
M Ill TICS T F CH NI C/I l, 8 UL LET IN

To: Distribution

From: Robert s. Coren

Di!te: 0'3/2Q/7P

Suhject: High-soeed Terminal Input

This ~TA discusses the introduction of a feature in MCS to
allow interactive asynchronous terminals to transmit input at
~aximum ch~nnel speerl. The principal purpose for this feature is
to orovide support for screen terminals that have the capability
of transmitting oart or all of a screen in response to a single
keystroke. (The feature may also be useful for terminals such as
the TermiNet 1?00 that may have a cassette attachment.> Tt is
assumed that most terminals eauipoed with this f~ature precede
and follow the data thus transmitted with a recognizable pair of
characters (such as STX and ETX); every termi"lal that we know
about that has a "transmit" key does so.

Full-screen input has been casually referred to as "block
mode input" or "bloclr transfer"; henceforth, however, we will
use the term "frame input" to rlescribe this feature, in orrler to
reserve the term "block morle" for matters relati"lq to the use of
ipc_$hlock.

In order to provide frame input, we have had to solve ~ost
of the internal problems associated with user-settable break
characters. The user interface for this more gel"'leral feature has
yet to be specif~ed: accorrlinqly it will not be in the initial
implemel"'ltation, nor will it be addressed directly in this
document. The plan is to provide frame inpJt in ~R6.5, and
possibly to provide general user-settable break characters in
IV' R7 • n •

~ultics Project working documentation. Not to be reproduced or
distrihuted outside the ~ultics Project.

,

~Ill T JCS TECH NI CAL 8 UL l ET IN

The concep! of a break character on ~ultics exists at
several lPvels. In the FNr, a hreak character causes an interrupt
from the channel (this interrupt is simulated by software for
LSL~ channels> and indicates that an interrupt is to be sent to
the central system to inform it that input is on its way. In
dn3~5, the ring-0 interrupt handler, the presence of a break
character in input data indicates that a wakeup is to be sent tc
thP process usinq the channel if that procP.ss previously
attempted to rear! when there was no inpJt available. In
tty_read1 the rinq 0 call-side routine, a break character is used
to delimit the piece of input to be translate~, converted, and
returnerl to the user rinq. Finally, tty_qet_line1 after calling
hcs~$tty_read, does not qenerally return to it; caller until it
has read a break character out of ring n.

For asynchronous line types, the only break character
recognized by current software at all these various levels is the
newline character. (The Ffl.JP also interrupts on formfeed so that
output can be restarted on channels usinq pa~e-length checking,
but these formfeeds are intercepte~ by dn355 and do not cause
wakeups.> In order to i~plement frame in0Jt1 it ~ust be made ~
possible to recognize additional break characters at all levels ~

in a consistent fashion.

Other problems exist in the present implementation. Since
every newline typed causes the FNP to interrupt the central
system, and <on asynch.ronous HSLA channels) every newline typed
causes the FNP itself to be interrupted, a user who hits the
"transmit" key of his/her 1200-haud terminal when the screen
contains a series of successive newlines generates an FNP
interrupt approximately every 8 milliseconds, and the FNP cannot
keer up. This can result in loss of connectio~, and occasionally
results i~ FNP crashes.

We cannot prevent the user from generatin~ these interrupts,
hut there are two things we can do: we can modify the HSLA
software to detect that the FNP is fallin~ behind, and avoid
damage to the system (or lasting damage to the channel's
connection>: and we can provide the user with a way to send a
full screen without qeneratinq excessive interrupts.

-2-

M lll T I CS T F CH N I CAL R ll L l E T IN MTB-367

For the ourposes of this discussion, a iram~ is defined as a
hlock of arbitrary input, starting with a pre-specified
"frame-he'.}in" character and endinq wit'l a ore-soecified
"frame-end" character, which may be transmitted at channel speed.
fl new tty_ mode, framei (for "frame input"), s'.lecifies that the
user expects to oenerate frame input from the terminal; a new
order, "set_framinq_chars", specifies the frame-beqin and
frame-end characters (which need not be different from each
other). If the user is in framei mode and 'las set <nonnull)
framing characters, any occurrence of the fra,,e-begin character
is assumed to mark the beqinninq of a fram~: the frame-end
character becomes the only break character, so no further input
interruots are qenerated unti L a frame-end character appears. The
usi:>r's orricess can either read the entire frame by calling
iox_$qet_chars, or read the input line by line (as at present) by
caltinq iox_'tat>t_line, as exr:ilained below.

U.SfiLltHEB EA.C.E

As indicated ahove, the framinq characters are specified by
the set_framing_chars order, which causes them to be stored both
in rino '1 and in the FMP. In addition, t1e propose to add a
"framing_chars" keyword to the terminal type soecification in the
TTF so that reasonable defaults can be supplied for terminal
types (such as the Delta Data 40('1n) whose framing charactf'.'rs are
known. The framinq characters associated with the terminal type
will be included in the structure used by the set_terminal_data
order used hy tty_ and thf> answering service to initialize a
terminal when settinq its type. To allow frane input to work in
rawi mode, the framing characters must always :>e specified in the
terminal's code.

If no frami nq characters have been specified, either in the
TTT or JY explicit order, then frame input cannot be recoqnized
and may not bt> accepted. In addition, frane input is only
recognized if framei mode is on as well.

-3-

MULTICS TFCHNICAL euLLETIN i'JITB-367

The get_line entry of the tty_ I/O module will continue to
work the way it does today, i.e., it will not return to its
caller until a newline character is read out of ring 0 (unless
the caller's buffer fills up, in which cas~ the contents of the
buffer are returned alonq with a status code of
error_table_ito"q_record). A chanqe, howev~r, is beinq proposed
in the meaninq of the qet_chars entry. In the present
im~lPmentation1 this entry does not return to its caller until
the caller's buffer is full. There is no known software that
currently uses this entry, and it seems useful to make qet_chars
coqnizant of the concept of break characters.

Fssentially1 we propose that get_chars work in analogous
fashion to qet_line, except that it uses any currently-defined
break character as its delimiter. Thus in the normal default
case, where newline is the only break character, it would behave
exactly the same as get_line; in fra~ei mode, it would return an
entire frame if frame input was pres!nt.

The table below summarizes the behavior of
under the prooosed scheme. N is the character
first break character in the <converted) input: A
characters of the caller's buffer.

iox_'tget_chars
position of the
is the size in

no hreak present

call ioc_$block

break present,
N <= R

return N
characters

break present,
N > 8

ret:.Jrn A
characters and
error_table_$lonq_record

As a future extension, we rrooose a mecha~ism that will make
it possible for a user to call iox_$get_chars and be certain of
not goinq blocked in tty_ (without having to use the read_status
order>. A new mode, bl.ocki <"block for inp:.Jt"), would specify
t~at tty_ should call ipc_~block when it has no input to return.
For comoatibility with current implementations, the normal
rlefault would be for blocki mode to be on. The effect of turninq
Ploc~i ~~~e off would be to caus~ tty_qet_chars and tty_get_line
to return Q characters in th~ circumstanC!S in which they
currently call ipc_$block. It would then he ~P to the caller to

-1+ -

MULTICS TFCHNICAL BULLET!~ MTA-3t-7

decide when or if to qo blocked for input.

It should be noted that blocki mode is different from all
modes defined so far for tty_ in that it woJld he known in the
user ring only, and would never he passed on to ring o. This
would re~uire some modifications to the way modes are set and
rPoortP.d.

The only existing entry into ring 0 to read terminal input
is hcs_itty_read. If a newline is present in rinq o, this entry
returns all characters up to and inclJding that ne~line (assuming
t hat t he c a l le r ' s h u ff e r i s b i q en ou q h to h :> l d t hem) ; i f no
newline is oresent, however, it returns whatever input i~ present
(aqain, up to the lenqth of the caller's huff~r). Furthermore,
it ignores newlines in rawi mode, and returns whatever is
available.

We propose to retain the tty_read entry with its present
hPhavior for purooses of compatibility, while adding two new
entries: hcs_ttty_qet_line and hcs_$tty_get_chars. These two
entries are intended to he called by the corresponding entries in
tty_, and to behave the way the tty_ entries d:> in ·blocki mode.
Tn other words, hcs_~tty_get_line returns 0 characters if there
is no newline in ring Q, even in rawi mode: otherwise it returns
all. char;icters up to the first (non-escaped) newline. Similarly,
hcs_$tty_get_chars returns 0 characters if there is no break
character (however defined) in ring o; otherwise it 'returns all
characters up to the first break character. 3oth entries return
error_table_$long_record if the aporopriate break character is
prPsent hJt the caller's buffer is too small to include it.

It is in hcs_$tty_get_chars that the Multics side of frame
input is implemented. Specifically, whenev~r a frame-begin
character is seen, the normal break character (newline) is
iqnored, 3nrl the frame-end character is used as the sole break
character. When a frame is completed, the nor~al break character
is reinstated until another frame beqins.

Several things should he noted about this scheme. It
eliminates the necessity for a kludge that presently exists in
the get_line entry of tty_, whereby it checks the input provided
hy hcs_$tty_read to see if it ends in ASrII newline uol~~~ the
tr:>rminal is in rawi rr.ode; this allows llPL to read EACOIC input in

-5-

~ULTICS TFCHNICAL RULLETTN MTR-3~7

rawi mode. Under the proposed scheme, tty_ can trust any input
returnert to it by hcs_$tty_get_line to eni in newline, since
otherwise ~cs_$tty_get_line woulrl have returned 0 characters. The
second point is that, jn order for the scheme to work in rawi
mode, break characters must be known in rinq J in the terminal's
(untranslated) code. This is already true of iewline Cassuminq
the termi~al's code for newline based on line type) because it is
used to determine how much input ·to translate and convert at
once, and the specification of the set_framing_chars order makes
it true for the frame-end character as well.

The retention of hcs_~tty_read serves the purposes of
special-purpose J/0 modules <such as bisync_) that wish to do all
inter~retation of input in the user ring. Ay calling
hcs_$tty_read in rawi mode, they can use ring n as a completely
transparent data pipe. Finally, the answeriig service <i.e.,
astty_) can be changed at a later date to call hcs_$tty_qet_line
rather than hcs_$tty_read, since it is really interested in
complete lines, and currently believes that that is what ring 0
is sending it (which is usually true).

It should he pointed out that unier present FNP
implementation it is very rare that input not ending in a break
character finds its way into Multics memory, s~ that the current
ring 0 software usually does what is wanted. W~ are not orepared,
however, to guarantee that such input will o~~:L appear, and in
fact we are considering modifications, descrihed later in this
~T8, that will increase the freouency with which such "partial"
inout apoears in rin~ O.

The issue of qeneratinq excessive HSLA interrupts by
inputting a screen full of newlines has been mentioned above. By
usin~ framei mode, a careful user can avoij this problem. To
cover the case of a careless or malicious user who hits the
transmit key without entering framei mode and specifying framing
chars, the HSLA software will be modified to detect that it is
not keeping up with the channel, and drop receive mode on the
channel right away. When this hapoens, a few 3EL characters are
sent to the terminal to warn the user that the input is not being
received properly. Receive mode is restored if the user hits
QLJJT; if this has not happened within 10 seconds, a QUIT is
siqnalle1 automatically, and receive mode is restored.

-6-

~ULTICS T~CHNICAL BULLETIN r-'!TB-367

Another nossible source of trouble is frame inout on a
channel in echoplex mode. The nature of the fNP implementation of
frame recoqnition is such that when a frame-begin character
appears in framei mode, echoplex is automatically disabled for
t~e duration of the frame. In the case of a user who, as above,
neglects (inadvertently or otherwise) to leave echoplex or enter
framei mode before hitting the transmit key, the software can be
modified to recognize excessive echoplex interruots (which are
distinguishable from break-character interrupts> and take the
c ha n n el out of e ch op l ex mo rl e.

There is a rather crude mechanism ii the current FNP
software to prevent a runaway channel, or a foolish or clever
user, from devouring all the FNP buffer space by fillinq the FNP
with inout. This is done by takinq the channel out of receive
mode, as described above, whenever it has nore than a certain
n um be r , kn own a s t h e "e x ha us t l i mi t '', o f i n p u t bu ff e rs a l l o c at e d •
The preseit limit is rather too small for nost known screen
sizes: in any case, it is not clear that it is safe to allow a
channel to have the entire contents of some arbitrary terminal's
me~ory in FNP memory all at once.

We propose to get around this problem by qreatly iricreasinq
the exhaust limit, and establishing a smaller limit called the
"pre-exhaust" limit. When the pre-exhaust liinit is reached, the
FNP interruots the central system and sends it the accumulated
input, while continuing to accept further input from the chanrel.
This will allow larqe frames to be input without choking the FNP.
It will also result in arbitrary "oartial" input being sent to
Multics memory. As indicated above, we inteid to modify the
central syste~ software so as not to process this input until it
is "complPte."

The remainder of the ~TA consists of draft documentation
describinci the new features of the tty_ Tin module and the TTF
spec i fi c<1t ion.

-7-

tty_ tty_

The get_chars ooeration return~ characters only if a hreak
character has been sent from the terminal, in which case it
returns all characters up to 3nd inclurlino the first break
ch~racter. The brea~ character is normally newline unless the
channel is in fra~ei morle and the frame-begin c~aracter has heen
input, in which case the break character is the frame-end
character <see the descri~tions of framei ~ode and the
set_framing_chars order, below>. If the caller's buffer is too
small to contain all the characters up to and including the break
character, as many characters as can fit i~ the buffer are
returned, along with a status code of error_table_ilong_record.

<to bE" added under "Global Orders")

set_framinq_chars
soecifies thE" pair of characters that the terminal
generates surroundinq input tra~smitted as a block
or "frame". These characters must be soecified in
the character corle used hy the terminal. This
order must be used for framei mode <see below) to
be effective. The info_ptr must point to a
structure with the following format:

dcl 1 fra~ing_chars aligned,
2 frame_beqin char (1) unaligned,
?. frame_end char (1) unaliqned:

get_framing_chars
causes the framinq characters cJrrently in use to
be returned <see the set_framinq_chars order,
above>. If no framinq characters have been
supplied, NUL characters are returned. The
info_ptr must point to a structJre like the one
des c r i be d for t he s e t _ f r a m i n g _ ;c ha r s order ; t h i s
structure is filled in as a ·resJlt of the call.

tty_ tty_

(to be ad~Prl unrler "Modes Operation")

framei, •tramei
specifies that the user's termi~al is caoahle of
transmitting a block or "fra'lle" of input all at
once in response to a sinqle keystroke. The
system may not hanrlle such in~~t correctly unless
framei mode is on and the set_framing_chars order
has been issuPrl.

9

Sf't_tty set_ tty

(a~rlition3l control arquments)

-fr.:ime f r a ni i nq_chars, -fr f r .::i fl'; nq_chFJrs
chilnOPS t hr> fr.:iminq charact r>rs uc; p -J i n r:imP i rr>() d p to

t h () s p s r' e c i f ; er! f, y fr,1mi nq __ charo;. Tf-)P fr.:i(l\inri ch;:irs
f) f

f r ;> rn •" - f·' p 0 ; n c Ii ,1 r il r. t p r ,-, ri r; t h "' f r il f<' p - p n ,..j c 1-j ;i r " c t e r .. i "
t h l t 'i r r~i e r • r f• '" "· ,.. c ., ,:) r ,, (t pr <; ,.,., u s t hp <; r p c i f i p ,; i n
t h i> t· h .~ r ;1 c t r> r ..- o c ! P n f t ~· r> t r> r m i n a t • T h <• y m ;i y '"' P

Pntpr·p,-4 ;is nct;I <>Sci'IPPS if '1PC"ss.::iry. If f-e

1 r"<1 rri i:-· -- 1 "' :i i n d• ii r a r t P r· i s s r P r i f i " ,; ri c; :i h I a n k o r a c; a

~·! 1 I l c !• :i r ,1 c t. Pr , t Ii P f r il rr1 P - hf' q i n c h .1 r rt c t I·' r i <; n o t

c h ,) n n •" · i ; i (t h P f r· d rr1 r> - •" r, d r h ;i r ;i c t <> r 1 •, ') m i t t P '.l ,

or c;necifind r· UL
r. f0 ,J r· ·i 1 t ;:> r· ~ ! '' P f r ii •n P - " n -l c h '1 r ,:i c t P r

1 f· ,, ' r .1 1;i ·i •1·1 c h .'l r <i r t "' r s h a v P n 0 P f f <> c t

"'n, 1 "' 1 ··; ,1 n • T t 1 s ,1 n " r r· r> r t o s e t ri n P

(f•:1rlr.tpr·s to ' 11.11 1inlr>ss th<>. ntrer Q'""\ 0

·• p r i n t f r· ;1 111 r• , - n r f r

i~.: not chancipd.
unlPc;<; fr;~mei

of th"' framinq
i ~ ,1 l c; o ~!I I L •

pr··int<; thr> +rarriro c"iaract<>rc:; fnr thP tP-rrninal.

T n ,.~ e r t l.J ·" , ~ ~ r ~·! () t P '~ b ~ t w P e n s t e p 5 5 a n d 6)

rf thr> ·-fr;ime coritrol ar9ument is so1>cifi!"cj, set the framing
ch:~r:ir.t!"rs.

lf the print_fr1me
framinq characters

control ar'lument
on t he t e r rn i n a l •

; s S)ecified, orint

(arlrl unrler Examoles)

Tht> commanrl I ine:

set_tty -frame \~0?.\nn~

~ets the frame-he~in and frame-Pnrl characters tn
~nrl ETX character<; resnectively.

t h f> l'.SCTT

the

ST)(

'.

(to he added to MAM System, SP.ction 6, description of TTF syntax)

framin~_chars: <frame_begin> <frame_end>:
The framinn_chars statement is optional. If present, it
specifies the framinq characters generated by the
terminal w~en senrling frame input at channel speed.
<frame_begin> and <frame_end> are octal numbers of ur
to 7. digits representing the frame-beqin and
frame-characters, respectively, in the terminal's
character code (i.e., without translation). These
characters are recognized in framei ~orle only.

1 1

