
Multics Technical Bulletin 

To: Distribution 

From: Richard Kissel 
Bill Silver 

Date: June 17, 1977 

Subject: Speedtype 

"If y cnn rd tes sb+, te y _mt rd ts doc." 

INTRODUCTION 

MTB-343 

This memorandum describes proposed new commands for word 
processing. These commands, collectively called Speedtype, allow 
a user to input text in a shorthand or abbreviated form and then 
have that text expanded. It is intended that Speedtype become an 
integral part of Multics WORDPRO. 

A prototype of Speedtype exists today on Multics. Users of 
Speedtype find it allows them to input text more quickly and more 
accurately. Speedtype has helped them reduce keystrokes by 30% 
to 50%, thus realizing a significant increase in typing speed. 

This memorandum contains the following sections: 

$ Speedtyping 
$ Speedtype Features 
$ Speedtype Enhancements 
$ Summary of Speedtype Commands 
$ MPM Documentation 
$ Appendix A: Speedtype User's Guide 

Please send all comments and suggestions on Speedtype to: 

Richard J. C. Kissel 
Honeywell Information Systems 
575 Technology Square. 
Cambridge, Mass. 02139 

or send Multics mail at M.I.T or System M to: 

or call: 

Kissel.Multics 

(617) 492-9319 
HVN 261-9319 

Multics Project internal working documentation. Not to be 
reproduced or distributed outside of the Multics project. 

MTB-343 Page 1 



SPEEDTYPING 

Speedtyping, quite simply, is the ability to type a little 
and get a lot. Typing speed is increased since less is typed. 

The primary goal of Speedtype is to allow users to type in­
put data more quickly. Much effort has gone into making 
Speedtype easy to use and easy to learn. However, each Speedtype 
design decision was resolved by answering the question, "Which 
design strategy allows a user to type the fewest keystrokes?" In 
every case, the design strategy that minimized keystrokes was se­
lected. 

Speedtype can also help improve typing accuracy. Typing ac­
curacy is improved by defining and using symbols for words or 
phrases that are often mistyped. For example, the common typo 
for "the", "teh", can be corrected automatically by having 
Speedtype expand the symbol ''teh" into "the". Even better, this 
typo can be eliminated entirely by typing the symbol "t" and 
having Speedtype expand it into "the" . 

. Speedtype is quite similar to the Multics "abbrev" subsystem 
which expands command line input. In fact, the motivation for 
developing Speedtype was to provide an abbreviation/expansion fa­
cility that could be used in a word processing environment. The 
problems Speedtype must solve are how to define, maintain, and 
list a set of abbreviations that can be typed as input and then 
expanded. 

In order to avoid confusion and ambiguity in terminology be­
tween Speedtype and abbrev, the term "abbreviation" is not used 
when discussing Speedtype. Instead, the term "symbol" is used. 
All Speedtype commands are named to conform to this terminology. 

SPEEDTYPE FEATURES 

The primary job of Speedtype is to expand text. This sec­
tion describes the features of Speedtype that are involved in the 
expansion process. 

Text Segments 

Speedtype deals with two types of files, text segments and 
symbol dictionaries. A text segment contains the input text 
processed by Speedtype. This processing involves searching 
through the text segment and expanding all defined symbols. The 
expanded text is copied into an output text segment. 

Page 2 MTB-343 



Speedtype processes an input text segment as just one long 
character string. The resulting output text segment may also be 
thought of as one character string. (1) The input string is 
divided into pairs of tokens. Speedtype recognizes two types of 
tokens: delimiter tokens and text tokens. Certain ASCII charac­
ters are designated as delimiter characters (in general, white 
space and punctuation characters other than period). All other 
characters are considered text characters. Figure 1 shows how 
Speedtype divides an input string into pairs of tokens. Not 
shown are the special cases that may exist at the beginning and 
end of an input string where one of the tokens in a pair may be 
missing. 

delimiters text delimiters text 

Figure 1. Input String as Pairs of Tokens 

The concept of dividing an input string into pairs of tokens 
(delimiter tokens and text tokens) is a key concept in the gener­
al algorithm used to expand an input string. A summary of this 
algorithm is given below: 

1. Get the next delimiter token from the input string. 

2. Copy the delimiter token into the output string. 

3. Get the next text token from the input string. 

4. See if the text token is defined in some table of sym­
bols (in this case a Speedtype symbol dictionary). 

4a. If the text token is not a defined symbol, then copy 
the text token into the output string. 

4b. If the text token is a defined symbol, then get the ex­
pansion string that represents this symbol. Copy the 
expansion string into the output string. The original 
input symbol is not copied. 

5. Repeat the above steps until the end of the input 
string is reached. 

(1) A subroutine interface for string expansion is provided by 
Speedtype. See the MPM documentation for speedtype_expand_. 

MTB-343 Page 3 



Speedtype uses this general expansion algorithm. In addi­
tion, special delimiter and text characters, if found in certain 
positions, result in special processing. F'igure 2 shows the de­
tailed format of a pair of tokens. 

delimiter token text token 

E => 
p => 
F => 
s => 
p => 

I I 
I I 

i Ei 
I I 

Escape 
Pref ix 
First 
Suffix 
Period 

I I I 
I I I 

iPiFi 
I I I 

I 
I 

symbol 

Character 
Character(s) 
Character 
Character 

I I I 
I I I 

I Si Pi 
I I 

Figure 2. Format of a Token Pair 

Figure 2 shows that Speedtype performs special processing on 
the last character of a delimiter token and on the first and last 
characters of a text token. This special processing is outlined 
below and discussed in detail later in this section. 

Escapes: Certain delimiter characters 
as escape characters. If the last 
delimiter token is an escape character, 
processing is performed on the following 

are recognized 
character of a 

then special 
text token. 

Prefixes: Certain text characters are recognized as 
prefix characters. If a prefix character is found at 
the beginning of a text token, then special processing 
is performed. hecognized prefix chara~ters are not 
considered part of the symbol. Prefix characters found 
within the text token cause no special processing and 
are considered part of the symbol. More than one pre­
fix character may precede the symbol. 

Capitalization: If the first character of the symbol 
is an uppercase letter, then the first letter of the 
expansion string representing this symbol is 
capitalized when copied into the output string. 

Suffixes: Certain text characters are recognized as 
suffix characters. If the last character of a text to­
ken (after any trailing period is removed) is a suffix 
character, then special processing is performed. A 
recognized suffix character is not considered part of 
the symbol. Suffix characters found within the text 
token cause no special processing and are considered 

Page 4 MTB-343 



part of the symbol. Only one suffix character may fol­
low the symbol. 

Period: If the last character of a text token is a pe­
riod ".", then it is stripped from the text token. The 
period is copied into the output string after the text 
token is processed. 

Symbol Dictionaries 

A symbol dictionary contains all of the information needed 
by Speedtype to expand an input string. A symbol dictionary is 
similar to an abbrev ''.profile" segment. A symbol dictionary is 
identified by the entryname suffix ".symbols". Speedtype allows 
a user to specify the symbol dictionary used. As a default, 
Speedtype uses a symbol dictionary in the user's home directory. 
The default symbol dictionary has the pathname: 

>udd>Project>Person_id>Person_id.symbols 

A symbol dictionary contains three types of information. 
Speedtype commands allow a user to set, change, and list all of 
this information. The three types of information are: 

Options: Several types of control information are kept 
in a symbol dictionary. These Speedtype "options" may 
be set by a user. (See the option_symbols command doc­
umentation for a description of the Speedtype options.) 
The Speedtype options are summarized below: 

$ Delimiters (except escapes and white space) 
$ Escape Characters 
$ Pref ix Characters 
$ Suffix Characters 

Symbols: A symbol is a character string that repre­
sents a word or phrase. A symbol must be unique within 
a symbol dictionary. Since symbols are found within 
text tokens, they may not contain any delimiter charac­
ters. The first character of a symbol may not be a 
prefix character, and the last character of a symbol 
may not be a suffix character or a period. 

Expansions: Every defined symbol has a corresponding 
expansion string. Expansions do not have to be unique 
within a symbol dictionary. An expansion may contain 
any character, including delimiter characters. All 
suffixing, capitalization, and underlining is performed 
on expansions, not on symbols. Associated with each 
expansion is information that specifies how Speedtype 
is to perform suffixing on that expansion. 

MTB-343 Page 5 



The Expansion Process 

Speedtype uses the general expansion algorithm described 
above. However, Speedtype also performs special processing. A 
more detailed description or how Speedtype expands a token pair 
is given below: 

Delimiters: Processing of the delimiter token involves 
just copying it into the output string. 

Escape Processing: If the last character of the 
delimiter token is an escape character, then special 
processing is performed on the following text token. 
Escape characters contained within the delimiter token 
are not recognized as escapes. The most important type 
of escape processing involves inhibiting any processing 
of the following text token. Instead, the text token 
is just copied into the output string. 

Finding the Symbol: If no escape inhibits the process­
ing of the text token, then the next step is to find 
the symbol contained in the text token. This involves 
stripping off any prefix characters, suffix character, 
or trailing period. If no symbol is found within the 
text token, i.e., it consists of just prefix and/or 
suffix characters, then no further processing is per­
formed on this text token and it is copied as is into 
the output string. 

Decapitalization: If the text token contains a symbol, 
then Speedtype decapitalizes it. This involves testing 
the first character of the symbol, and if it is an 
uppercase letter, translating it to lowercase. This 
translation is actually performed on a temporary copy 
of the symbol. The original input symbol is not modi­
fied. 

~xpansion: Speedtype then takes the decapitalized sym­
bol and searches for it in the current symbol dictio­
nary. If found, the expansion for this symbol is 
copied into the output string, otherwise the original 
input symbol (and any suffix character) is copied. 

Capitalization: If the input symbol 
and replaced by its expansion, then 
izes the expansion string copied 
string. This involves testing the 
the expansion string, and if it is a 
translating it to uppercase. 

Page 6 

was decapitalized 
Speedtype capital­
into the output 

first character of 
lowercase letter, 

MTB-343 



Suffix Processing: If a suffix character was stripped 
from the symbol, and if the symbol was expanded, then 
Speedtype performs suffixing on the expansion string 
copied into the output string. This processing depends 
upon the suffix and how the suffix is defined for this 
symbol. 

Prefix Processing: If any prefix characters were 
stripped from the symbol, then Speedtype performs pre­
fix processing on the symbol or expansion string copied 
into the output string. Prefix processing is always 
performed after any capitalization or suffixing. 

Period Processing: If a period was stripped from the 
symbol, then it is added to the output string after all 
other processing of the text token is performed. 

Escapes 

The escapes recognized by Speedtype are listed below. 
actual escape characters recognized are defined in a symbol 
tionary and may be set by the user. Listed with each escape 
its name and its default character. The special processing 
formed for each escape is also described. 

temp (-) The temp (temporary) escape is the standard 
Speedtype escape. It causes Speedtype to not process 
the following text token. Thus this escape can be used 
to prevent a symbol from being expanded and can prohib­
it prefix processing for the next text token. Instead, 
the text token is copied as is into the output string. 
The temp escape character itself is not copied into the 
output string. 

pad (octal 177) The pad escape is useful in situations 
where an input text segment is also used as the output 
text segment and is expanded over and over. The effect 
of this escape is the same as that for the temp escape. 
However, unlike the temp escape, this escape character 
is copied into the output string. The default charac­
ter used for the pad escape is the ASCII PAD character 
(octal 177). Even though this character is copied into 
the output string, it will not show up when printed. 
Users are cautioned that the presence of a PAD charac­
ter in the text segment may cause problems during sub­
sequent editing. 

The 
dic­

is 
per-

MTB-343 Page 7 



perm(') The perm (permanent) escape is a convenient 
way for a user to enter a pad escape. The effect of 
this escape is the same as the temp escape, and like 
the pad escape, it is copied into the output string. 
However, the perm escape character is then converted to 
the pad escape character. 

trans(:) The function of the trans (transparent) es­
cape is to concatenate text tokens that are processed 
separately. The trans escape character is not copied 
into the output string. The following text token is 
processed as if no escape was recognized. Any prefix 
processing performed on the previous text token is 
continued and performed on .the next text token. Addi­
tional prefix processing may be specified. 

space(;) The function of the space escape is to gen­
erate spaces (ASCII blanks) in the output string. The 
processing of this escape is conditional on the first 
characters of the following text token. If the follow­
ing text token begins with one or two numeric charac­
ters (numbers from Oto 99), then the space escape 
character and these numeric characters are replaced in 
the output string with the specified number of spaces. 
For example, ";5" is replaced by five spaces in the 
output string. The rest of the text token is then 
processed normally. If the following text token does 
not contain a number as specified above, then the space 
escape character remains unchanged in the output string 
and the following text token is processed as if no es­
cape was recognized. 

Suffixes 

Suffix processing is performed only on defined symbols. If 
a symbol is not defined, or if the specified suffix is turned off 
for the symbol, then no suffix processing is performed. Instead, 
the symbol and the suffix character are copied as is into the 
output string. 

Appending a surt·ix to a symbol's expansion string is done in 
several different ways depending upon how the suffix is defined 
for the symbol. The normal way is to just add the suffix string 
associated with the suffix directly to the expansion string. 
However, to accommodate the many anomalies of the English lan­
guage, such tricks as dropping the last letter, doubling the last 
letter, adding letters, etc., may be performed on the expansion 
string in order to add a suffix string. 

Page 8 MTB-343 



A user has considerable control over how Speedtype performs 
suffixing. (See the add_symbols documentation for a description 
of how Speedtype performs suffixing.) A user may disable suffix­
ing for a given symbol, or just disable one or more suffixes for 
that symbol. A user may also specify a dif'ferent way to process 
a suffix for a symbol. 

The suffixes currently recognized by Speedtype are listed 
below. The actual characters representing the suffixes are 
defined in a symbol dictionary and may be set by the user. Ex­
cept for "plural", the suffix string associated with each suffix 
is the suffix itself. Also listed below with each suffix is the 
default character used to represent that suffix. 

Prefixes 

SUFFIX STRING 

(plural) 
ed 
ing 
er 
ly 

"s" 
"ed" 
"ing" 
"er" 
"ly" 

(+) 
(-) 
( *) 
( = ) 
( : ) 

Prefix processing is performed on the text token string 
copied into the output string. It is performed regardless of 
whether symbol expansion was performed, and is always performed 
after capitalization and suffixing have been performed. 

The prefixes recognized by Speedtype are listed below. The 
actual pr€f ix characters recognized are defined in a symbol dic­
tionary and may be set by the user. Listed for each prefix is 
its name and its default character. The special processing per­
formed for each prefix is also described. 

under (_) The function of the under (underline) prefix 
is to underline the output string. The underlining is 
performed by taking each character of the output string 
and adding, in a canonical way, a backspace character 
and an underscore character. The resulting underlined 
string is in canonical form. Underlining is not per­
formed if the output string already contains backspace 
characters. 

upper (+) The function of the upper (uppercase) prefix 
is to translate the output string into uppercase. Each 
lowercase letter in the output string is translated to 
uppercase. Characters that are not lowercase letters 
are not changed. If both the upper and under prefixes 
are recognized, then regardless of the order in which 
they are specified, uppercase processing is performed 
first. 

tv!TB-343 Page 9 



SPEEDTYPE ENHANCEMENTS 

Speedtype, in its present form, is a useful word processing 
tool. However, it has several limitations that in the future 
should be eliminated. The most important of these current limi­
tations are: 

$ the inability to allow concurrent users to safely 
update and use a symbol dictionary. 

$ a maximum expansion length of 56 characters. 

$ a maximum number of symbols, currently about 1000. 

$ the processing of only 5 suffixes. 

$ the inability to specify nonstandard suffix expan­
sions, for example, the plural of child. 

$ the requirement that expansion involve a whole in­
put segment. 

Many of these current Speedtype limitations could be 
eliminated by reimplementing Speedtype symbol dictionaries as in­
dexed files (accessed via vfile_). This would allow a shared 
symbol dictionary to be updated by one user while at the same 
time being used for expansion by other users. This would also 
allow for longer expansions and a virtually unlimited number of 
symbols. The suffixing algorithm could be improved to allow for 
more kinds and more complex suffixes. 

One enhancement to Speedtype that is already planned is to 
allow Speedtype expansion while editing. The new wORDPRO text 
editor (see MTB-339) allows for Speedtype expansion in regular 
expressions, replacement strings, and in input text. This method 
of using Speedtype makes it unnecessary to expand a whole text 
segment in order to process just a few symbols. Thus text seg­
ments will not be expanded over and over and the pad escape will 
not be needed. 

Although Speedtype was designed for use in a word processing 
environment where the language involved is English, Speedtype 
could be used to input and update other natural languages 
(French, Spanish, etc.) and common computer languages (PL/I, 
COBOL, FORTRAN, etc.). Speedtype has already been used with 
great success in the processing of Multics "exec_com" prcgrams. 
A Speedtype command could be implemented that would expand PL/I 
source. It would process PL/I statements using a PL/I symbol 
dictionary and PL/I comments using an English symbol dictionary. 

Page 10 MTB-343 



SUMMARY OF SPEEDTYP~ COMMANDS 

This section presents a summary of the Speedtype commands. 
They are grouped according to function. 

Symbol Dictionary Maintenance 

add_symbols adds symbols to the current symbol dictio­
nary. 

change_symbols changes the expansion or suffixing of a sym­
bol in the current symbol dictionary. 

delete_symbols deletes symbols from the current symbol dic­
tionary. 

f ind_symbols finds and lists symbols in the current sym­
bol dictionary that represent specified ex­
pansions. 

list_symbols lists symbols in the current symbol dictio­
nary. 

option_symbols sets Speedtype options in the current symbol 
dictionary. 

Symbol Dictionary Selection 

print_symbols_path prints the pathname of the current sym­
bol dictionary. 

use_symbols sets the current symbol dictionary. 

Symbol Expansion 

expand_symbols expands all the symbols in a specified text 
segment. 

retain_symbols retains all symbols in a specified text seg­
ment by placing a Speedtype escape in front 
of each symbol. 

show_symbols 

MPM DOCUMENTATION 

expands an input string and prints the out­
put string. 

The remainder of this memorandum presents draft MPM documen­
tation for the Speedtype commands. 

MTB-343 Page 11 



add_symbols add_symbols 

Name: add_symbols, asb 

The add_symbols command adds a symbol to the current symbol 
dictionary. All suffixes are enabled for the added symbol. 

Usage 

add_symbols symbol expansion {-control_args} 

where: 

1. symbol 
is the symbol to be added. Its length must be 7 
characters or less and it may not contain delimiter 
characters. Its first character may not be a defined 
prefix character or a capital letter, and its last 
character may not be a defined suffix character or a 
period. 

2. expansion 
is the expansion string that replaces the symbol. 
The length of the expansion string must not exceed 56 
characters. The expansion string may contain any 
characters. If the expansion string contains spaces 
and/or tabs, then it must be enclosed in quotes. 

3. control_args 

Page 12 

may be chosen from the following: 

-force, -fc 
specifies that the replacement of an existing symbol 
should be done without question. If the symbol is 
already defined, and this argument is not specified, 
then the user is asked to authorize the replacement 
of the symbol. 

-suffix S1'R 
enables or disables suffixing for this symbol. STR 
must be either "on" or "off". If STR is "on", then 
suffixing is enabled and all suffixes are processed 
according to the default rules described in the notes 
below. If STR are "off", then all suffixes are 
disabled for the symbol. If this control argument is 
not specified, then "on" is assumed. 

MTB-343 

-~ 



add_symbols add_symbols 

Notes 

-plural STR 
defines the plural suffix for this symbol. STR must 
be "on" or "off" or a string that can be used as the 
plural of the expansion of this symbol. If STR is 
the plural of this symbol, then it must be an expan­
sion string that can be generated by Speedtype when 
using any of its known rules for processing the plu­
ral suffix. Otherwise, the plural suffix is disabled 
for this symbol and a warning message is printed. If 
STR is "on", then the plural suffix is enabled for 
this symbol and processed according to the default 
rules for the plural suffix. If STR is "off", the 
plural suffix is disabled for this symbol. 

-ed STR 
defines the "ed" suffix for this symbol. This con­
trol argument follows the same rules as the -plural 
control argument. 

-ing STR 

-er 

-ly 

defines the "ing" suffix for this symbol. This con­
trol argument follows the same rules as the -plural 
control argument. 

STR 
defines the "er" suffix for this symbol. This con-
trol argument follows the same rules as the -plural 
control argument. 

STR 
defines the "ly" suffix for this symbol. This con-
trol argument follows the same rules as the -plural 
control argument. 

The default rule for appending a suffix string to an expan­
sion string is a function of the suffix and the word type of the 
expansion string. 

The word type of the expansion string is determined from its 
last characters. The characters "C" and "V" are used below to 
represent consonants and vowels. The character "X" is used to 
represent any character. The word types recognized and the suf­
fix strings used are listed below: 

MTB-343 Page 13 



add_symbols add_symbols 

'wORD TYPES 

O other ( => none o·.f' the below) 
1 "XCe" 
2 "XVe" 
3 II XCy" 
4 "XVy" 
5 "Xch", "Xsh", or "Xex" 
6 "CVC" 

SUFFIX STRINGS 

1 "s" (plural) 
2 "ed" 
3 "ing" 
4 "er" 
5 II ly" 

The actions performed by Speedtype when adding a suffix 
string to an expansion string are listed below~ 

1 
2 
3 
4 
5 
6 

Page 14 

ACTIONS 

Add suffix string directly 
Drop last character, add suffix string 
Double last character, add suffix s,tring 
Replace last character with "i", add suffix string 
Replace last character with "ie", add suffix string 
Add "e", add suffix string 

\ 
MTB-343 



add_symbols add_symbols 

The suffix action table presented below shows the action 
performed by Speedtype when adding a specified suffix string to 
an expansion string of a g~ven word type. 

w T 

0 y 

R p 

D E 

JviTB-343 

SUFFIX ACTION TABLE 

I I 
I I 

SUFFIX 

: 2 : 3 : 4 : 
I I I I I I 

5 
---TT ___ T ___ T ___ T ___ T __ _ 

0 :: 1: 1: 1: 1: 1 
I I I I I I ---TT ___ T ___ T ___ T ___ T __ _ 

1 : : 1 : 2 : 2 : 2 : 2 
I I I I I I ---TT ___ T ___ T ___ T ___ T __ _ 

2 :: 1: 2: 1: 2: 1 
I I I I I I ---TT ___ T ___ T ___ T ___ T __ _ 

3 :: 5: 4: 1: 4: 1 
I I I I I I ---TT ___ T ___ T ___ T ___ T __ _ 

4 :: 1: 1: 1: 1: 1 
I I I I I I ---TT ___ T ___ T ___ T ___ T __ _ 

5 :: 6: 1: 1: 1: 1 
I I I I I I ---TT ___ T ___ T ___ T ___ T __ _ 

6 :: 1: 3: 3: 3: 1 

Page 15 



change_symbols change_symbols 

Name: change_symbols, csb 

The change_symbols command changes the expansion or suffix­
ing of a specified symbol. Control arguments are processed one 
at a time. Specifying more than one control argument has the 
same effect as issuing the command several times with one control 
argument each time. 

Usage 

change_symbols symbol {-control_args} 

where: 

1 . symbol 
is the symbol changed. This symbol must be defined 
in the current symbol dictionary. 

2. control_args 
may be chosen from the following: 

-exp STR 
where STR represents the new expansion string for 
this symbol. This control argument does not change 
the way suffixing is performed for the symbol. 

-suffix STR 
-plural STR 
-ed STR 
-ing STR 
-er STR 
-ly STR 

the above control arguments work the same way as 
described for the add_symbols command. 

Page 16 MTB-343 



delete_symbols delete_symbols 

Name: delete_symbols, dsb 

The delete_symbols command deletes the specified symbols 
from the current symbol dictionary. 

Usage 

delete_symbols symbols 

where symbols are the symbols deleted from the current symbol 
dictionary. 

MTB-343 Page 17 



expand_symbols expand_symbols 

Name: expand_symbols, esb 

The expand_symbols command takes an input text segment and 
expands it using the options and symbols defined in the current 
symbol dictionary. 

Usage 

expand_symbols input_path {output_path} 

where: 

1. input_path 
is the pathname of the input text segment. 

2. output_path 

Page 18 

is an optional pathname of an output text segment. 
If no output pathname is specified, then the text 
segment specified by input_path is used as the output 
text segment. The original contents of the input 
text segment are overwritten. 

MTB-343 



f ind_symbols f ind_symbols 

Name: find_symbols, fsb· 

The f ind_symbols command finds and then lists all of the 
symbols associated with specified expansions contained in the 
current symbol dictionary. One or several or all expansions may 
be listed. 

Usage 

find_symbols {expansions} {-control_args} 

where: 

1. expansions 
are optional arguments that specify expansions to 
find and list. If an expansion is represented by 
more than one symbol, then all of its symbols are 
found and listed. If any given expansion is not 
found, then a message is printed stating that the ex­
pansion is not defined. If no expansions are speci­
fied, then all expansions in the current symbol dic­
tionary are listed. The expansions are listed in or­
der according to ASCII collating sequence. 

2. control_args 

MTB-343 

can be chosen from the following: 

-long, -lg 
specifies that for each symbol listed, its expansion 
string with suffixing is listed for each suffix 
enabled for that symbol. 

-option, -op 
specifies that all option information for the current 
symbol dictionary is to be listed. If this is the 
only control argument specified, then only the option 
information is listed. 

-total, -tt 
specifies that the total number of symbols defined in 
the current symbol dictionary is to be printed. If 
this is the only control argument specified, then on­
ly the total is printed. 

Page 19 



list_symbols list_symbols 

Name: list_symbols, lsb 

1he list_symbols command lists one or se~eral or all of the 
symbols defined in the current symbol dictionary. 

Usage 

list_symbols {symbols} {-control_args} · 

where: 

1. symbols 
are optional arguments that specify the symbols to 
list. If any given symbol is not found, then a mes­
sage is printed stating that the symbol is not 
defined. If no symbols are specified, then all sym­
bols in the current symbol dictionary are listed. 
They are listed in order according to ASCII collating 
sequence. 

2. control_args 

Page 20 

can be chosen from the following: 

-long, -lg 
specifies that for each symbol listed, its expansion 
string with suffixing is listed for each suffix 
enabled for that symbol. 

-option, -op 
specifies that all option information for the current 
symbol dictionary is to be listed. If this is the 
only control argument specified, then only the option 
information is listed. 

-total, -tt 
specifies that the total number of symbols defined in 
the current symbol dictionary is to be printed. If 
this is the only control argument specified, then on­
ly the total is printed. 

MTB-343 



option_symbols option_symbols 

Name: option_symbols, osb 

The option_symbols command allows a user to change certain 
optional control information in the current symbol dictionary. 
This information is summarized in the notes below. 

Usage 

option_symbols {-control_args} 

where: 

1. control_args 

f-ITB-34 3 

can be chosen from the following: 

-delim STR 
specifies a new set of delimiter characters. None of 
the characters in this string may be currently 
defined escape, prefix, or suffix characters. 

-pad X 
-perm X 
-temp X 
-trans X 
-space X 

-under X 
-upper X 

-plural X 
-ed X 
-ing X 
-er X 
-ly x 

the above control arguments set the corresponding es­
cape, prefix, or suffix characters recognized by 
Speedtype. 

Page 21 



option_symbols option_symbols 

Notes 

Presented below is a summary of all Speedtype options. The 
default character(s) used to represent each option is shown on 
the right. 

Page 22 

Delimiters: 
Escapes (see below) 
white Space (Break, Tab, New Line) 
Others ","()?!<>[]{}" 

Escapes: 
pad (octal 177) 
perm "'" 
temp II - II 

trans tt • II . 
space tt • II 

' 
Prefixes: 

under " " upper II+" 

Suffixes: 
plural "+II 

ed "-" 
ing "*" er II - II 

ly "l" 

MTB-343 



print_symbols_path print_symbols_path 

Name: print_symbols_path, psbp 

The print_symbols_path command prints the pathname of the 
current symbol dictionary. 

Usage 

print_symbols_path 

MTB-343 Page 23 



retain_symbols retain_symbols 

Name: retain_symbols, rsb 

The retain_symbols command takes an input text segment and 
inserts Speedtype escape characters wherever symbols would be ex­
panded if this text segment were being processed by the 
expand_symbols command. All symbols in the text segment are thus 
retained during future expansion. 

Usage 

retain_symbols input_path {output_path} {-control_args} 

where: 

1. input_path 
is the pathname of the input text segment. 

2. output_path 
is the optional pathname of an output text segment. 
If no output pathname is specified, then the text 
segment specified by input_path is used as the output 
text segment. The original contents of the input 
text segment are overwritten. 

3. control_args 

-perm 

-temp 

~otes 

can be chosen from the following: 

specifies that the perm 
used. If no control 
-perm is assumed. 

escape character is to be 
argument is specified, then 

specifies that the temp escape character is to be 
used. Specifying this control argument causes the 
symbols in the output text segment to be retained for 
only one expansion. 

In addition to inserting the specified escape character 
wherever necessary, all existing "Pad" escapes are converted to 
the specified escape. This allows for more convenient editing of 
the input text segment, since all escape characters are thus 
printable. 

Page 24 MTB-343 



show_symbols show_symbols 

Nam~: show_symbols, ssb 

The show_symbols command shows how Speedtype expands an in­
put string. The expansion is performed using the options and 
symbols in the current symbol dictionary. The expanded string is 
printed on the user's terminal. 

usage 

show_symbols termJ 

where: 

1. terml ... termi 

Mlb-343 

are arguments 
string that 
in the input 
is desired, 
quotes. 

termi 

that are concatenated into the input 
is expanded. These terms are separated 

string by one space. If other spacing 
the input string should be enclosed in 

Page 25 



use_symbols use_symbols 

Name: use_symbols, usb 

The use_symbols command sets the current symbol dictionary. 
All Speedtype commands will then use this symbol dictionary. If 
this symbol dictionary does not exist, then the user is asked if 
it should be created. 

Usage 

use_symbols path 

where: 

1. path 

Notes 

is the pathname of the symbol dictionary that is to 
be the new current symbol dictionary. If the 
entryname suffix ''.symbols" is not specified, then it 
is added. 

If other Speedtype commands are issued in a user's process 
before the use_symbols command, then those commands use the de­
fault symbol dictionary in the user's home directory. The de­
fault symbol dictionary has the pathname: 

>udd>Project>Person_id>Person_id.symbols 

Page 26 MTB-343 



speedtype_expand_ speedtype_expand_ 

Name: speedtype_expand_ 

The speedtype_expand_ subroutine takes an input text string 
and expands it using the options and symbols defined in the cur­
rent Speedtype symbol dictionary. It returns the expanded output 
string. 

Usage 

dcl speedtype_expand_ entry (ptr, fixed bin(21), ptr, 
fixed bin(21), fixed bin(21), fixed bin(35)); 

call speedtype_expand_ (in_string_ptr, in_string_len, 
out_buf_ptr, out_buf_len, out_string_len, code); 

where: 

1. in_string_ptr (Input) 
is a pointer to the input string expanded. 

2. in_string_len (Input) 
is the length in characters of the input string. 

3. out_buf_ptr (Input) 
is a pointer to a buffer where the output string is 
returned. 

4. out_buf_len (Input) 
is the length in characters of the output string 
buffer. 

5. out_string_len (Output) 
is the actual length in characters of the expanded 
output string. 

6. code (Output) 
is a standard status code. 

tviTB-343 Page 27 



APPE~DIX A 
SPE~DTYPE USER'S GUIDE 

SPEEDTYPE USER'S GUIDE 

This user's guide is intended to help wORDPRO users learn to 
use Speedtype. A narrative description of how and why to use 
each Speedtype command is presented. (1) Examples of how symbols 
are expanded are also provided. 

Special Instructions 

This appendix is included in this memorandum in order to en­
courage readers to use Speedtype. Since the Speedtype commands 
are not yet installed Multics commands, you must temporarily set 
up to use a private version of Speedtype maintained by the au­
thors. Users of the M.I.T. or System M Multics systems will be 
able to use a prototype version of Speedtype by issuing the fol­
lowing Multics command: 

asr >udd>Multics>Kissel>search 

This command adds a directory to your search rules that con­
tains the Speedtype commands (or links to them). Doing this is 
better than copying the Speedtype object code since you will be 
able to take immediate advantage of new versions of Speedtype 
that contain bug fixes or other improvements. 

Also contained in this directory is a Speedtype symbol dic­
tionary that you should copy. It contains symbols for about 70 
of the most common English words. After copying this symbol dic­
tionary, you can change or delete the symbols you do not like. 
You can then begin adding your own symbols. The pathname of this 
symbol dictionary is: 

>udd>Multics>Kissel>search>english.symbols 

Defining The Current Symbol Dictionary 

All Speedtype commands use your current symbol dictionary. 
The first time you execute a Speedtype command in your process 
the default symbol dictionary in your home directory is defined 
as your current symbol dictionary. If you want to know the 
pathname of your current symbol dictionary use the command, 
print_symbols_path: 

(1) Throughout this user's guide, the exclamation mark (!) is 
printed at the beginning of every line typed by the user. This 
is done only to distinguish user entries from system-generated 
printouts; the user should not actually begin an entry with an 
exclamation mark. 

Page 28 MTB-343 



APPENDIX A 
SPEEDTYPE USER'S GUIDE 

psbp 
>udd>Multics>Kissel>search>english.symbols 

If you want a different symbol dictionary to be your current 
symbol dictionary, then use the command, use_symbols: 

usb path 

where path is the pathname of the new symbol dictionary you want 
to use. If the symbol dictionary you want to use does not exist, 
then Speedtype asks you if you want it created. 

In order to start using symbols in an input text segment, 
memorize about 5 symbols. Start with simple and common words 
such as: "the", "and", "is", "to", and "with". You will find 
that symbols are like peanuts, you cannot stop with just a few. 
In a short time you will be using a hundred or more symbols and 
using prefixing, suffixing, capitalization, and other Speedtype 
features. 

Listing Information In A Symbol Dictionary 

Once you have established your current symbol dictionary, 
you will want to list the symbols that are defined in it. There 
are two Speedtype commands that list information in a symbol dic­
tionary. One command, list_symbols (lsb), is oriented toward 
symbols while the other, find_symbols (fsb), is oriented toward 
expansions. 

For example, if you want to know if the term "ex" is a 
defined symbol, use the list_symbols command as shown below: 

lsb ex 
ex example 

If you want to know if a symbol is defined for the word "ex­
ample", use the find_symbols command as shown below: 

fsb example 
example ex 

If either of these commands are issued without the optional 
argument, then all symbols or all expansions in the current sym­
bol dictionary are listed. 

MTb-343 Page 29 



Defining A Symbol 

APPENDIX A 
SPE~DTYPE USER'S GUIDE 

There are Speedtype commands that add, delete, and change 
symbols. They are called, appropriately enough, add_symbols 
( asb) , delete_symbols ( dsb) , and change_symbo,ls ( csb). For exam­
ple, if you want to define the symbol "fw": for the word "follow", 
issue the command: 

asb fw follow 

You 
symbol. 
gument, 
listed: 

can then use the list_symbols command to list this new 
This command is shown below with the "-long" control ar­
thus all defined suffix expansioris for this symbol are 

lsb 
f w 

fw -lg 
follow 

(+) follows 
(-) followwed 
(*) followwing 
(=) followwer 
c:) fellowly 

As you can see, the spelling of the word "follow" with the 
suffixes "ed", "ing", "er" is incorrect. The suffix "ly" does 
not even make sense for the word follow. You can change the in­
correct suffixes and delete the useless suffix by issuing the 
following change_symbols commands: 

csb fw -ed followed -er follower 
csb fw -ing following 
csb f'w -ly off' 

Now you may list this symbol again. In the example below it 
is listed with the expansion first. 

=> fsb follow -lg 
follow - fw 

(+) follows 
(-) followed 
(*) following 
(=) follower 

If you no longer want the symbol "fw" defined, delete it by 
issuing the delete_symbols command: 

dsb fw 

Page 30 MTB-343 



APPENDIX A 
SPE~DTYPE USER'S GUIDE 

Changing Symbol Options 

All of the special characters used by Speedtype (see the 
option_symbols command) can be changed. You cannot change the 
way these Speedtype features work, but you can change the actual 
characters recognized by Speedtype. 

For example, suppose you were typing on a terminal that did 
not have the temp escape character n-n. You could substitute an­
other character, say "&", and have it become the temp escape 
character. This can be done with the option_symbols command 
shown below: 

osb -temp & 

If you want to list the options and special characters 
defined in the current symbol dictionary, issue the list_symbols 
or find_symbols command with the "-option" control argument. 

Expanding An Input Segment 

This section describes the normal method of operation that 
you should use when preparing documentation with Speedtype. 

For this example, assume that you want to produce a document 
in the form of a runout segment, call it test.runout. Type your 
input text into the segment, test.runoff. This segment can be 
expanded by issuing the expand_symbols command shown below: 

esb test.runoff 

After this command is executed, test.runoff contains the ex­
panded text. It may then be used as input to the "runoff" com­
mand. 

Escaping An Input Segment 

One of the important features of Speedtype is that it allows 
you to specify that a symbol (text token) be retained and not be 
expanded. This is specified by using one of the Speedtype es­
capes. 

In general, you should not define a symbol that is itself a 
valid English word. For example, "i" may seem like a good symbol 
to use for the word "in", however, since "I" is itself a common 
word, defining "i" as a symbol would lead to confusion. 

MTb-343 Page 31 



APPENDIX A 
SPEEDTYPE USER'S GUIDE 

However, even if you choose your symbols carefully, there 
are still situations where a symbol must left unexpanded. Such 
situations might involve the initials of a person's name, exam­
ples within the text, or special numbering schemes that use let­
ters. When typing input you must recognize these situations and 
use the appropriate Speedtype escapes. 

Editing Existing Text Segments 

One common situation that involves escapes is when you have 
to edit an existing segment. If this segment was not typed by 
someone who was aware of the symbols that you have defined, then 
you must insert the appropriate escapes into the segment before 
you expand it. This may be done automatically by using the 
retain_symbols command. This command saves you the trouble of 
searching through a segment for symbols that would be expanded. 
It inserts escape characters wherever text would be expanded by 
the expand_symbols command. 

A good policy when beginning to edit an existing segment 
that may contain some of your symbols is to insert escapes in 
front of those symbols by i~suing the retain_symbols command as 
shown below: 

rsb existing.runoff 

Examples Of Expansion 

The Speedtype command, show_symbols (ssb), can be used to 
show how Speedtype expands an input string. This command is sim­
ilar to the expand_symbols command except that it expands an in­
put string rather than an input text segment. The expanded out­
put string is printed on your terminal. 

The show_symbols command is 
learning how to use Speedtype. 
using Speedtype without having 
show_symbols command is used 
Speedtype performs expansions. 

Page 32 

especially useful when first 
It will enable you to practice 

to use a text editor. The 
below in examples that show how 

MTB-343 



APPENDIX A 
SPEEDTYPE USER'S GUID~ 

The following examples define a symbol and then show how 
this symbol is expanded with suffixing and capitalization. 

asb c call 
ssb c 
call 

ssb c+ c- c* c= cl 
calls called calling caller callly 

ssb C C* 
Call Calling 

The following examples show how you can turn off certain 
suffixes for a particular symbol. It shows what Speedtype does 
with symbols that are not defined. It also shows what Speedtype 
does with tokens that do not contain a symbol. 

csb c -ly off 
ssb c cl 
call cl 

ssb undefined_symbol 
undefined_symbol 

ssb * 
* 

The following examples show how the suffix "ly" may be used. 

asb qt quiet -suffix off -ly on 
ssb qt qtl 
quiet quietly 

The 
can be 
defined. 
types. 

asb 
asb 
asb 
asb 

MTB-343 

following examples show the various ways that suffixes 
appended to an expansion. Several more symbols are 

The expansions of these symbols represent various word 

sp space 
ht hit 
cp copy 
sx suffix 

Page 33 



ssb sp sp* 
space spacing 

ssb ht ht= 
hit hitter 

APPE.NDIX A 
SPEEDTYPE USER'S GUIDE 

ssb cp cp- cp+ 
copy copied copies 

ssb sx sx+ 
suffix suffixes 

The following examples show how the temp, perm, and special 
escapes are used. Notice that escapes only work when they are 
the last character of a delimiter token. These examples use the 
symbols defined above. 

ssb c -c --c 
call c -c 

ssb ht=-•s 
hitter's 

ssb 'c 
c '-c 

' -' c 

The following examples show how the trans escape can be used 
to combine terms that are expanded separately. 

asb w with 
asb ot out 

ssb w:ot 
without 

ssb sp:person 
space person 

The following examples show how the space escape can be used 
to insert spaces (blanks) into your text. It also shows that no 
more than 99 spaces can be inserted. 

ssb "a;5b;11c" 
a b call 

ssb "a; b;100c" 
a; b;100c 

Page 34 NTB-343 



' ' 

APPENDIX A 
SPEEDTYPE USER'S GUIDE 

The following examples show how you can use Speedtype to un­
derline words or phrases. 

asb iot "in order to" 

ssb lot 
In order to 

ssb "_C* w:ot" 
Calling without 

The following examples show how you can use Speedtype to 
translate a word or phrase to uppercase. 

ssb +iot 
IN ORDER TO 

ssb +C* 
CALLING 

ssb +test_5 
TEST_5 

The following examples show how Speedtype can be used to 
perform both types of prefix processing. 

ssb +w:ot 
wITHOUT 

ssb +_C* 
CALLING 

ssb +_undefined 
UNDEFINED 

MTB-343 Page 35 



Page 36 

APPENDIX A 
~PEEDTYPE ~SER'S GUIDE 
EXERCISE FUh THE READER 

usb example.symbols 

lsb 
Total: 17 symbols 
al all 
e the 
fl final 
f m from 
ft first 
f w follow 
gt great 
lt last 
oy only 
ph path 
s is 
stnd stand 
t to 
ta than 
un under 
wl will 
y you 

print poem.example 

poem.example 

If y fw al e ph+, 
Fm e ft t e lt, 
Y wl fli un:stnd, 
Oy e _+root s gt= ta. 

esb poem.example 

file_output reader.mind; print poem.example 

tvJTB-343 

~ ! • 
" 


