
Multics Technical Bulletin

To:

From:

Distribution

Paul Green
Bill Silver

Date: June 10, 1977

Subject: Lister, a WORDPRO Tool for List Processing

INIRODUCTION

MTB-342

This memorandum describes proposed new commands for list
processing. These commands implement a simple data base manager
that can be used in a word processing or office management envi­
ronment. They are designed to interface with other word process­
ing tools and will become an integral part of Multics_ WORDPRO.

" Prototypes of th~1l list processing commands exist today on
Multics. They are us;:,.d now to produce reports, mailing lists,
and high quality form letters. It is the intention of the au­
thors to have these commands become standard Multics products.

This memorandum contains the following sections:

• List Processing
• Lister
• Lister Enhancements
• Summary of Lister Commands
• MPM Documentation
• Appendix A: Sample Lister Files

Please send all comments and suggestions on this memorandum
to the authors.

Send mail to: Paul Green
Honeywell Information Systems
575 Technology Square.
Cambridge, Mass. 02139

or send Multics mail at M.I.T or System M to:

or call:

-

Green.Multics

(617) 492-9332
HVN 261-9332

Multics Project internal working documentation. Not to be
reproduced or distributed outside of the Multics project.

MTB-342 Page 1

A list is a series of names, words, numbers, etc. set forth
in order. List processing involves the maintenance, sorting, and
selection of items in a list and the production of documents that
use this information.

Li§1 f£2£~§§i!1& and Word Processing

The definition of list processing given above is valid only
in the context of word processing. Its definition may be quite
different when used in other fields of computer science.

In the commercial marketplace, word processing products such
as IBM Office System 6 and Wang Word Processor 10, 20, 30 have
defined list processing to be a function of word processing and
this definition has become an industry standard.

11§1 Processing Functions -' ,.- f

The main functions of list process~ng are:

• list maintenance, i.e., input and update of information
in a list

• sorting

• selection

• report generation

An example of the use of list processing is a dental office
that maintains a list of all patients serviced by that office.
The data maintained for each patient might include the patient's
name, address, phone number, date of last visit, etc. When a pa­
tient first visits the office, the patient is added to the list.
This involves inputting information about this patient. This in­
formation may be updated later, for example, on each subsequent
visit, the date of last visit is updated for that patient.

This dental patient list can be used to produce various doc­
uments. For example, a report listing the name, address, and
phone number of all patients, sorted alphabetically by patient
name. Or, a form letter reminding the patient to visit the of­
fice for a checkup. This letter is sent to those selected pa­
tients that have not visited the office for six months or more.

Page 2 MTB-342

Lister is a set of commands that maintain and process online
lists of information.

Lister can be used to produce simple reports. Lister
interfaces with the Multics mail facility and thus can be used to
distribute information in an "electronic mail" environment.
Lister interfaces with the WORDPRO formatter, runoff, and thus
can be used to produce reports and form letters of the highest
quality.

The structure of a Lister list is simple. This simplicity
is important since the people using Lister may not be computer
professionals. The four elements in a Lister list are:

1 • Li§1: The whole list.
header record and a
dental office example,
the list. \

A list is comprised of one
series of data records. In the

the whole patient file is called

2. Header Record: A list must contain one header record.
It is the first record in the list. In the header re­

. cord are specified the data record and field delimiter
characters. Also specified are the names of the fields
contained in the data records.

3. ~ Records: A list may contain any number of data
records. A data record is comprised of fields. In the
dental office example, each data record in the list
contains information about one patient.

4. Fields: Each data record is comprised of one or more
fields. In the dental office example, each data record
contains the fields: name, address, phone number, and
date of last visit.

Lister Files

Lister uses three types of files. Each file type is identi­
fied by its entryname suffix. A description of these Lister
files is given below:

1. llstin: An ASCII file used to input and update a list.
It is identified by the entryname suffix ".listin".
Records in the list can be added, deleted, or updated
simply by editing this file with a text editor. (See
the create list command documentation for a description
of the structure of a listin file.)

MTB-342 Page 3

2.

3.

lister: A file containing the list in a form that can
be~-processed by Lister. It is identified by the
entryname suffix ".lister". All merging, trimming,
sorting~ selection, and document processing is per­
formed on lister files. A Lister command is provided
to create a lister file from a listin file.

11§1f.Q11!!: A file that defines the format of a document
produced from a list. It is identified by the
entryname suffix ".listform". Several listform files
may be used with one list. One listform file may be
used with several lists. (See the process_list command
documentation for a description of the structure of a
listform file.)

LISTER ~NHANCEMENT~

Lister performs very special and necessary functions that
complement the overall capabilities of Multics WORDPRO. Its sim­
ple list structure and its interface to runoff and the Multics
mail facility are its most important features.

To some, however, its lack of complex structure and its lack
of a query and update language may be considered serious short­
comings. To those, it must be said that Lister is not intended
to compete with the Multics Data Base Manager. In fact, all at­
tempts to "improve" Lister and make it more like a real data base
manager should be resisted, simply to keep Lister simple.

There are, however, enhancements that can be made to Lister
without altering its simple nature. Two such enhancements may be
implemented in future versions of Lister and are described below:

• The format of lister files could be changed to make
them indexed files (accessed via vfile_). Currently,
lister files are not indexed files and are limited in
size to one segment.

• A command interface for inputting and updating lister
files could be provided. Listin files would no longer
be needed.

Page 4 MTB-342

~UM~ABI OF LISTER COMMANDS

create_list

expand_list

merge_list

process_list

sort_list

trim_list

MPM DOCUMENTATION

creates a lister file from a listin file.

creates a listin file from a lister file.

combines two lister files into a single
lister file.

produces a document from selected records in
a lister file. The document format is
defined in a listform file. The documents
may be output on a terminal, saved in a file,
or mailed to other Multics users.

sorts the records in a lister file.

deletes selected records from a lister file.

The remainder of this memorandum presents draft MPM documen­
tation for the Lister commands.

MTB-342 Page 5

create_list create_list

Name: create_list, els

The create list command creates a lister file from a listin
file. The operation performed by this command is the opposite of
that performed by the expand_list command.

create_list path

where:

1. path
is the pathname of the listin file. If the entryname
suffix ".listin" is not specified, then it is added.
A lister file is created in the working directory
with the same entryname as path, and with the
entryname suffix ''.listin" changed to ".lister". Any
existing copy of this lister file is overwritten.

The creation of a lister file is the only Lister operation
of performed on listin files. All other Lister operations are
performed on lister files.

A listin file provides an ASCII representation of a list.
It is used to input and update a list. Listin files are created
and updated by using the WORDPRO text editor.

The format of a listin file is simple (see Appendix A). It
consists of the following three parts:

1. Header H~Q.Q£Q: Specifies the record and field
delimiter characters and the field names. The header
record begins with the first line in the file. This
line must contain just two characters. The first char­
acter is the record delimiter character that identifies
the beginning of each data record. The second charac­
ter is the field delimiter character that identifies
the beginning of a field. They must be different char-
acters. The record and field delimiter characters must
be chosen from the following set of special characters:

!11$%&*=?@": -

Page 6 MTB-342

create_list create_list

Beginning on the second line is a list of the names of
all fields that will be found in any data record.
These field names must be separated by a comma. The
last field name must be followed by a semicolon.

2. ~ Records: The beginning of each data record is
denoted by the record delimiter character. It is fol­
lowed by a list of fields. A record may contain some
or all of the fields defined in the header record.
Fields not specified for a record are considered to be
null. Duplicate fields are not allowed within a re­
cord.

3. Fields A field within a data record consists of two
parts, the field name and the value of the field for
that record. The field name must be preceded by the
field delimiter character. Field names may contain al­
phabetic uppercase or lowercase characters, numeric
characters, or the underscore "-" character. No other
characters are allowed. One special field name
"User_id" is reserved for "electronic mail" applica­
tions. It specifies a Multics user mailing address
(Person_id Project_id).

A field value is a string. It must be separated from
its field name by at least one white space character
(space, horizontal tab, or new line). The end of the
field value string is denoted by a record delimiter
character or a field delimiter character followed by a
defined field name. All white space characters preced­
ing or following the field value string will be removed
from the string when the field is processed.

MTB-342 Page 7

expand_list expand_list

Nam~: expand_list, els

The expand_list command creates a listin file
file. The number of records expanded is printed.
performed by this command is the opposite of that
the create_list command.

from a lister
The operation
performed by

Usage

expand_list path {-control_args}

where:

1. path
is the pathname of the lister file. If the entryname
suffix ".lister" is not specified, then it is added.
A listin file is created in the working directory
with the same entryname as path, and with the
entryname suffix ".lister" changed to ".listin". Any
existing copy of this listin file is overwritten.

2. control_args

Page 8

can be chosen from the following:

-brief, -bf
suppresses the printing of the number of records ex­
panded.

-line_length n, -11 n
specifies that the line length of the ASCII listin
file is to be n characters. If this control argument
is not specified, then a default line length of 132
characters is assumed.

-compact, -cmp
specifies that more than one field is placed on a
line. A field is placed on a new line only if adding
the field to the current line would exceed the speci­
fied line length. At least one field is placed on
each line. If this control argument is not speci­
fied, then only one field is placed on each line.

MTB-342

expand_list expand_list

Notes

The ASCII listin file created by this command has the fol­
lowing format:

• The first line contains the record and field delimiter
characters.

• Beginning on the second line are the field names. They
are separated by a comma and a space. A field name
will be placed at the beginning of a new line if adding
it to the current line would exceed the specified line
length.

• Each record will begin with a line containing just the
record delimiter character.

• Unless -compact is specified, each field is placed on a
separate line and indented one space.

MTB-342 Page 9

merge_list merge_list

Name: merge_list, mls

The merge_list command combines two lister files into a sin­
gle lister file. The number of records merged is printed. The
merged lister file may be appended to, or may replace an existing
lister file. The fields defined in the two lister files must be
identical. The fields to be compared during the merge must be in
ascending order. (See the sort_list command.) The field compar­
isons are performed without regard to case (uppercase letters
compare equal to lowercase letters).

Usage

merge_list mas_path up_path {out_path} {-control_args}

where:

1. mas_path
is the pathname of the master lister file. If the
entryname suffix ".lister" is not specified, then it
is added.

2. up_path
is the pathname of the update lister file. If the
entryname suffix ".lister" is not specified, then it
is added.

3. out_path
is the pathname of the output lister file. If the
entryname suffix ".lister" is not specified, then it
is added. If this argument is not specified. then
the input lister file is replaced.

4. control_args

Page 10

can be chosen from the following:

-brief, -bf
suppresses the printing of the number of records
merged.

-field_names fnl ... fn1, -fn fnl ... fnj
specifies that fields fnl through fni are used as the
controlling fields for the merge. Records are con­
sidered equal only if all fields are equal. The
fields are compared without regard to case. If this
control argument is not specified, then all fields
are used to control the merge.

MTB-342

merge_list

-add

-and

-or

-sub

Notes

merge_list

copies into the output lister file all records from
the master lister file Q!Y§ all records from the up­
date lister file. Thus records contained in both
lister files are duplicated. The "add" operation is
the default.

copies into the output lister file those records in
the master lister file that are also in the update
lister file. Thus only duplicate records are copied.
No records from the update lister file are copied.

copies into the output lister file
~jther the master lister file QI:
file. Duplicate records are copied
date lister file.

all records in
the update lister
only from the up-

copies into the output lister file all records in the
master lister file that are DQ~ also contained in the
update lister file. Thus no duplicate records are
copied and no records from the update lister file are
copied.

The diagrams below show how master and update lister files
are merged for each of the four merge operations: "add", "and",
"or", and "sub". In each diagram, the master lister file is rep­
resented by the upper left-hand "box", and its records are repre­
sented by "o" characters. The update lister file is represented
by the lower right-hand "box", and its records are represented by
"+" characters. The intersection of the two "boxes" represents
duplicate records, i.e., records contained in both lister files.
In each diagram, tbe records shown are those copied into the out­
put lister file for that merge operation.

MTB-342 Page 11

merge_list

ADD

AND

OR

SUB

Page 12

:o
lo
:o
io J.._

0 0 o:
0 0 01 I
0:$ $1+ +:
oi$ $1+ +:

:+ + + +:
I+ + + +I
.l-------.l.

:o o:
io ol

I
I
I
I
I
I

I I .,L_ ______ J..

:;;-;;-;;-;;:
:o 0 0 0 1

--~---
lo o:+ +:+ +:
lo oJ+ +i+ +:

:+ + + +:
i+ + + +i

:0;0-;:
:o 0 0 0 1

----.L.--
: 0 0: : :
IO O I I I
~--.l---.L I

I
I
I

.L

merge_list

MTB-342

process list process_list

Nam~: process_list, pls

The process_list command produces a document from all or se­
lected records in a lister file. The format of the document is
defined in a listform file. The WORDPRO formatter, runoff, may
be.used to format the document. By default, the document is
printed on the user's terminal. Alternatively, it may be saved
in a file, or mailed to other Multics users.

process_list list_path {form_path} {-control_args}

where:

1. list_path
is the pathname of the lister file to be processed.
If the entryname suffix ".lister" is not specified,
then it is added.

2. form_path
is the pathname of the listform file that defines the
format of the document. If the entryname suffix
".listform" is not specified, then it is added. If
this argument is not specified, then a listform file
will be used that has the same path as list_path,
with the entryname suffix ".lister" changed to
11 .listform". (See the notes below for a description
of the format of a listform file.)

3. control_args

MTB-342

can be chosen from the following:

-mail, -ml
specifies that a document is produced for each record
processed, and that each document is mailed online
(via the Multics mail facility) to the Multics user
specified in the field "User_id". Records that do
not contain the field "User_id" are not processed.

-output_file path, -of path
specifies that the document produced by this command
is saved in the segment specified by path. This con­
trol argument is in error if -mail or -runoff is
specified.

Page 13

process_list process_list

-runoff, -rf
specifies that the document produced by this command
is to be processed by runoff for final formatting.
This control argument is the last control argument
processed by process_list itself. All subsequent
control arguments are treated as runoff control argu­
ments and are passed to runoff.

-select ''select expression", -sel "select expression"
specifies the records selected for processing. If
this control argument is not specified, then all re­
cords in the list are processed. (See the trim_list
command for a description of a "select expression".

-sort "sort string", -st "sort string"
sorts the records processed. The new ordering of the
list is in effect only for the duration of the com­
mand. The lister file is not modified. If this con­
trol argument is not specified, then records are
processed in the order in which they currently appear
in the lister file. (See the sort list command for a
description of a "sort string".) -

A listform file defines the format of a document. (see Ap­
pendix A). Information from the list may be copied into the doc­
ument. Three section of a document may be defined. These three
sections are:

1. ~EfQBE: This section is added to the document before
any records are processed. It may contain any desired
text, including runoff controls. The beginning of the
BEFORE section is identified by a line consisting of
the string "BEGIN BEFORE". The end of the BEFORE sec­
tion is identified by a line consisting of the string
"END BEFORE''· If the BEFORE section is present, it
must be the first section in the listform file.

2. AFTER: This section is added to the document after all
records are processed. It may contain any desired
text, including runoff controls. The beginning of the
AFTER section is identified by a line consisting of the
string "BEGIN AFTER". The end of the AFTER section
is identified by a line consisting of the string
"END AFTER". If the AFTER section is present, it must
be the last section in the listform file.

Page 14 MTB-342

process_list process_list

3. B~~QBQ: This section is added to the document for each
record processed. It may contain any desired text,
including runoff controls. It may also contain field
value strings copied from the record being processed
(see "Field Insertion" below). The beginning of the
RECORD section is identified by a line consisting of
the string "BEGIN RECORD". The end of the RECORD sec­
tion is identified by a line consisting of the string
"END RECORD".

Field Insertion

In order to insert information from the list into the docu­
ment, a field name (enclosed in angle brackets) may be included
in the text of the RECORD section. For example, <field_name>.
For each record processed, that field name is replaced by the
field's value string from that record. Any number of fields may
be specified in a RECORD section.

An optional field width may also be specified. For example,
<field_name,10> specifies that the value string of the field
"field_name" is to occupy 10 character positions. If the current
value string is less than the specified field width, then it is
padded on the right with blanks. If the current value string is
greater than the specified field width, then it is truncated on
the right so its length is equal to the specified field width.

An optional field alignment may also be specified if a field
width is specified. For example, <field_name,10,r> specifies
that the value string of this field is to be ~!ght aligned within
the 10 character field width. The alignment indicators "l" for
left and "c" for center may also be specified. If no alignment
is specified, then the value string ·is left aligned.

Angle Bracket EscaR~~

To place a single left angle bracket in the text enter two
left angle brackets "<<". An unpaired right angle bracket is
left as is in the text.

MTB-342 Page 15

sort_list sort_list

Name: sort_list, sls

The sort_list command sorts the records in the specified
lister file. The records are sorted according to the fields
specified in the "sort string" argument. (See the notes below.)
Fields are sorted without regard to case, thus they will be
sorted into alphabetical order and not ASCII order.

Usage

sort_list path "sort string"

where:

1. path
is the pathname of the lister file sorted. If the
entryname suffix ".lister" is not specified, then it
is added.

2. "sort string"
is one argument enclosed in quotes. It specifies how
the records in the lister file are sorted. (See the
notes below.)

A sort string specifies the record fields used to control
the sort. It consists of one or more field specifications. The
first field specification defines the primary sort field; the
second field specification defines the secondary sort field; and
so forth.

A field specification consists of two parts, a field name
and an optional order control argument. The order control argu­
ment can be chosen from the following:

Page 16

-ascending, -asc
specifies that this field is to be
cending alphabetical order. If no
gument is specified. then ascending

-descending, -dsc

sorted into as­
order control ar­
order is assumed.

specifies that this field is to be sorted into de­
scending alphabetical order.

MTB-342

sort_list

Examples

"field1"

"field3 -dsc"

"field2 field1 -asc field3 -descending"

MTB-342

sort_list

Page 17

trim_list trim_list

N~m~: trim_list, tls

The trim_list command deletes selected records from the
specified lister file.

Usage

trim_list path "select expression"

where:

1. path

2.

Notes

is the pathname of the lister file being trimmed. If
the entryname suffix ".lister" is not specified, then
it is added.

"select expression"
is one argument enclosed in quotes.
records selected for deletion. (See
low.)

It specifies the
the notes be-

A select expression specifies the records processed by a
Lister command. Each data record in the specified lister file is
tested to ascertain whether or not the record fulfills the selec­
tion criteria. Those that do are processed.

A select expression consists of one or more field compari­
sons. A field comparison involves comparing a test string to the
specified field's value string in the current record. The com­
parison is made without regard to case, i.e., uppercase letters
compare equal to lowercase letters. A field comparison is speci­
fied as follows:

field name {comparison operator} test string

The field name is the name of a field contained in the list.
The reserved field name ":any" may be used to specify sD.Y field
in the record."

The optional comparison operator specifies what comparison
is performed. The opposite comparison is performed if the com­
parison operator is preceded by "not". If no comparison operator
is specified, then "contains" is assumed. The Lister comparison
operators are:

Page 18 MTB-342

trim_list

contains

equal

greater

less

nequal

ngreater

nless

trim_list

test string is contained in the field
value string.

test string is equal to the field value
string.

test string is greater than the field
value string.

test string is less than the field value
string.

test string is numerically equal to the
field value string.

test string is numerically greater than
the field value string.

test string is numerically less than the
field value string.

The test string is the string that is compared to the field
value string. The special test string ":null" is used to test
whether or not the field is null, i.e., missing from the current
record.

Several field comparisons may be specified in a select ex­
pression. Field comparisons are combined by the logical opera­
tors "and" and "or". The select expression will be evaluated
from left to right with "and" operators evaluated first. Paren­
thesis may be used to specify the exact order of evaluation.

"field1 example"

"field1 contains example"

"field1 not foo"

"field3 not equal ""foo bar"""

"field2 less test"

"field1 not ngreater 123"

"field1 equal test and field2 nless 10"

"((field1 equal test) and (field2 nless 10)) or (:any :null)"

MTB-342 Page 19

Appendix A
Sample Lister Files

patients.listin

$=
name,fname,lname,street,city,state,zip,phone,date,comment;
$

=name John Doe
=fname John
=lname Doe
=street 71 Pine Street
=city Boston
=state Massachusetts
=zip 02020
=phone (617) 991-7654
=date 770520
=comment you and your family well, including your pet rabbit Whitey

$
=name Jane Smith
=fname Jane
=lname Smith
=street 898 Smith Avenue
=city Needham
=state Massachusetts
=zip 02112
=phone (617) 992-4567
=date 750713
=comment you well after your seventeen month island hopping

cruise in the Lesser Antilles
$

=name Francis Jones
=fname Francis
=lname Jones
=street PO BOX 999
=city Cambridge
=state Massachusetts
=zip 02139
=phone (617) 888-7869
=date 770131
=comment you well

Page 20 MTB-342

BEGIN BEFORE

Appendix A
Sample Lister Files

addresses.listform

Dental Patient Addresses

END BEFORE

BEGIN RECORD

<name>
<street>
<city>, <state> <zip>
Tel: <phone>
END RECORD

BEGIN AFTER

Smiles Associates
END AFTER

MTB-342 Page 21

Appendix A
Sample Lister Files

Address Report

Dental Patient Addresses

John Doe
71 Pine Street
Boston, Massachusetts 02020
Tel: (617) 991-7654

Francis Jones
PO BOX 999
Cambridge, Massachusetts 02139
Tel: (617) 888-7869

Jane Smith
898 Smith Avenue
Needham, Massachusetts 02112
Tel: (617) 888-7869

Smiles Associates

Page 22 MTB-342

BEGIN RECORD
.pl 40
.11 55
.in 30
. nf
Smiles Associates
1001 Painless Avenue
Boston, Mass. 02003
(617) 987-6000
.sp 2
.in
<name>
<street>
<city>, <state> <zip>
.fi
.in

Dear <fname>:

Appendix A
Sample Lister Files

letter.listform

I hope this letter finds <comment>.
It has been over six months since your last visit to our office.
Please call and make an appointment to have a checkup .

. in 30
Keep smiling,

J. Puller, D.M.D .
. pa
END RECORD

MTB-342 Page 23

Jane Smith
898 Smith Avenue

Appendix A ·
Sample Lister Files

Sample Letter

Smiles Associates
1001 Painless Avenue
Boston, Mass. 02003
(617) 987-6000

Needham, Massachusetts 02112

Dear Jane:

I hope this letter finds you well after your sev­
enteen month island hopping cruise in the Lesser
Antilles. It has been over six months since your last
visit to our office. Please call and make an appoint­
ment to have a checkup.

Keep smiling,

J. Puller, D.M.D.

Page 24 MTB-342

