
MULTICS TECHNICAL BULLETIN MTB-364 

To: MTB Distribution 

From: T. Casey 

Date: 8 March 1978 

Subject: Improvements to Control of Absentee Jobs 

INTRODUCTION 

This MTB describes enhancements to the absentee facility that 
allow the system, the central operator, Remo~e Job Entry (RJE) 
station operators, and ordinary users, to exercise better control 
over which absentee jobs are run, and the order in which they are 
run. 

These enhancements have been requested by a number of customers. 
The need for them will be felt most strongly by sites that use 
t !i e R J E fa c i 1 i t y • 

The contents of this MTB are an attempt to provide a coherent 
design for a large set of enhancements that will be implemented 
in stages over the next several Multics releases. 

DEFICIENCIES OF CURRENT FACILITIES 

In the current system, the operator can cancel an absentee job 
only after it starts running, while the user who submitted it can 
cancel it only before it starts running. The operator has no 
control over the order in which jobs are run (except for the 
ability to "turn off" one or more of the lower queues, preventing 
any jobs from those queues from running, thus reserving the 
available absentee slots for any jobs that are subsequently 
submitted in higher queues). The user can only change the order 
in which his jobs are run by canceling them and resubmitting them 
in a different order or into different queues. 

The sy~tem automatically controls interactive logins to prevent 
one user or a group of users from monopolizing the resources of 
the system, by limiting the number of logins from each load 
control group and limiting each user to one process (except for 
users with the multip attribute). There are no analogous 
controls on absentee logins. 

Further, although the system claims to provide quick service to 
high priority jobs, by means of multiple queues, it is possible 
for lower queue jobs to tie up all the absentee slots, preventing 
the login of higher queue jobs submitted after the lower queue 
jobs started. Also, because of the limited flexibility of 

Multics Project internal working documentation. Not to be 
reproduced or distributed outside the Multics Project. 



Page 2 MTB-364 

absentee load control (abs maxu and abs_maxq are settable to 
constants on each shift)~ jobs that should be run are sometimes 
postponed. Setting abs maxu to a conservatively low value (2 or 
3) can prevent high priority jobs from being run as soon as they 
should, and can prevent low priority jobs from filling idle time 
as completely as they should. 

There is currently no way to synchronize the login of an absentee 
job that needs some resource with the availability of that 
resource. For example, an absentee job that needs a tape drive 
can log in and wait indefinitely if none is available, tying up 
an absentee slot and inconveniencing the user (who would probably 
prefer that the job not start if it was going to be unable to 
finish). 

SUMMARY OF THE RJE FACILITY 

To understand the reasons 
follow, it is necessary 
facility. 

behind some of the proposals that 
to know certain things about the RJE 

The process that runs an RJE station has a special process 
overseer that accepts dials from RJE stations, responds to RJ~ 
commands, and submits absentee jobs on behalf of RJE users. We 
will use the term ''RJE daemon" to refer to such a process. 
Although there is no requirement that an RJE daemon be on the ~ 
SysDaemon project, or even that it be a daemon (i.e., be logged 
in via the message coordinator), it is expected that RJE daemons 
will be logged in via the message coordinator (rather than from a 
terminal at the remote site). The RJE process overseer was 
designed with this in mind, in that it accepts RJE control 
commands from both user input (the terminal or the message 
coordinator) and slave input (the card reader or other input 
device of the RJE station). 

The RJE daemon must have the dialok attribute so it can accept 
dials, and it must have "e" access to the segment 
>sc1>proxy>absentee proxy.acs so it can submit proxy absentee 
jobs (i.e., jobs -to be run on behalf of, and under the User id 
of, some other registered user). 

In general, a given RJE daemon can accept dials from any number 
of different RJE stations. However, an RJE daemon can have only 
one station at a time dialed to it. 

It is assumed that a given RJE station will always be run by a 
process of the same User id - that is, that a given station will 
always dial the same RJE daemon or else all the RJE daemons will 
have the same User id. 

There will be a need to identify the jobs from a particular 
station, for obvious reasons. The User id of the daemon will not 
suffice since a given daemon can serve more than one station. 



MTB-364 Page 3 

Further, a means of listing which RJE stations are currently 
being served, and by which daemons, will be useful. 

Two other points should be noted. First, from the viewpoint of 
the system - i.e., the answering service and the message segment 
facility - the RJE daemons are much like ordinary users, and the 
absentee jobs they submit are like those submitted by ordinary 
users, except that they are proxy jobs. The RJE daemons have no 
special privileges except the dialok attribute and access to 
absentee_proxy.acs. 

,· 

Second, since the RJE daemons will use the same facilities as do 
ordinary users to submit and control absentee jobs, any 
enhancements to these facilities that are made to support RJE 
will automatically be available to ordinary users (unless we go 
to some trouble to build in restrictions, which we do not plan to 
do). 

NEEDED IMPROVEMENTS 

The following list is presented to summarize the extensions that 
customers have requested, and to motivate the discussions that 
follow. The items in this list should not be interpreted as 
indications of the final form that the extensions, and the 
interfaces to them, will take. 

The central operator should be able to: 

1. Put any job in a hold state (don't run it until told to by 
operator), ·and, of course, take it out of the hold state. 

2. Run any job, or set of jobs, immediately. 

3. Change the order in which any set of jobs will be run. 

4. Cancel any job, whether it has started or not. 

5. Set a cpu limit parameter so that any jobs with higher cpu 
limits are automatically held until the limit is raised. 
(There will be a site settable default value for this 
parameter, for each shift, analogous to the current abs maxu 
and abs_maxq parameters.) 

6. Put a running absentee job in the suspended state (process 
goes blocked and runs only to copy wakeups out of the ITT 
into its ECT) so that a high priority job can be started at 
once, without overloading the system, even though all the 
absentee slots are in use; also remove a job from this 
state. 

7. List the absentee jobs - either all, or a subset selected by 
specified criteria, and list them in a specified order. For 
example: list all jobs from a specified RJE station, print 



Page 4 MTB-364 

total number of jobs with cpu time limits under 2 minutes, 
list next 10 jobs in the order in which they will be run, 
list all jobs in order by cpu limit, etc. 

RJE station operators (and ordinary users) should be able to: 

1. Re-order their own jobs without canceling and resubmitting 
them, and without "losing their places" in the queues. 

2. Cancel their own jobs even if they have started running. 

3. Specify at submission 
resources and should 
are available. 

time that a job needs certain 
not be started until those resources 

4. List their own jobs, with the same options that the central 
operator has for listing all jobs; in addition, be able to 
determine the state of their own jobs, as regards their 
positions in the queues, whether or not they are held (an~ 
for what reasons), and whether or not a job is running. 

The absentee facility should be able to: 

1. Recognize and respond to the requests from operators and 
users that will support the above features. 

2. Enforce sharing of absentee slots among users and among 
queues, using parameters settable by each site for 
example, upper limits on the number of simultaneously 
running jobs from one user or from each queue. 

3. Allow jobs to be deferred until a specified time interval 
before shutdown. This would be useful to system maintainers, 
for example to run jobs that do accounting or hardware error 
reporting. This would require that the absentee facility be 
notified each time the scheduled shutdown time is changed by 
the down command. 

4. Allow privileged jobs to be guaranteed to be logged in 
immediately, or at a scheduled time. This is needed to 
provide a way of creating multiple processes for transaction 
processing, without requiring operator intervention or 
communications access for the user who is turning on the 
transaction processor. 

DESIGN ISSUES 

The design of these extensions to the absentee facility must deal 
satisfactorily with the following issues: 

1. The implementation of these extensions must be coordinated ..,. 
with Multics releases and with the completion of other ~ 

projects. Therefore, some desirable features might have to be 



MTB-364 Page 5 

eliminated from the design to allow for timely completion, and 
the next Multics release will contain only a subset of the 
features that are left in the design. 

2. Many of the queue control extensions would be equally useful 
if applied to the I/O daemon queues. The operator and user 
commands to control absentee and I/O daemon queues must be 
designed at the same time to maintain consistency in the 
interfaces. The same keywords or control arguments should be 
used to specify the same actions on each set of queues (hold, 
release, cancel, etc.) and the existing interfaces to each, 
where certain words are already used, must be considered in 
designing extensions to the other. 

3. It turns out to be very difficult to provide users with 
additional information about, and control over, their own 
jobs, without providing them, at the same time, with some 
information about the jobs of others, thus introducing write 
down paths. It is the consensus of opinion that the 
introduction of (even narrow bandwidth) write down paths is 
undesirable. Therefore these extensions are being designed 
subject to the constraint that they introduce no new write 
down paths. This will force some features to be eliminated, 
or put off until there is time to effect a more secure, but 
also more costly, implementation. 

4. Although extensions to operator commands make up a large part 
of this proposal, our goal should be to design a system that 
will do the right thing automatically in most cases, without 
requiring continual operator intervention. Since "the right 
thing" will often be different at each site, this means 
providing site settable default values, per shift or per queue 
or both, as may seem appropriate, for each of the parameters 
that the operator commands can set. 

5. Several properties of the ring 1 message segment facility 
(which is used to maintain the absentee queues) should be 
mentioned here, since they cause some implementation 
difficulties that have affected the design of the extensions. 
Message segments are designed to be FIFO queues. New messages 
can only be added to the ends of the queues. Each message has 
a unique id, assigned by the ring 1 software. It is a function 
of the clock reading at the time the message is added. Thus, 
messages are ordered in the queue by increasing unique id 
values. Much of the message segment software depends on this, 
and changing this dependence would be extremely difficult. 
Thus, any design that supports reordering of absentee jobs 
must do so in a way that does not change the unique id order 
of messages in the queues. The two possibilities are to 
maintain a list, in a separate segment, of jobs in the order 
they are to be run, or to implement message-reordering 
primitives that re-thread messages and then exchange their 
unique ids, thus preserving their order. 



Page 6 MTB-364 

There are primitives to rewrite existing messages. However 
they have two shortcomings, namely that they rewrite mess~~e~ 
in place (and thus cannot replace a short message by a lon~er 
one), and they change the sender userid from its current value 
to that of the process doing the rewriting, thus destroying 
the information about who was the original sender of the 
message. 

6. Because of the extensions to both user and operator commands 
that control absentee jobs, a convenient means of referring to 
a particular absentee job is needed. Currently, users can 
refer to their own jobs only by the pathname of the absin 
segment when using cancel abs request (the only command that 
has any need to refer to submitted absentee jobs). If a user 
has several jobs with the same absin segment (for example, 
translator absin.absin), it is currently impossible for him to 
refer to a-particular one of those jobs. The operator can 
refer only to a running job, either by User id or absentee 
slot number, when using the abs bump command. Tf a user has 
m0re than one job running, the slot number provides a way of 
referring to one of them, but there is no sure way for the 
operator to determine which slot "the" job is in - especially 
if they both have the same absin segment. And of course there 
is no way at all for the operator to refer to a job that has 
not yet started. 

Attributes of a Useful Job Id 

A job id should be a short, typeable, and pronounceable 
character string. Having the operator and user be able to use 
the same name for a given job is very desirable, so they can 
refer to it in verbal communication with each other. To avoid 
confusion and mistakes on the part of operators and users, it 
is almost essential that a given job keep the same job id 
throughout its life in the system, even across shutdowns. 

The ids used by the operator (and hopefully by users too) must 
be unique among jobs currently in the system. However, ids of 
jobs no longer in the system should be available for re-use 
after some reasonable time, like a few days. This will 
prevent, for example, job numbers from getting progressively 
higher, longer, and harder to type, during the course of time. 

Several alternatives were considered: 

1. Use the unique id of the message segment entry as the job 
id. This fulfils many of the requirements, but it was 
rejected because of two serious flaws: 1) an 18-digit octal 
number is too long and hard to type; and 2) the unique id 
of a job must change if the job is reordered within a 
message segment or is moved to a different message segment. 



MTB-364 Page 7 

2. Use the unique id of the message segment entry, and provide 
mapping of it into separate ids for the use of the user and 
the operator (by assigning ids at startup time for the 
initializer process, and once per process for users, and 
having them displayed by an absentee listing command and 
remembered in static variables.) This has the drawbacks 
that ids change at process termination and system shutdown, 
and users could not communicate requests about their jobs 
verbally to the operator. This might not seem serious, but 
imagine a user who knows a job by one id, who is unable to 
log in to execute commands to find out its current id or 
cancel the job, and is unable to ask the operator to cancel 
it because the operator knows it only by some other id. 
Another drawback of this method is that it forces us to 
design, implement, and debug two unique id assignment 
algorithms having different criteria for determining 
uniqueness. 

3. Assign each job an id consisting of a short (4 or 5 digit) 
number. These ids would be reusable and would be assigned 
by an algorithm that chooses randomly from among the 
available ids (avoiding, by the randomness, the write down 
path that would result from assigning ids in numerical 
order). 

The id must be assigned by the initializer process, on 
receipt of the wakeup from the enter abs request (ear) 
command, or by an innner ring procedure .c~llea by ear in 
the user process. The id must either be published in a 
segment readable by all processes or be put into the queue 
entry of the job, requiring that the entry be rewritten by 
the initializer process, if that process assigns job ids. 
(New or modified rewrite primitives will be required to do 
this.) 

Assigning the id in ring 1 in the user process would 
require too much knowledge of the application (the absentee 
facility) to be put into what is now a general purpose 
system function (the message segment facility). So the 
initializer process will assign job ids. Publishing the ids 
in a segment readable by all processes would introduce an 
obvious write down path. Therefore the ids must be written 
into the queue entries. 

The third alternative is obviously superior, and has been 
chosen. 

1. Users will want to find out the current states of their jobs. 
Actions taken by the operator or the system can change the 
states of jobs - for example a job can be held for various 
reasons, and the order in which jobs are to be run can be 
changed. If users are to be able to see these things, state 
changes made by the system and the operator must be noted in 



Page 8 MTB-364 

places accessible to the users - either the queue entries for 
the jobs (each of which is readable by the submitter), or in a 
segment readable by all users. Unfortunately the latter surely 
introduces a write down path, while in the former, serious 
implementation difficulties, inherent in the current design of 
the message segment facility, make it difficult to support 
reordering of jobs and still provide the ability for users to 
see the current positions of their jobs in the queue. 

To properly support reordering of jobs and make it visible to 
users, we would need new message segment primitives that allow 
reordering of messages (more precisely, interchanging two 
messages, given their unique ids, by rethreading them while 
the message segment is locked), and a change that allows users 
with s and o access to be told the positions of their own 
messages. The problem is that the searching and salvaging 
procedures assume messages are in increasing chronological 
order (the unique ids are based on the clock and are 
increasing), and providing the ability to reorder messages 
would require either changing this assumption probably 
prohibitively expensive to implement, and so not to be 
considered any further, or exchanging the message ids after 
rethreading the messages, which introduces another set of 
difficulties. If the message segment facility allows the 
changing of the correspondence between a unique message id and 
the contents of a message, then all system and user 
applications must be prepared to have such changes occur, and 
they can not depend on a given unique id always belonging to 
the message that it originally belonged to. While this might 
not be a real problem, especially if reordering is confined to 
the absentee queues, and possibly to privileged processes, 
prudence dictates a careful study of the implications of 
providing message-reordering primitives. Therefore they will 
be unavailable for use in early versions of the absentee 
enhancements. 

Since reordering of queue entries is currently impossible, a 
general job-reordering capability could only be provided by 
having the initializer process maintain a list of jobs in the 
order they are to be run. Operator commands could modify this 
list directly. Since users could not be given access to modify 
this list, user-reordering could only be supported by means of 
requests sent by user processes to the initializer process. 

Users can not even be given access to read this list without 
introducing a write down path. If users cannot see the current 
order of their jobs, nor the effects of the user's or the 
operator's reordering commands, the usefulness of user 
reordering is doubtful, and the wisdom of providing operator 
reordering is also questionable. Therefore we have decided to 
put off the implementation of a general job reordering 
capability until the possibility of reordering messages within 
the queues has been studied carefully. 



MTB-364 Page 9 

To meet some of the job reordering needs, we will provide user 
and operator commands to move a job from one queue to another, 
and operator commands to force the immediate starting of a job 
and to move one or more jobs to "the head of the line." The 
implementation of the head of the line will be an additional 
message segment, queue zero, serviced ahead of the other 
queues, readable by all processes, but writeable only by the 
initializer process. 

To make job status information available to users, we will 
rewrite the queue entry of the job whenever the status 
changes. For most jobs, this will occur only once, when the 
job starts. 

8. To allow an RJE daemon to identify the jobs it submits as 
coming from a particular one of the several RJE stations that 
can dial to it, we propose the addition of a comments field to 
the absentee message in the queue. The comments field will be 
used by RJE to hold the name of the station. Since this field 
is settable by "the user" who is, in this case, the RJE 
daemon, the system will not trust its contents for purposes of 
making decisions about the job. However, the RJE daemon can 
trust this field and use it for purposes of controlling the 
jobs that it has submitted. Note that the RJE daemon can 
control no other jobs except those that it has submitted, and 
it has complete control of the comments fields of those jobs. 

Further, since the site (presumably) trusts the code running 
in the RJE daemon process, it can also trust the contents of 
the comments field of any proxy job submitted by the RJE 
daemon, and can instruct the central operators to trust it 
when issuing job control commands. (The thinking here is 
that, while the system should not contain code that 
automatically does such things as assign a job to a special 
load control group, bill it to a certain account, etc., on the 
basis of the contents of the comments field, it is safe for a 
site to instruct the operator to issue commands to do such 
things as hold or release jobs whose comments fields indicate 
that they come from a certain RJE station. 

9. We have stated a need for an absentee job that requires some 
resource (such as a tape drive) to be so identified, and the 
job not logged in until the resource is available. On the 
surface this seems like a reasonable, and easy to satisfy, 
request. However, the more one thinks about it, the more 
difficult it becomes. 

If we wait until a slot becomes available and a job is ready 
to run, before we request a resource reservation on behalf of 
the submitter, then we have several alternatives. If the 
resource can be assigned immediately there is obviously no 
problem. If it cannot, then we could: hold the job and try for 
an immediate reservation each time a job logs out and we are 



Page 10 MTB-364 

about to log another one in; (2) or make a reservation for 
some time in the future and then: hold the slot unused for 
some arbitrarily long time until the resource becomes 
available; or else wait until the resource becomes available 
and then: hold the resource (charging it either to the user 
or to overhead) until an absentee slot becomes available (and 
hoping one becomes available before the reservation expires); 
or log the job in immediately, creating a new slot if 
necessary (the way the abs run command will do), thus allowing 
a job with an associated resource reservation to violate 
absentee load control and possibly overload the system; or 
invent the concept of a reservation for an absentee slot. 

Once we do the latter, there is no reason not to let users use 
it: instead of having the system, at the time the job reaches 
the head of the queue, reserve a tape drive and an absentee 
slot for some time in the future and run the job then, the 
user could make that reservation at the time he submits the 
job, and have the advantage of knowing when the job is going 
to run. The big problem is how to reserve absentee slots 
without having to create new slots, violating load control as 
a matter of course, in order to meet reservation commitments. 

A reservation of any resource is for a specified period of 
real time. Up to now, an absentee job has been a reservation 
of a process for an indefinite amount of real time, and a 
guarantee (barring crashes) of up to the specified limit of 
cpu time. An interactive login, on the other hand, is a 
reservation of a process for a real time period equal to the 
user's grace time, with no guarantee of any minimum amount of 
cpu time. In the interactive case, the user is present, and 
can see how slow the system is, and can decide whether or net 
t~ attempt to complete some large computation, or wait unti: 
later, or submit an absentee job to do it. 

The only way we could reasonably impose real time limits on 
absentee jobs (thus allowing us to give reservations for 
absentee slots) would be to give logged in absentee jobs a 
scheduling. priority sufficient to guarantee that they can get 
up to their cpu time limit during their real time limit. (The 
latter would be assigned automatically as a function of the 
former, and the scheduling priority would be some reasonable 
constant.) 

(2) In the initial implementation, we will do this, since 
immediate reservations will be the only kind supported by the 
reserver. However this is an unsatisfactory solution since there 
is no guarantee that the job will ever run. This will become a 
real problem in later releases, when users can make reservations 
for the future, at sites whose resources are so heavily used that 
a reserver is really needed. The rest of this discussion pertains 
to that situation. 



MTB-364 Page 11 

If we decide to go ahead with a reservation system for 
absentee slots, we will have to resolve conflicts between it 
and the other absentee scheduling algorithms (e.g., what to do 
if a job which the reserver has scheduled to run at a certain 
time has parameters (such as queue or cpu time limit) that 
conflict with limits that the operator has set). 

To summarize, in order to associate a resource reservation for 
a future time with an absentee job, we really need to reserve 
an absentee slot for the time of the resource reservation. To 
reserve absentee slots we need to impose real time limits on 
absentee jobs, and to do that we must give absentee jobs a 
high enough scheduling priority to allow them to get their cpu 
time limit during their real time limit. 

10. A method 
for such 
designed. 
providing 

of guaranteeing the availability of absentee slots 
applications as transaction processing must be 
There are a number of points to be considered in 

this capability. 

The real need, for transaction processing, is for a facility 
that lets one process spawn additional processes to perform 
tasks designated by the spawning process. Since absentee is 
such a facility, we naturally think of extending it to fill 
the needs of transaction processing. But perhaps that would be 
misusing absentee for something for which it is not suited, 
and it would be better to provide a new mechanism for process 
spawning. 

On the other hand, the absentee facility is already there, and 
if some natural and compatible extensions to it could be found 
that would allow it to fill the immediate needs, it would 
clearly be better, for reasons of economy, to avoid building a 
brand new facility. 

Consider interactive logins and absentee requests from the 
following viewpoint: an interactive login is a request from a 
user for the immediate creation of a process that will take 
its input from a terminal, have a certain scheduling priority, 
and be charged at a certain rate. This request will be 
satisfied if load control permits it. An absentee request is a 
request from a user for the creation of a process at some 
future time; the process will take its input from a segment, 
have a scheduling priority usually lower than interactive, and 
be charged at a rate usually lower than interactive. This 
request will be satisfied by the system at its own 
convenience, when it has available capacity. The two 
attributes in which absentee jobs differ from interactive 
processes are: 1) an absentee job is the automatic creation of 
a process, by the system, to perfom a predefined task without 
the user's supervision; and 2) since the job is to be run at 
the convenience of the system, to fill up otherwise idle time, 
it is charged at lower rates. 



Page 12 MTB-364 

There is no reason, other than historical, why these two 
attributes have to be tied together. Users might want the 
convenience of the first, but want, and be willing to pay for, 
higher priority than is implied by the second. In fact, that 
is exactly what is needed to support transaction processing. 

A simple way of providing this within the current absentee 
facility would be to allow a site to designate one or more of 
the lower numbered queues to be governed not by the (current 
and new) absentee load control, but by interactive load 
control. Jobs from the queue(s) so designated would be logged 
in if there are primary units available in that user's load 
control group, without regard for whether or not there are any 
absentee slots available. The job would be charged to that 
load control group as if it were an interactive job. Such a 
job would never become secondary (subject to preemption). 

To avoid any ambiguity regarding how a given job should be 
trated, and to preserve all of the features of the current 
absentee facility, it seems to be better to create a new queue 
for high priority jobs instead of using one of the existin~ 
ones. We will do so, calling it the foreground queue. The jobs 
in it will be called foreground jobs, as opposed to those in 
the other queues, which will be called background jobs. The 
term foreground process will be used to refer to a process 
that can be either a foreground absentee job or an interactive ~ 
process. Jobs from the foreground queue will be charged at 
the same rates as are interactive processes. The load control 
for background absentee jobs will be modified to be consistent 
with, and compatible with, the load control for foreground 
absentee jobs. The details of these changes are discussed 
below. 

This will cause some changes in which jobs can log in. Some 
jobs that currently can log in under certain system loads will 
be unable to. These will be the jobs of users whose load 
control groups are full. But in the current system, the fact 
that users whose groups are full can log in absentee jobs 
allows them to violate the spirit of load control. Denying 
them this ability should be viewed as a good thing. 

Some jobs that could not log in under certain system loads 
will be able to, under the new system. These will be jobs from 
users who prefer to have the system perform a predefined set 
of computations for them without their superv1s1on (i.e., 
absentee rather than interactive), and want it done 
immediately (or at a specified time) and are willing to pay 
higher rates for this priority, and whose load control groups 
have enough available units to enable them to log in 
interactively to perform these computations if they had wanted 
to. It seems obvious that providing users with this ability 
would be a good thing. 



r 
. ·"""' 

MTB-364 Page 13 

However there are some problems. We have not completely 
defined the behavior of the absentee facility with respect to 
jobs from various groups, in various queues, under various 
loads, and we must do so in a way that makes the system behave 
sensibly in all cases. For example, we don't want a job from 
the foreground queue to be refused login because the user's 
load control group is full, but the same job, from the same 
user, from one of the background queues, to be logged in 
because there are free absentee slots. 

Of the two aspects of absentee jobs predefined tasks run 
without user supervision, and low priority tasks to be run at 
reduced rates at the system's convenience to fill idle time 
we have separated out the first, allowing such tasks to be run 
as foreground jobs. We now want to preserve, and possibly 
extend, the second. 

Currently the existence of idle capacity is defined by the per 
shift parameters abs maxu and abs maxq. Thus, a certain amount 
of idle capacity, to be used up by background absentee jobs, 
is defined to exist on each shift, in spite of the fact that 
the actual load may cause a higher or lower idle capacity to 
actually exist. In a sense, the idle capacity is also defined 
by the load because, under heavy load, jobs take more real 
time to complete, and thus fewer jobs are run during a given 
time period. However, leaving background absentee jobs in the 
system for long times, competing for, and occasionally 
getting, cpu and memory resources that high priority processes 
also want, is probably not the right way to distribute the 
resources. It would be better, when high priority users load 
down th~ system, to finish any background absentee jobs in a 
short time, get them out of the system, and not log any more 
in until the high priority (both interactive and foreground 
absentee) load goes down. In other words, the number of 
background absentee users should be some function of current 
load level, varying between a site settable maximum and 
minimum. 

The new absentee load control algorithm should obey the 
following rules: A user who could log in as a primary 
interactive user should also be able to log in a foreground 
absentee job. A user who can not log in as either a primary or 
secondary user should not be allowed to log in any kind of 
absentee job. But what about users. who could log in as 
secondary interactive users? The system permits them to log in 
interactively, to fill the idle foreground slots that are 
reserved for primary users from other groups. However they are 
subject to preemption whenever the slot is needed by a primary 
user. It seems clear that most absentee jobs either 
foreground or background should never be made subject to 
preemption, since there is no user present to exercise 
judgement about whether or not to attempt a large computation 
in a secondary process, or how to interrupt such a computation 



Page 14 MTB-364 

gracefully if the process is preempted. Most users would ~ 
prefer that their absentee jobs not be logged in until they 
can be run to completion. For those jobs that do not have a 
problem handling preemption, a -standby argument to the ear 
command, indicating willingness to be logged in as a secondary 
foreground user, could be provided. A preempt signal, 
analogous to the trm and sus signals now sent by the 
answering service (3} could be implemented, to allow preempted 
foreground absentee jobs to attempt to interrupt their 
computations gracefully, clean up, and log out. 

Foreground jobs unwilling to be secondary could find 
themselves held while the same job in one of the background 
queues would be logged in and not be subject to preemption. 
Users would (correctly} see this as a bug in our load control 
algorithm, requiring them to play the frustrating game 
(familiar to supermarket shoppers} of trying to guess which 
line will move faster. To avoid this situation, we will allow 
such a job to be logged in if there is a background absentee 
slot available for it to occupy. The algorithm for deciding 
if there is an available slot will be described below, 
together with some new background absentee load control 
features that it interacts with. 

With users potentially able to have several foreground (either 
interactive or absentee} and background processes 
simultaneously, more precise controls on the number of 
processes per user are needed. We currently have the 
multi login (multip} attribute, which, when given to a user, 
removes the limit of one interactive process, leaving the user 
limited only by the number of process slots available to the 
load control group. Absentee users are always limited only by 
the number of absentee slots. To provide for proper 
administration of the new features, we must replace the multip 
attribute with two numbers, giving the maximum foreground and 
background processes respsctively. These will be per-user 
attributes, kept in PDT entries. Their values will be subject 
to per-project limits kept in SAT entries. In addition, we 
will provide per load control group parameters giving the 
largest fraction of background absentee slots able to be 
occupied collectively by users in each load control group. 
Thus users attempting to log in multiple processes of any kind 
will be governed both by the per-user and per-project 
multi-process limits, and by the load control group limits. 

NEW FEATURES AND SCHEDULING POLICIES 

(3) The answering service that sends these signals (to 
process termination and channel disconnection} is 
installed. 

indicate 
not yet 



MTB-364 Page 15 

Currently, we have per shift abs maxu (max absentee jobs) and 
abs_maxq (highest numbered queue being served) parameters, 
settable by the site, and operator com~ands to override the site 
settings temporarily. We will make abs maxu a function of the 
foreground load rather than a constant. To-reserve absentee slots 
for the lower numbered queues, we will reserve a (site-settable, 
per-shift) fraction of abs maxu for each queue, and always allow 
jobs from lower numbered queues to occupy slots reserved for 
higher numbered queues. For example, if the slots per queue 
resulting from these computations were 1, 1, 2, then four queue 1 
jobs could be running, or three queue 2 jobs (leaving one slot 
open for a queue 1 job that gets submitted while they are 
running), or two queue 3 jobs (leaving two slots open for queues 
1 and 2). 

The abs maxu 
be allowed 
function of 
be used: 

figure, and the per-queue reserved slots, will all 
to vary between a minimum and maximum value, as a 

foreground load. A formula of the following form will 

n = min(max_n,max(min~n,PCT*N)) 

where N is the input value (e.g. the number of idle units), n is 
the output value (e.g., the number of background absentee jobs 
that should be allowed to be logged in simultaneously), and PCT, 
max_n, and min_n are per-shift parameters settable by the site. 

The complete set of formulae involved in these computations is: 

system maxu = f(config array in installation parms) 
available units = system maxu - n daemons 
idle units = available units - sum(units used by all groups) 
recent idle units = (lowest idle units during last M minutes) 
abs maxu = min(max a,max(min a, PCT a*recent idle units)) 
guaranteed units(q} = min(max gu(q)~max(min gu(q)~ 

PCT_gu(q)*abs_maxu)) - -

where M minutes, PCT a, max a, min a, PCT gu(q), min gu(q), and 
max_gu(q) are all -settabie by -the sTte, all but the first 
per-shift, and the last three per-queue as well as per-shift. 
These new parameters will be kept in installation_parms. 

what follows is an example constructed by plugging typical 
numbers into the above formulae. 

system maxu = 85 
n daemons = 7 

so available units = 78 

so 
sum (units used by all groups) = 22 (all interactive) 
idle units = 56 



Page 16 MTB-364 

let PCT a = 10 
so PCT-a * idle units = 5.6 

rou~ded, it ~ecomes 6. 

let max a be 6. 

so abs maxu = 6, with 22 interactive users logged in. 

(With 
to 7, 
Now, 

only 13 users, PCT a*idle units = 6.5, which would round up 
but the absolute limit of-6 absentee users holds here.) 
for this shift, let PCT gu(*) = 20, 30, 40, 30; min gu(*) = 

1 ' 0' o, O; max_gu(*) = 2, 2~ o, O; and min a = 1; -

The following table shows how abs maxu and the per queue reserved 
slots would vary with load, given the above parameters. The 
figures for abs maxu of 7 and 8 are shown, even though the max a 
limit of 6 would prevent them from being used, in this example.-

Users Idle PCT a*Idle abs maxu Q1 Q2 Q3 Q4 
74 4 .4 - 1**- 1** 0 0 0 
73 5 .5 1 1 0 0 0 
64 14 1.4 1 1 0 0 0 
63 15 1.5 2 1 1 0 0 
54 24 2.4 2 1 1 0 0 
53 25 2.5 3 1 1 1 0 
44 34 3.4 3 1 1 1 0 
43 35 3.5 4 1 1 2 0 
34 44 4.4 4 1 1 2 0 
33 45 4.5 5 1 2 2 0 
24 54 5.4 5 1 2 2 0 
23 55 5.5 6 1 2 2 1 
1 It 611 6.4 6 1 2 ;~ 1 
1 j (, '..> (, • 1, '{* 1 * ')* 

' ~· I* 
It '{ 11 '{ • 4 '{ * 1* ')* 

£_ 3* 1 * 
3 '{5 7.5 8* 2* 2* 3* 1* 
0 '{ 8 7.8 8* 2* 2* 3* 1* 

* These are the figures that are overridden by the absolute max 
absentees limit of 6 that was part of the example. 

** These figures would have been zero except that setting min _a' 
min qu(1) = 1 guarantees that at least one queue 1 job can log -in, whatever the foreground load. 

The per-queue figures in the above table are computed as follows: 
starting with queue 1, compute the figure using the formula for 
guaranteed units, round it, and assign the smaller of that figure 
and the remaining absentee slots; deduct the assigned figure from 
the remaining absentee slots; if there are more slots, proceed 
with the computation for the next queue. Notice that this gives 
preference to the lower numbered queues. 

~ 
\.. 



~·. 

MTB-364 Page 17 

The algorithm for deciding if a job from a given queue can log in 
is as follows: reduce abs maxu by the number of background jobs 
currently logged in; then~ for each lower numbered queue, if the 
number of jobs from that queue currently logged in is less than 
the number of slots reserved for that queue, reduce abs maxu by 
the difference; if the result is greater than zero theii the job 
can log in. Notice that this means, for example, if three queue 1 
jobs are logged in, we still reserve some slots for queue 2, at 
the expense of queues 3 and 4. In other words, when queue 1 wants 
to log in more jobs than it has slots reserved, it steals slots 
starting with the highest numbered queues, and works its way back 
through the lower numbered ones as necessary. 

Earlier, we mentioned that a job from the foreground queue could 
log in as primary, even if the group has no primary slots 
available to it, provided that there is a secondary absentee slot 
for it to occupy. This can be determined from the above 
algorithm, if the foreground queue is assigned a place among the 
background absentee queues. The most obvious place to put it is 
ahead of queue 1. However, this might be unsatisfactory to some 
sites, where the queue 1 charging rates and scheduling priority 
are set higher than those of interactive users. Therefore, we 
will allow the site to set the place of the foreground queue 
among the background queues, by specifying, in 
installation parms, the number of the queue it comes after. The 
default will-be zero. 

The abs run command (which allows the operator to start an 
absentee job immediately) will override absentee load control 
temporarily, and run the job even if a new slot has to be created 
for it. None of the absentee load control parameters will be 
changed by this command, however, and so the user will be charged 
with having a slot in use, and when the next absentee logout 
occurrs, all the slots will be seen to be in use, and a new job 
will not be logged in. 

The abs suspend command will allow the operator to suspend a 
running absentee job temporarily, to decrease the load on the 
system. The mechanism that suspends an interactive process whose 
terminal channel has hung up will be used to suspend absentee 
jobs when the operator requests it. The most likely occasion for 
doing this is when all absentee slots are full, the abs run 
command has been (or will be) used to start an urgent job 
immediately, and it is desired to avoid overloading the system. 

The abs move command will allow the operator to move a job to a 
different queue, in order to change its priority. Moved jobs will 
be placed at the end of their new queue. Moved jobs will be 
charged the prices in effect for their new queue. Moving a job 
into queue zero puts it ahead of all other jobs (except those 
already in queue zero). Such jobs will be charged queue 1 rates 
(the reasoning being that queue zero is just a device to get 



Page 18 MTB-364 

around the difficulty of reordering messages within a queue, and 
if this were not a problem, those jobs would have been moved to 
the head of queue 1). 

To prevent large jobs from tying up background absentee slots 
during busy times of the day, we will add a per shift max cpu 
time limit for absentee jobs. Jobs that specify a limit higher 
than the maximum for the shift will be held until a shift with a 
higher limit arrives or the operator raises the limit. The abs 
run command will allow the operator to override this limit for 
individual jobs (i.e., a job named in an abs run command will be 
started even if its cpu time limit exceeds the maximum for the 
shift). 

A job that was identified by its submitter as requiring a certain 
resource (such as a tape drive) will be held until the resource 
is available. The discussion under DESIGN ISSUES says more about 
this. Assuming the problems mentioned there can be solved, and a 
suitable interface between the reserver and the absentee facility 
can be designed, the abs run command will be able to override 
even a hold placed on a job because of a need for a resource 
reservation. In this case the operator will be queried, but a 
positive response will cause the job to be started even though it 
claims it needs a resource. 

An abs hold command will allow the operator to hold some (or all) 
absentee jobs. This, together with the other new operator 
commands, will allow the operator to schedule all absentee jobs 
manually if he wishes. 

With all the automatic and manual controls affecting when jobs 
are run, it is impossible to give any guarantees to users about 
the order in which their jobs will be run. Yet we are considering 
providing a facility whereby users can request that their jobs be 
run in a different order from that in which they were originally 
submitted. There is some question about the need for this 
facility. However, if it is provided, it will not be advertised 
to users as guaranteeing an order of running. It will merely 
allow jobs to switch places in the queues. The reordered jobs 
will still be subject to all the new scheduling algorithms. 
Users who require computations to be performed in a specific 
order should make them part of the same absentee job or set up a 
series of jobs where each one submits the next one just before 
logging out. 

NEW AND MODIFIED COMMANDS 

Modified User Commands: New Arguments 

enter abs request (ear) -reserve (-resv) RESERVATION 
~foreground -notify -id 

STRING 

, , 



i • 

MTB-364 Page 19 

where RESERVATION STRING is a string acceptable to the 
reserver, describing resources needed by the job, 
-foreground is an optional alternative to the -queue N 
argument, causing the job to be placed in the foreground 
queue, -notify requests the answering service to send the 
user a message when the job starts and finishes, and -id 
requests the answering service to send the user a message 
indicating the id that was assigned to the job. 

list_abs_requests (lar) NEW ARGS 

where NEW ARGS are the same as for the operator command abs 
list (described below). They allow the user to list a subset 
of his jobs (or of all jobs, if -admin is used), and to 
control the order of listing and the amount of information 
printed for each job. 

cancel_abs_request (car) JN {-force} 

where JN is the number of a job to be cancelled. If the job 
is running, the user will be asked if it should still be 
cancelled. The -force argument will prevent this question. 

New User Command 

move_abs_requests (mar) JN1 ..• JNn {-from_ queue M} -to_queue N 

where JNi are the numbers of jobs previously submitted by 
the user. They will be moved to the queue given after the 
-to queue (-tq) argument. The queue given after the 
-from queue (-fq) argument will be searched. If -fq is not 
given~ the default queue will be searched. Only one queue 
will be searched. 

Modified Operator abs Command Arguments 

abs start 

If the M and Q arguments are omitted, the default will be 
changed to be the abs maxu and abs maxq parameters set by 
the site, rather than beTng the constants 1 and 3, built 
into the code. 

abs rnaxu {auto} 

The word "auto" may be given in place of a numeric value to 
cause resumption of the computation of abs maxu as a 
function of current load, using parameters specified by the 
system administrator in installation parms. 

~ abs bump JN 
-- ~bs cancel JN 



Page 20 MTB-3611 

where JN is the number of a job to be bumped or cancelled. 
The bump command applies only to running jobs, and does not 
remove the job from the queue, while the cancel command 
applies to both running and queued jobs, and does remove the 
job from the queue. 

New Operator abs Command Arguments 

abs cpu_limit M 

causes jobs whose cpu time limit is greater than M minutes 
to be held until a shift change or a new abs cpu limit 
command raises the limit. The word "auto" may be givin in 
place of a numeric value to cause the cpu limit to be reset 
to the value specified by the system _administrator in 
installation_parms. 

abs qres {r1 {r2 {r3 {r4}}}} {auto} 

where rI are the number of slots to be reserved for queues 1 
through 4 respectively. Omitted values are set to zero, 
causing no slots to be reserved for those queues. The word 
"auto" may be given as the only argument, to cause 
resumption of the computation of the per-queue reserved 
slots as a function of the current load, using parameters 
specified by the system administrator in installation_parms. ~ 

abs run JN 

causes job number JN to be logged in and run immediately, in 
spite of any conditions that would normally postpone the 
running of the job. 

abs suspend JN 

causes job number JN, which is presently running, to be 
suspended. The abs release command takes the job out of the 
suspended state. 

abs hold JN1 ••• JNn OR -all OR Person.Project OR -comment STRING 

causes the specified job or jobs to be held (i.e., not 
logged in) until subsequently released. Either of Person or 
Project can be * 

abs release JN1 ••• JNn OR -all OR Person.Project OR -comment 
STRING 

causes suspended or held jobs to be released, allowing them 
to proceed normally. 

abs move JN1 ..• JNn {-from_queue M} -to_queue N 



l • 

MTB-364 Page 21 

causes jobs JN1 through JNn to be moved from their current 
queue to the tail of the specified new queue. The new queue 
can be zero, causing the jobs to be run ahead of queue 1 
jobs. If -from queue is omitted, the default queue is 
searched. Only one queue is searched. 

abs list {selection 
{-pathname} 

args} {sort args} {-brief} {-long} 

lists the selected jobs. By default, all jobs are listed. 
The -brief argument causes the minimum amount of information 
to be printed: job number, queue position, User id, absin 
entryname. The -long argument causes all information to be 
printed. By default, the information printed for -brief, 
plus some flags indicating the status of the job (e.g., 
deferred, held (and for what reason), running), and the 
comment field, if it is nonblank, are printed. The -pathname 
argument can be used with the -brief or normal modes to 
cause the full pathname of the absin segment (as opposed to 
just the entryname) to be printed. 

The selection args are used to select the jobs to be listed, 
and can be chosen from the following: 

JN1 ••• JNn 
-first N 
-last N 
-user Person.* OR Person.Project OR *.Project 
-comment STRING 
-cpu greater M 
-cpu-less M 
-running 
-eligible 
-deferred 
-held 
-reserve STRING 
-queue N 

The sort args are used to control the order of listing and 
consist of the control argument -sort, followed by a keyword 
selected from this list: 

comment 
queue 
cpu_time 
person 
project 

The default is to list jobs in 
appear in the queue - that is, 
to be run, except that held jobs 
bypassed instead of being run in 

the order in which they 
the order in which they are 

(not deferred jobs) are 
the order shown. 


