
Multics Technical Bulletin MTE-3l.J9

To: Distribution

From: Paul Green

Date: 11/28/77

Subject: Plans for MR7.0 PL/I Compiler

This MTB describes the enhancements that will be available
in the MR7.0 PL/I compiler. Some desirable features that may or
may not be available, depending on time constraints, are also
listed. Comments on this MTB should be sent to Green.Multics on
the Phoenix or MIT Multics systems.

New Features

The following features are listed in order of descending
priority.

1. packed decimal data (unsigned or leading sign, lJ bits per
digit, digit aligned)

2. unsigned fixed binary

3. various enhancements to the listing segMent:. autoT.atic
storage map, static storage map, name of block a variatle was
declared in

t. line-oriented input in get edit (ability to read an entire
input line, similar to read-to-stream-file change rade in
MR6.0)

5. radix-factor bit strings in get list

6. a subroutine interface to the compiler (for
create_data_segment and display_pll_structure and the rrivate
tools create_include __ file and structure_xref)

7. eliminate the EXL long_profile command by combining it with
the profile command

8. stop statement for use in run units

9. the substraddr, stackframeptr, stackbaseptr, codeptr, and
environmentptr builtins

Multics project internal working documentation. Not to be
reproduced or distributed outside the Multics project.

Page 1.

MTB-349

Internal Changes

The following
compiler, and will
changes will provide
features.

Multics Technical Bulletin

changes are completely internal to the
be done for MR7.0 if time permits. These

a cleaner base for implementation of new

1. reformat opcode_.i nf o database to get an extra 4 bi ts per
opcode so that the optimi~er can use it to determine the
jump, signal, irredu.ci ble, and set_operand 1 flags, instead of
computing these flags every time.

2. reformat macro table database to hold odd pointer registers.
Eliminate direct calls to state_man$erase_regs for odd bases.

Suggested Changes

The following suggestions have been made for PL/I, and are
likely to be implemented if time permits. They are listed ir.
order of descending priority.

1. put size of structures (and variables?) in listing

2. add compiler option to control listing of unreferenced
variables and structure members

3. put fully qualified names (or some variation) in symbol rr.ap

4. optimize setting several bits in same word to the same state

5. better versions of search and verify builtins that return
number of characters scanned, instead of index of stoppinv.
character.

6. warning for multiple closure of end statements

7. new source map to allow source segments to be greater than
64K words

t. r:ew source_,id field to allow source segments to contain riore
'Lhan 16K lines

Completed Changes

The following changes have already been made to the compiler, and
are available in >exl>o.

1. error if number of initial elements for a static array is not
the sa~e as the number of elements in the array

Page 2.

Multics Technical Bulletin MTE-349

The remainder of this MTB describes the packed decimal/unsigned
project in more detail.

Purpose

The purpose of this project is to support unsigned fixed
binary values, and ~-bit decimal values in Multics PL/I. These
new decimal values can be real or complex, fixed or float, sirned
or unsigned (the sign, if present, will be a leading sign). The
PL/I implementation of packed decimal will be compatible with the
existing COBOL implementation of COMP-8 packed decirral values.
COBOL COMP-8 packed decimal values are digit-aligned, with an
optional leading sign. COBOL COMP-5 packed decimal values are
byte-aligned, with an optional trailing sign. There will be no
way to specify a byte-aligned, trailing sign value in PL/I, so
COMP-5 will not be compatible with PL/I. Even though PL/I will
not support COMP-5, other system routines, such as any_to_any_,
will support it.

Scope

The PL/I compiler, runtime I/O, runtime conversion, and
debugging tools will be changed to support packed decimal. The
standard system debuggers (debug and probe) will be changed.
Other standard subroutines (formline_, decode_descriptor_) will
also be changed. No unbundled software will be cha~ged
directly--it is up to the maintainers of each unbundled product
to ~hange their own programs.

Timetable

The cutoff date for installing the compiler at ~IT and
Phoenix is July 31, 1978. We plan to install this compiler a lot
sooner than that, but it is too early to tell.

Declaring packed decimal values

In the present PL/I compiler (release 23 and earlier),
decirr:al use a signed, 9-bits-per-digit format. Decimal values
declared with the aligned attribute begin on a word boundary.
Decimal values declared with the unalipned attribute begin on a
byte boundary. We want to have packed decimal values begin on a
digit boundary. To add packed decimal values to our PL/I
language, we either have to add a new arithmetic tase (binary,
decimal, packed_decimal), or a new alignment attribute (aligned,
unaligned, digit_aligned), or redefine the meaning of the current
alignment attributes for decimal values. There are no other ways
to add packed decimal; these are the alternatives.

Page 3.

MTB-3LJ9 Multics Technical Bulletin

The first alternative (a new base) is out of the question.
It would require extensive changes to the compiler; every place
we now test symbol.decimal we would have to test both
symbol.decimal and symbol.packed_decirnal. This would require
hundreds of changes to the compiler (and manual). The second
alternative (a new alignement attribute) has a similar problem.
Every place the compiler uses the aligned or unaligned attribute
would have to be changed to understand the digit_aligned
attribute. The manual would have to be changed to restrict
defining and overlaying for digit_aligned, just as it now
restricts defining and overlaying for unaligned.

The fact is that the PL/I language has only one way of
specifying different internal representations for the same data
type: the aligned/unaligned attributes. We have no choice but
to use the unaligned attribute to mean "packed" for deci~al
values, if we wish to maintain a consistent PL/I language. Thus,
in the new compiler decimal values declared with the unaligned
attribute will begin on a digit boundary, and will occupy 4 bits
per digit.

Compatibility considerations

Ey changing unaligned decimal values from byte-aligned to
digit-aligned, and from 9-bit to 4-bit, we are creating a
compatibility problem for programs written and compiled before
the new compiler. If we are not careful, users who recompile old
programs with release 24 will be unable to access data bases that
contain (old) unaligned decimal values. Programs compiled with
release 24 will be unable to call programs compiled with older
releases, and vice versa. If we could identify old progra~s, we
~c~lc issue warnings when they were recompiled with release 24,
ar.c ~ive any user using unaligned decimal the chance to reco~pile
all of Lhe programs at the same time. Conversion of data tases
may well require a program to read the old data base (compiled
with an old compiler), and a program to write a converted data
base (compiled with a new compiler).

This is an incompatible change, and will affect every user
now using unaligned decimal data. The following steps will be
taken by the compiler to aid in the identification and conversion
of old programs.

1. identify old programs by the absence of a new option for the
main procedure, 11 options(packed_decimal) 11 •

2. issue a severity 2 error for every unaligned decimal variable
in old programs.

3. whether the program is old or new, compile unaligned decimal
values as packed decimal.

Page l.J.

•
Multics Technical Bulletin MTB-349

4. ship release 23b in MR7 .0 as "pl 1_r23", so that users can
continue to compile old programs with an old compiler, as an aid
to conversion.

Page 5.

