps % and 9)
1f the print_frame control arqument is ssyecified, Drint the
framing characters on the terminal.
(add under Examples)
The command (ine:
set_tty -frame \N02\NN2
sets the frame-henin and frame-end characters to the ASCIT STx

and ETX characters

respectively.

m

(to be added to MAM System, Section 6, description of TTF syntax)

framing_chars: <frame_begin> <frame_end>

The framina_chars statement is optional. If present, it
specifies the framing <characters generated by the
terminal whken sending frame input at channel speed,
<frame_beqgin> and <frame_end> are octal numhers of up

to 2 digits representing the frame-begin and
frame-characters., respectively, in the terminal's
character code (i.e., without translation). These

characters are recognized in framei mode only.

11

