MULTICS TECHNICAL BULLETIN MTB~ 355

To: MTB Distribution
From: Gary C. Dixon
Date: January 13, 1978

Subject: Generation Data Sets on Multics

THE PROBLEM

Many Multics sites run commercially~-oriented job streams which
typically apply transactions to one version of a data base to
create a newer version. 1In this way, bad transactions applied to
@ data base can be removed by deleting the new version.,

As the number of data base versions increases, the problem of
identifying the contents of a particular version, and of
accessing the newest version (or second newest versions etc)
becomes cumbersome, especially if programs which reference the
files are driven by exec_coms which pre—attach the files prior to
invoking the program.

Currently., the only method for referencing different file
generations from an exec_com is to edit the file's pathname or
tape file parameters which appear in the attach description of
jo_call' commands in. the exec_icoOn. ‘This i8 cumbersome,
error-prone, and requires extreme care that the correct version
is given before running the program (lest your master data be
overwritten by today's transactionss, instead of being merged with
today's transactionss, etc).

Instead, Multics should provide some mechanise for maintaining a
List of data set generationss and for supplying the proper
generation as an active function,

Constraints
The mechanism must satisfy the following constraints:
1« It must handle both disk files and tape files.

2. The particular naming convention chosen for the actual
files must be specified by the users, since it must be
neaningful to her applicatiane

- wm 0> = won - - .--—----—----------------‘b---.—'.’.‘.‘-ﬁ‘ﬁ-—---o-‘-------—---

Multics Project internal. working documentation, Not to be
reproduced or digstributed outside the Multics Project.



MTB~-

3.

The active function interface must have the ability to
create a new generation or reference an existing
generation, depending upon thé value of a generation
indicator given as an argument., For example, an
indicator of 0 would ask for a new generation, 1 would
ask for the most current existing generation, 2 would ask
for the 2nd- most current generations etc. Thuss the
generations take on the nature of a push down stack.

PROPOSED SDLUT[ON

1.

2e

A generation data set will be described by a files which
catalogues the various generations, The file will be
unstructureds, s0 it can be printed and edited. It witl
have the name of the generation data set, with a suffix
Of gds-

Each line in the file will describe a generation of the
data sets, with most current generations appearing firsts
olest generations appearing last..

A line will consist of an attach descriptions, giving the
1/0 module, file pathname or tape parameters, etc.

The file will be maintained by an active function called
generation_data_iset (gds) whose operation is described
below.. Normally, the file will:- have only ¢ entries in
its ACL, to protect its contents from accidental
overuriting., Its safety svitch wild be turned on, The
gds active function: will attempt to set access for the
user while updating the List of generations, and will
then restore the ACL to its original state. A cleanup on
unit will restore the access in case the update fails or
is aborted.. The cleanup on unit will also finsure that an
update is complete, so that the file remains consistent.



MTB-

Name: generation_data_set, gds
Syntax: [gds gds;path {=control_argsl]

Arguments:

gds_ipath 18 the pathname of the generation data set
catalogue, This pathname identifies the generation data set.
A suffix of gds is assumed if not given,

Control argments:

-generate No -gen N Specify that the Nth oldest generation is
to be returned. . ‘
-input_description ARGS, —ids ARGS - specify that the remaining

arguments form an attachment description which identifies a
new generation of the data set.

Notes: C ‘

If no control arguments are . givens, gds returns the most recent
generation, {If only -—ids is given, gds adds the specified
generation as the newest generation in the catalogue, and returns
that generation as its result.,

I1f only -gen is given, then N >3 1, The Nth oldest generation is
returned.

I1f both -=-gen and —-ids are givens then N >= (0, When N >= 1, the
Nth oldest generation is returned and. the. input description given
with -ids is ignored. When N = 0, the input description 1is
stored as the newest (0th) generation, and is returned by gds.



