- 4

MTB- 34

——
Multics Technical Bulletin MTB - COBOL MCS

To: Distribution
From: Robert M. May
Date: May 13, 1977

Subject: COBOL-74 Message Control System (CMCS) for MR6.0

INIBORUCTION

This MTB gives the proposed design for the runtime package
to support the full Level-2 functional requirements of the ANSI
C080L=-74 Communications Module. This facility 1is required for
MR6.0 shipment.

Multics COBOL is being extended to process the ANSI COBOL-74
Message Contrcl System (CMCS) syntax. Full Level=2 functions are
provided for the SEND, RECEIVE, ENABLE, DISABLE, ACCEPT (MESSAGE
COUNT) wverbs of (CMCS. In addim5ion, the PURGE verb from the
CODASYL JOD is supported. '

The primary purpose of the C(MCS facility 1is to enable
Multics COBOL to fulfill the functional requirement imposed by
the Navy Audit Routines. Tests for COBOL MCS do not yet exist;
howevers, they are known to be under development and we must be
ready to run and pass them when they become available.

Please send all comments on this proposal to the author.
Send U.S. mail to: Robert M, May
Honeywel |
P.O0O. Box 6000, M.S. K-28
Phoenixs, AZ 85005
or send Multics mail on System M in Phoenix to:

May.Multics

or call me at: (602) 249-7295
HVN 341-7295

. D - - A G ANy - — VS G - - —— . — e - ——— - — =

Multics Project internal working documentation., Not to be
reproduced or distributed outside the Multics Project.

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 1

REEEBRENLES
It is recommended that the reader be familiar with the

description of the Communications Module in the ANS COBOL-74
Standard.

1. HIOC - Preliminary MCS Subroutine Specification, Otto
Newman, 12/26/76, Defines the object program interfaces
(OP1) necessary for the runtime package to support the full
tevel-2, ANSI COBOL-74 Communications Module.

2. ANSI COBOL=-764 Standard Definition, ANSI X3.23-1974

3. Preliminary MTB, COBOL MCS, R. W. Franklin

4, CODASYL JOD, 1976, for a description of the PURGE verb.

To assist the reader in understanding the basic functional needs

imposed by the ANSI (C0BOL Standard, a copy of the descriptive
narration from the Standard is attached.

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 2

IEBYINQLOGY

(o]

MTB=-341

gueue hierarchy

The tree structure wused by C(COBOL programs to access
messayes for (COBOL) Communications processing. There
can be up to four levels in any subtree. Each level is
identified by a level number and a level name. In the
Multics implementation, the level names are completely
logicals that is, the physical message queues are
identified with a separate name associated with each
terminating branch (tree path) in the hierarchy
definition.

level number

The number, from 1-4, associated with each level in a
queue hierarchy definition. It is not necessary to use
all four levels,

level name
The logical name, from 1-12 characters, associated with
each lLevel in a queue hierarchy definition.

tree path \

The concatenation of the level names 1in a particular
branch of the subtree is called the tree path. It is
the tree path by which (C0OBOL application programs
identify which particular physical messadge queue or
qQueue hierarchy they wish to access. A tree path will
have one of two forms. Internally, it will always be a
48 character string, consisting of the concatenation of
the four., 12-character level names. The level names
are blank filled to 'a maximum of 12 <characters, and
trailings, unused Llevel names must be supplied and
blank,

Externallys, the tree path can be a quoted string of the
internal form or it can be a variable length string of
characters with wup to four period-delimited Level
names, similar to the components of an entryname in the
storage system, In this form, the level names are not
blank filled. Note that it is possible to have a tree
path (in this form) that is 51 characters in length if
all four level names are given and they are each 12
characters long.

Examples of the two formats of tree paths would be:

"orders.clothe.shirts.dress"
“"orders cloth shirts dress

absolute tree path

An absolute tree path is a tree path that specifies all
levels of a subtree necessary to identify a specific
physical message queue,

COBOL MESSAGE CONTROL SYSTEM Page 3

o] command line
When it is desired that a command be executed when 3
physical message Queue goes non-empty (Wwith a message
available for processing), a command line is specified
for the gueue in the source for cmcs_tree_ctl,control,
Rules for constructing command Lines are given in the
description of the cv_cmcs_tree_ctl command,

o absin Lline
The absin Line is similar to the command line and is
used when an absentee is submitted to process a
non-empty queue,

o] physical queue name
In all subsequent discussions, the word "physical” will
be omitted from "physical queue name"™; however, the
meaning is the same. The physical queue name defines
the name of physical message queue, The actual
entryname assigned will always have a suffix of
"cmcs_queue”.

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 4

DESIOGN _REQUIREMENIS

The COBOL~74 Communications Module is an ambiguous title for
the description of the COBOL Message Control System, hereafter
called CMCS, or COBOL MCS. CO080L MCS is a general facility for
the writing and reading of messages in message queues, iNvoking
application routines to process messagess, and controlling access
to the terminals and queues. (Terminal access in the Multics
implementation is controlled only as it relates to COBOL MCS;
Outside the context of CMCS, no CMCS controls are imposed.)

1. Full Level 2 COBOL M(CS functions must be delivered for
MR6.0., “Full Level 2" dictates that all functions provided
must adhere strictly to the ANSI COBOL-74 definition of
(MCS. (Some functions as defined in the CODASYL JOD are
also provided; howevers, it is nearly certain that ANSI witl
incorporate these extensions into the next definition of
standard COBOL).

2. Performance is secondary to complete functionality.
3. No changes to existing system software are allowed.
4, No metering or accounting data is necessary to pass (as yet

undefined) audit routines and therefore is not required for
the first release,

S5e Final implementation of C(COBOL MCS may drastically change.,
depending on the implementation of Multics transaction
processing. In the meantime, it must be able to function as
an independent subsystem.

6. A four-level hierarchy (not including the root) is set on
top of the actual message queues. COBOL programs can request
a message from any point in the hierarchy, thus causing the
runtime package to look for a message in all queues defined
by that subtree. They can wait (go blocked) for any message
that becomes available in the specified subtree,

7. Messages can be any lengths, and can be written and read in
any number of pieces, thus atlowing the possibility of
intermixed messages in the queues, Delimiters for the pieces
are specified, but cannot be imbedded in the data.

8. Terminals and queues can be enabled and disabled (as
mentioned above) by any user process with the right
password; howevers any messages in process must be allowed
to complete.

MTB-341 COBOL MESSAGE CONTROL SYSTEM - Page 5

RESIGN.CONLERIS

1.

The Multics implementation of C0OBOL MCS is based on the

conctept of a "station.” A station is a logical entity.,
having controls imposed by the system, that can be attached
by @ process. Its primary reason for existence 1is to

provide a uniform mechanism for identifying sources and
destinations of messages. Thuss, the facility is independent
from terminals, user-ids <(including anonymous users), or
constraints placed upon interactive or absentee users).

In this wusages, the term "attach”™ means only that an
available resource becomes solely owned for current use, by
a specific process., The connotation of a Multics 1/0
attachment does not applye.

Specific stations can be attached to individualss, by
default, they are assigned to users dynamically on the basis
of terminal subchannels.,

A process can attach one station. This can be extended
atter MR6.0 to allow a process to attach more than one
station, and to allow multiple processes to share a single
station.

A process can receive or send from/to any (authorized)
queue. The difference between the station queue and all
others is that it is specifically dedicated for input to
that station,

Associated with every communications terminal
(communications subchannel), there 1is one and only one
station. Output tg a given terminal will always be written
first to the station's gqueue. (If, in the future, a user's
terminal can be shared among the user's process and other
processes, it may be possible to eliminate the double
buffering.)

CMCS will use the standard Multics interfaces for terminal
1/0. The only <¢ontrol imposed by CMCS is that the runtime
package will check to wverify that a queue or terminal is
enabled before it attempts to do I/0 with that target.

C0BOL application programs will be invoked either implicitly
or explicitly. Implicit 1invocation <(from a queue going
non-empty) reguires one input argument, the COBOL hierarchy
tree path.

Explicit invocation of a CQBOL MCS program uses no arguments
because the program must define the specific queue it wishes
to access.

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 6

10.

Every process must attach 1its station before proceeding
further, The first attachment initializes the wuser's
environment for (MCS processing. At that point, the uSer
can perform any authorized CMCS operation.

All message queues and system control tables for a given set
of wusers will be <contained in a single, user-specified
directory. If desireds, a different set of users can operate
in a different directory.

The initial C€0BOL MCS facility is oriented strictly to
COBOL:; other languages may be used but they must interface
to the (O0BOL runtime software, Integration with the
forthcoming transaction processing system will occure
wherever possible, after user interfaces become defined~’
howevers, it is a goal that no user source program changes or
recompilations will be necessary, (Integration is subject
to the time constraints of the MR6.0 release.)

The physical integrity of all (MCS queues and control
segments will be protected from indiScriminate user QUITs by
appropriate use of IPS masking.

In addition, a cleanup handler in <cobol_mcs_r the single
user (object program) interface, will perform appropriate
cleanup of all messages in process.

The C0BOL language specification requires user programs to
specify a password for the ENABLE and DISABLE verbs. User
documentation will stress the need to avoid putting literal
passwords into program source.

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 7

DESIGN-.ASSUUBIIQNS

o] ALL COBOL application programs are benigns, i.e., they will
always access (MCS queues and control segments through the
CMCS runtime interface. If this policy is violated, correct
operation is highly unlikely,

o] Most messages will be short. Thus, a message sent to
multiple destinmations causes a copy of the message to be
placed in each destination's gueue.

(¢] when a user sends only a portion of a message, it is likely
that it is either a long report or a file data copy. Thuse,
a maximum size hotding buffer must be wused. For this
reason, a temporary segment is assigned to each queue when
the user sends a partial message to that gqueue,

0 vfile_ recovery is coming for MR7.0. By wusing indexed
vifiles for the message queues, C(MCS will be able to take
advantage of the recovery features,

o The meaning of message length (to a (O0BOL program) becomes
ambiguous 1f the slew controls are imbedded in the data.
fFor this reason, the slew control information 1is kept
separate from the message text until the message is to be
sent to an output device,

o The C(COBOL-74 Communications Module description is wvague
about the number of passwords needed from CMCS. Thus, only
one passwordese at the CMCS system level, will be used, This
one password must be matched by all users wishing to perform
enable/disable functions,

(o] All users are benigns, 1in that they will access CM(CS only
through the proper interfaces, Thuss, there 1is no use of
lower rings for database protection nor are there any
special gates developed for (CMCS. (This change can be made
in the future without affecting usSer programs.)

o Since the primary goal of this implementation is to satisfy
the (undefined) audit routines, tools are not planned for
administrative functions that can be performed manually with
other Multics commands, i.e.r, ACL setting.

0 Tree Path Policy

1t is implied but not required in the (0BOL-74
Standardes that the COBOL Application Program wuse the
absolute tree path of the target gqueue to receive subsequent
pieces of a message. To eliminate ambiguities in the
processing of receives with tree paths that are subsets of
an absolute tree path for a receive in process (not all
segments of the message have been read), the following rule
is established:

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 8

A receive request with a tree path of a.bs, that is
resolved with a message from a.b.cs must be completed before
any other message request from a or a.b. can be processed,
Any attempt to use just a.b will be rejected.

Continuation receijves for a.b.c are wvalid (and
appropriate), as will be a receive request addressed to
a.b.d or a.b.f, where a.b.d and a.b.f are also absolute tree
paths.

As an example,

Tree Paths In-process Queue Name
a

ab

abec yes queue_1
abd yes queue_2
ab f yes queue_3

given that requests for absolute tree paths a.b.d and a.b.f
are in-processs, a new request for tree path a.b would pe
rejected with cmcs_error_table_$ambiguous_tree_path. This
would cause a status key of "20" to be returned to the
requesting C0BOL application program.

MTB=-341 COBOL MESSAGE CONTROL SYSTEM Page 9

RESPONWSES . IQ_OITQ NEWWAN_QUESTIONS

The following are responses to questions raised by Otto
Newman in his "Preliminary MCS Subroutine Specifications."” The
parenthesized numbers indicate the corresponding numbers of the
questions.

(1) There is one type of message gueue, but it will be used 1n
two different ways. One use will be to hold the output
messages for terminals until they are written to the output
device. The other wuse will be to hold input messages until
they are read by the COBOL application programs.

Because there is minimal distinction between the the gueue
usess» it would be wvery Little trouble to generalize this
capability and allow COBOL application programs to create
output messages that would in turn be read by other COBOL
application programs. This concept is basic to a transaction
processing capability.

(2) In the Multics implementations, there is no physical
distinction between queues accessed for receives and queues
used to hold messages for destinations,

Because of this, the (MCS gqueue hierarchy definition must
include the specification of all gueuess both applicatian
queues and destination queues.

In send operationss, the destination is translated into a
station name, and thus has a specific queue assigned to hold
the messages for output to a terminal device.

(3) In the initial implementation, the wuser can attach ("own")
only one station (to receive output as a destination). The
process does not '"own" the queues it accesses for normal
receives.

The definition of password usage in the (OBOL Standard is
somewhat ambiguous. Thus, for the present, only one password
will be used to validate all enable and disable requests.
If there is a future <clarification that requires multiple
passwordss, this can be changed.

(4) EM] and EGI message delimiters are processed identically by
the runtime package. Differentiation in the meaning of
these two (logical) delimiters is Lleft totally to the user
software,

(5) Yes. However, attempting to do a send and a receive on the
same tree path in the same process is not allowed in the
Multics 1implementation. Once either of the operations s
completeds the other can be started without any constraints.
Note that this implies a one-level tree path; otherwise.,

MTB=-341 COBOL MESSAGE CONTROL SYSTEM Page 10

(6)

7

there would be no way to match up the input source queue
with the output destination queue.

For multiple processes, locks are used for critical areas of
queue manipulation., Locking is kept to a minimium to reduce
inter-process interference,

Only the particular message being received is locked on an
extended basis. The entire queue is locked only long enough
to accomplish the message Llock and <changing the status
lists.

(There is no distinction made between EMI and EGI in the
Multics implementation.)

A design choice was made to require a process to specify its
CMCS directory explicitly. This is done with the cobol_mcs
command, This constraint could be relaxed in the future.

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 11

UNRESOLXED_DESIQU_1IEMS

o) How much integrity protection should be built into the
system to protect benign, but carelesss wusers from
themselves? (The facility will perform appropriate

processing of user QUITs with IPS masking.)

o Does this design preclude extensions for securitys
extension, or accounting?

0 In the standard definition of COBOL M(CS, the entering of
messages into the system and printing output are defined to
be terminal activities, with the implication that the
processing of input messages 1is independent from the
termninal activity. Is it legitimate to have the same Multics
process that enters a message 1into the system to also
process that message and generate its own output?

MTB=-3471 COBOL MESSAGE CONTROL SYSTEM Page 12

BEQUIBED QUEUE _QPERAIIQNS

The following items are my interpretation of the requirements of
the COBOL standard:

1.

write (SEND) message data with 0, ESI,» EMI, or EGI. O, ESI,
EMI-» and EGI are logical trailing delimiters, Corresponding
to end of partial message, end of (message) segment, end of
message, and end of (message) group, respectively. A
message group consists of one or more messages and a message
consists of one or more message segments, When writing the

message to the queue, only the highest Llevel delimiter
specified.

Only when message data is written with EMI or EGI is the
message to be made available in the queue to readers. (The
implementation will assume that the complete message will be
goods, and that message segments are written directly to the
queue, rather than holding them in a temporary buffer until
they are known to be good. <Correspondingly, some means must
be provided by which queues can be "purged"” of truly
invalides or incomplete, messages,)

Messages and also message segments from multiple writers can
be written to a Queue <concurrently, Thus, message segments
for a given mesSSage are not necessarily contiguous in the
Jueue.,.

when the (C0BOL application program issues a send of a
partial message (zero value delimiter), the system will
create a temporary buffer in whicth to concatenate subsequent
pieces. Only when the message (or message segment) s
complete, will it be written to its queue(s).

Read (RECEIVE) message or message segment data from a queue.
If the receiving buffer is smaller than the string of
message data, the system will cause only that sized portion
of the message entity to be written into the buffer and will
provide the next increments, up to the proper (logical)
delimiter, upon subsequent calls to the same queue, (The
system must maintain the necessary record locks and
pointers; by ANSI definition, these functions are external
to the user program.

Another implication is that the system must be able to
retrieve discontinuous portions of message data. For
example, assume that a program sent a pgessage to a queue as
two @essage segments of 100 <characters each. Another
program did a receive messaye to the queue and got that
message, However, its buffer was only 75 characters long,
Thus, the system woOould move data into the receiving bufter
in the following manner:

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 13

Step (message segment, ctharacter positions)

1 (1, 1-75)
2 (1, 76=100) (2, 1~-50)
3 (2, 51-100)

The receiving program would continue to issue receives until 1its
mesSage delimiter status went trom zero to EMI.

3. Enable a queue and disable a queue, This is nothing more
than allowing or disallowing wuser access to a queue. In
CO0BOL, this a user-program function, requiring a password.

There is 8 corresponding facility to enable and disable a
station or stations from access to all or specific queues,

The setting of a disable flag does not necessarily
immediately prevent a terminal from accessing a queue for
input oOr output. Operations that were begun before the
disable flay was set are allowed to continue to completion.

4, Get counts of messages in a queue hierarchy or a single
queue. This is the momentary count of all valid (complete)
messages in the queue, It specifically does not include any
partial messages. (It also does not include any messages
that are locked to other processes. This is my inference of
the ANSI standards it will be clarified.)

S. Purge partially sent messages., This 1is not in ANS Standard
C0BOL,; however» it is expected that ANSI will adopt the
currently defined PURGE verb from the CODASYL JOD in the
next update of the Standard,

In the Multics implementations, procedures to perform this
function already wexist to enable users to <clean up the
queueS.

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 14

LOBOL _MCS _QUEVE_QRGANIZATIION

QUEUE-XXX

RCD~0/1 RCD 1/1 RCD 2/1 RCD 2/2 RCD 3/1
CONTROL MESSAGE MESSAGE SEGMENT MESSAGE
INFO HEADER HEADER HEADER HEADER

SEGMENT SEGMENT DATA SEGMENT
HEADER HEADER HEADER
DATA DATA DATA

Notes:

1.

Record zero is always reserved to contain control
information used in the processing of messages in the given
queue,

Any given message can span multiple non-contiguous records
of the file. Only the first record for a given message will
contain a message header, Subsequent pieces (segments)
contain just the segment header and data.

Keys for the vfile records consist of two adjacent fields of
fixed bin (35) values. The first field contains the ordinal
number of the C(M(CS message. The second field holds the
ordinal number for message Segments within the given
message. Message numbers and message segment numbers always
begin with the value one. when the physical queue is
createds a record with key wvalues of 0/1 1is stored. This
record will contain global <control information for that
queue. It is called the gueue control record,

Part of the header record for each message will be a pair of
forward and backward pointers., The message header of a
message will be Llinked into a List of pointer pairs, based
upon the status of the recorde.

Current status codes are the following:

- send in process (message being built)

- send complete (avaitable for processing)
receive in process

- receive complete (ready for deletion)

~ W -
t

MTB~341 COBOL MESSAGE CONTROL SYSTEM Page 15

QUEUE_DESIGN CONSIDERATIONS

The <choice of an indexed vfile_ file structure for the
message queues is based on the following considerations:

1. Messaye activity can be such that it may not be possible to
store all messages in a single segment, The vfile_
organization eliminates this problem. A related requirement
is that the sum of the pieces of any given message can te
larger than a single segment, (The Multics CMCS
implementation currently has a design constraint that any
one piece not exceed one segment.)

2. The pieces of a message may not be contiguous. This can
easily occur if there are multiple concurrent writers to the
file. This problem is eliminated by the indexed file
organization, A two-level key of message_number,
piece_number, provides nearly direct access to each piece as
needed.

3. Messages are variable in Llength, The internal vfile_ space

management facilities eliminate the need for any similar
code in CMCS procedures,

4, Linking of specific messages 1into any one of the message
status lists (incomplete, complete, 1in process, etc.)
requlres an addressing mechanism that is process

independent. The vfile_ record_status control operation
solves this problem by returning an address consisting of
MSF component number and offset,

S5e The forthcoming file integrity extensions to vfile_ will
also be available to COBOL MCS.

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 16

QVEBVIEW_QF _(MCS _DAIA_BASES

For a given set of users, the databases described and the
assoclated message queues must reside in a single directory, A

Qiffer?nt set of users can have their control segments and queues
in a different directory.

' !t is appgrent that some databases contain very little data.
This is undesirable from a performance standpoint, but that is
not an issue for MR6.0, and it does simplify the implementation.

o cmcs_terminal_ctl.control
?hls database provides the default station_id for
interactive users (based on user-device channel).

0 cmcs_tree_ctl.control
This database contains the template definitions of all CMCS
queue hierarchies for a given set of users. This segment is
ctopied to the process_dir during the user's CMCS
initialization and s then dynamically wupdated with
user-specific information for each entry used,

o] cmcs_station_ctl.control
This database defines all legitimate stations and contains
per-station flags to indicate enable/disable conditions.

o] cmcs_wait_ctl.control
This database is shared by all processes performing a
receive with wait. Entries are searched by queue hierarchy
on a first comes, first served basis.

o cmecs_system_ctl.control
Initiallys this segment will <contain only the C(CM(CS-wide
password (up to 10 characters), used in granting permission
to perform the enable and disable functions as given in the
language.

o cmcs_queue_ctl.control
This database contains the flags for enable/disable
functions on a per-queue basis. Additionally, it holds the
message status counters and linked-list ptrs for each queue.
Entries in this table are searched to find occurrences of
available messages before the actual queues are accessed.

0 cmcs_user_ctl.control

This per-processs external static database contain; alt the
common parameters used by the various CMCS subroutines,

MTB-341 COB0L MESSAGE CONTROL SYSTEM Page 17

USER_COMMANDS _SUBUARY

The following commands are provided as part of the COBOL MCS
runtime support facility.

cobol_mcs

This command serves to establish the environment for further
(MCS processing. Users specifying the terminal option can
perform any of the functions of the COBOL send, receive,
enable, disables, accept mesSsSage counts, and purge verbs, If
the station option is wuseds, the command will perform the
process initialization and then return to command Llevel.
This would normally be in preparation for the execution of a
C0oBOL application program.

cobol_mcs_admin

This administrative command currently has only two
functions. The first is to create neceSsary control segments
and message queues for a given (MCS directory, using the
cmcs_tree_ctl.control segment as input. The second is to
set or change the system-wide password, used to validate
enable or disable requests,

cv_cmecs_station_ctl
cv_cmcs_terminal _ctl
cv_cmcs_tree_ctt

These three commands are all control segment compilers. They
are based on the reduction_compiler tool., They each read a
source file called cmcs_XXX_ctlesrce where XXX is station.,
terminals, or tree, respectively, and generate a binary
control segment of the name cmes_XXX_.ctl.control.
Subroutines that access the binary control segments have a
name of the form cmcs_XXX_ctl_.

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 18

- -

Name: cobol_mcss cmcs

The cobol_mcs command provides a command interface to the
COBOL Message Control System (CMCS) functions in a manner similar
to that used inside a COBOL program. Refer to the Myltics CQBOL
ggjg;gg;g _ Mapual, AS44, for a complete deScription of the
Commaunications Module.

The first time this command 1is invoked in the user's
process, the process will be initialized for the execution of all
Subsequent C(MCS operations. If the process 1is to operate as a
CMCS terminal, the command will read subcommands from the
user_input switch,

Usage

cobol_mes cmecs_dir {control_arg}

where:

1. cmes_dir
is the path of the directory containing the desired
CMCS message queues and control segments.

2. control_arg
is one of two <control_args. It must have the value
-station and be followed by a valid cMCS
station_names, ors, it must have the value -destination
(-ds) and optionally be followed by a station_name,
If the station_name is not given for the -destination
control_args, a default station_id will be used.
The use of -destination will cause the process to be
initialized to act as a CMCS terminal/destination.
The use of -station will causSe the process to be
initialized for subsequent use by a C0BOL application
program,

Notes

_ For MR6.0, this command must be invoked to initialize the
user's process before any other cosoL MCS functions are
performed.

Once <cobol_mcs is invoked for terminal operations, the

command will read requests from the wuser_input switch. The
requests supported are receive, send, enables, disable, accepts,

DRAFT: MAY BE CHANGED 19 06/09/77 C0BOL MCS

- - - - -
- - - - - -

cobol _mcs cobol_mcs

- -
- on - o - -

purge, and quit. They are identical in function, although
slightly different in format, to the corresponding verbs
described in the Hultics (Q8QL Referepce Mapual, Order No. AS4L,
in the Communications Module. (purge is described in the CODASYL
JOD.) Full ANSI COBOL-74 Level 2 support is provided,

Regugesi_Summary

The requests and their abbreviated forms are listed here.;
detailed descriptions follow the lists, in the same order.

accept_message_count, amc '
prints a8 count of all messages available 1in the
specified queue hierarchy

receive, r .
prints and deletes all messages available in the
specified queue hierarchy

sends, S
sends input lines as messages (or message segments)
to the destinations specified (partial messages are
first accumulated wuntil they are complete, before
writing to the destinations).

enable_input, ei

enable_input_terminal, eit

enable_output, €eo
enables a gueue hierarchy, a stations, or a3 set of
stations, respectively, for further activity.

disable_xxx, dxxx (same format as enable)
disables a queue hierarchy, a station, or a set of
stations, respectivelys from further activity, after
the currently active messages have been processed.

The distinction is made because the (COBOL
definition requires that messages currently being
processed must be completed before the queue or the
terminal is disabled.

purge, p
causes all partially sent messages to be deleteds and
all partially received messages to be marked again as
available,

quits, g

DRAFT: MAY BE CHANGED 2u 06709777 C0BOL MCS

- - - - - - -
-

cobol_mcs

causes the cobol_mcs command to purge any incomplete
send and/or receive messages and then return to
command level,

Begugst
accept_message_count tree_path

Where tree_path is a character string of the form a.b.c.d.
The componentss as» bse <ce and d represent the four levels of a

CMCS queue hierarchy (maximum), The level names must be
alphanumeric (including underscore)s, and can be from 1-12
characters 1in length; trailing blanks are appended internally
when appropriate. At least the first <component 1is required:

trailing components are necessary only to define the desired
level in the queue hierarchy.

This request will <cause the command to search the
appropriate queues for a count of all messages currently
available for processing (send complete) and print the sum on the
user_output switch, Unless there are no other CMCS users on the
system, the availability of messages may change between the
accept_message_count and any subsequent receive requests.

Reguest
receive delim tree_path

The delim argument is either esi or emi, to 1indicate that
either a mesage segment, or an entire message is desired.

The tree_path is as defined above.

The receive request will —cause the appropriate queue ofr
queues to be searched for the first available message. If none
is foundese a "No messages" <comment will be generated and the
command will return to request level. (The cobol_mcs command
interface will never "wait" for a message to become available.)
If one is found, the message will be printed on the user-output
switchs, along with any appropriate slew-control data.

After the <complete message is printeds, it is deleted from
the Queue, when performing a receive_seygment request, it will
find the first available message and print the first segment of
that meSSage. Subsequent invocation of the request with either a
null or the same tree_path will cause the following segments of

DRAFT: MAY BE CHANGED 21 06/09/77 coBOL MCS

cobol_mcs cobol_mcs

- - an - W - - -
- e e - -

the message to be printed. The message will be deleted after the
Last segment of the message is printed.

Reguest

send delim dest1 {dest?2 ... destnl}
Where delim is as described above.

dest1l ... destn is a Llist of one or more destinations to
which the message will be sent. The Llist is required at least
for the first send oOperation. If the Llist 1is omitted on
subsequent sends, the previous list will be used.

The send request duplicates the function of the send verbd
with one of the four Llogical delimiters (0, ESI«. EMI, EGI).,
respectively.

when any of the send requests are issued, the command will
enter an input mode, similar to that in the EDM. Lines of input
are accumulated until a line is dinput with just a single period.
At this points the accumulated data will be sent to the
appropriate destination(s).

Reguest

disable_inputs di tree_path
disable_input_terminal, dit station_name
disable_outputese do destl {dest?2 ... destn)

Where tree_path and desti are as described above,

The disable regquests will first request a password, using
the terminal's non-print function or a mask to avoid the printing
of the password, The password response 1is encoded and then
compared to the CMCS system password, If equals, the command will
then process the arguments on the request Lline, The result is
identical in function to that of the disable verb in the COBOL
Language,

ggguest
enable_input, ei tree_path

enable_input_terminal, eit station_name
enable_outputs, eoc destl {destl ... destnl}

DRAFT: M™MAY BE CHANGED 22 06709777 coBOL MCsS

- - - - P R R e

cobol_mcs cobol _mcs

- - - - - -

The enable requests operate identically to that of the
disable requests, except that they enable the specified queues or
terminals.,

Bequest

purge s {(destl ,.. destnl}
purge r {tree_path)
purge atl

The purge s request will cause all partially sent messages
(for that process) being sent to the listed destinations to be
deleted. If no destination Llist is given, all partially sent
messages will be deleted.

The purge r request will cause all partially received
messages in the specified tree_path to be returned to available
status. If no tree_path is given then all partially processed
receive messages (for that process) will be returned,

The purge alt request will perform a purge of all partially
processed send and receive messages (for that process).

Beguest
quit

The quit request will cause an implied purge all request and
then cause the cobol_mcs command to return to command_Llevel.

DRAFT: MAY BE CHANGED 23 06709777 coBoL MCS

ADMINISIRAIIME_EUNCIIONS

The CM(CS administrator must define and generate the system
databases (and their <containing directories), The following
databases require a source segment for <compilation by (MCS
tompilers:

cmcs_station_ctl.control
cmecs_terminal_ctl.control
cmcs_tree_ctl.control

The station control segment must be generated before the
terminal and tree control sSegments. After the tree <control
segment 1S generated, the <cobol_mcs_admin command 1is used to
create all queues and additional control segments:

cmcs_queue_ctl.control
cmcs_wait_ctl.control
cmcs_system_ctl.control

After the system control segment is created, the
administrator must use the set_system_psw réquest of the
cobol_mcs_admin command to set the initial password for the CMCS
system,

Additionallys, the administrator must manually set the ACLs
on all CMCS segments, as appropriate for the given set of users.
ALl segments, with the exception of the «c¢mcs_system_ctl.control
and cmcs_tree_ctl.cOntrol segmentss, must have read and write
access for all users, Only the administrator need have write
access on the cmcs_system_ctl.control segment,

The cmcs_tree_ctl.control segment MUST have only read access
for all users and have the copy switch set ON., This segment is
copied to the user's process_dir, so that it can be updated with
process-specific information.

Functions, such as accountings, recovery, meterings, etc.r, are
not provided in MR6.0 CMCS,

DRAFT: MAY BE CHANGED 24 06709777 coBoL MCS

- A o - - - - - -

Name: cobol_mcs_admin’ cmesa

The cobol_mcs_admin command 1is used to perform the software
functions involved in C0OBOL MCS administration. When the command
is invoked, it will then read request Llines from the user_input

SWwitche. Command usage 1is terminated when the wuser enters the
quit request.

Usage

cobol_mcs_admin cmecs_dir

where cmcs_dir is the path of the desired CMCS directory.

Notes
As mentioned above, the command will read request Lines from
the user_input switches until 1t encounters the quit request. At

that points the cobol_mcs_admin command will return to Command
level,

Reguests

set_system_pSwse SSPSw
The user will be asked twice for a new passwords, the second
time to verify correctness of the first, where password is a
character string of 1-10 characters in LlLength,

The password given will be encoded and written on top of the
old password without verification of the old password.

change_system_pSwse CSPSW
The password is as defined above,
The wuser will be asked for the old password. If the
response is corrects the <command will request the new
password. It will regquest it a second time to verify that
the first typein was correct. The password given will then
be encoded and written on top of the old password.
create_cmcs_queuess, ccCqQ
This request uses no arguments. The <command will read the

cmcS_tree_ctl.control segment in the <cmcs_dir directory to

DRAFT: MAY BE CHANGED 25 06709777 CoBOL MCS

obtain the defined gqueue names and the command_line control
information associated with each queue., It will create
these queues if they do not already exists; if a given queue
already existse the queue will be truncated, a warning to
that effect will be printedese and the command will continue.
In addition, the command will <create (or recreate) the
cmecs_queue_ctl.control segment., This segment will contain a
list of the queues ands, for each queue, the message status
lists and flags for enabling/disabling input and output to
and from the queues, respectively.

DRAFT: MAY BE CHANGED 26 06709777 coBoL MCS

‘e CONSIRUCIING_ CQMMAND _AND_ABSIN_LINES

TO BE SUPPLIED

DRAFT: MAY BE CHANGED 27 06709777 cosoL MCS

- . - - —. . - A - - - —— s ey e W e - e e e e W e .

Name: cv_cmcs_station_ctl

This COBOL MCS administrative command compiles a source file
named cmcs_station_ctl.src into a binary control file that will
be accessed by the CMCS runtime subroutines,

This particular command converts a source file that contains
a List of all valid stations, This list will be the master file
for all station names,

The source file has the following format:

<station_name>’;
*

end,

NOIES

The binary control file is set wup with the standard CMCS
header, which gives information about the compilation and the
table sizes.

This compilation must be done before either the
cmecs_tree_ctl or cmcs_terminal_ctl compilations are done because
the cmcs_station_ctl.control segment is wused to wvalidate the

station names used in the other source files,

DRAFT: MAY BE CHANGED 28 06709777 cosoL MmCs

- —— - - . - - — . - - - - . - e

R e L L - - - - - -

Nampe: cv_cmcs_terminal_ctl

This COBOL MCS administrative command compiles a source file
named cmcs_terminal_ctl.src into a binary control file that will
be accessed by the CMCS runtime subroutines,

This particular command converts a source file giving pairs
of terminal Subchannels (tty_ device_channels) and their default
station names,

The source file has the following format:

<terminal_subchannet>: <default_station_name>;

end.,;

NOIES

The binary controlt file is set wup with the standard CMCS
header, which gives information about the <compilation and the
table sizes,

This compilation must be done after cmcs_station_ctl.control
is generated; it uses information in that segment to validate
the station namesS.

DRAFT: MAY BE CHANGED 29 06709777 coBOL MCS

Name: cv_cmcs_tree_ctl

This COBOL MCS administrative command compiles a source file
named cmcS_tree_ctl.Src into a binary control file that will be
accessed by the CMCS runtime subroutines.

This particular command converts a source file that defines
the C0B80L M(CS gqueue hierarchy, along with controls to be
associated with each message queue.

The source file has the following format:

(See below for a lengthy description,)

NOIES

The binary control file is set wup with the standard CMCS
header, which gives information about the <compilation and the
table sizes,

This compilation must be done after cmcs_station_ctl.control
is generated, it uses information in that segment to validate
the station nameS.

Source _format_for_the Iree Refinition

1. There can be any number of subtrees, and each subtree can
have from 1-4 levels. The "root”" for atl subtrees is an
implied ones allowing the (MCS administrator complete

flexibility in the hierarchy definition.

e The gqueue names specified in the queue hierarchy are
entirely logical. For the terminating queue name in any
branches there is an associated name for the physical message
queue, The physical queue name defined in the source will
be suffixed with the string ".cmcs_queue'”, when the actual
queue is Created.

3. The source file will consist of one or more PL/I-like
stifructure declaration statements. Each statement must begin
with a "declare'" or "dcl" and end with a semicolon (;). The
structure can be up to four Llevels deep. All lines but the
last Line of a statement are terminated with a comma (,).
The source file is terminated with a statement of "end:,".
PL/lI-style comments may be included.

DRAFT: MAY BE CHANGED 30 06709777 coBoL MCS

Immediately following the level indicator is the hierarchy
level name; this is the only required argument. An optional
control for any line is the "command <command_Lline>" (or
"absin <absin_line>"), This control is 1in effect for the
current level and all subordinate levels, unless overridden
at a subordinate level. The <command_Lline> argument will be
executeds, 1if appropriate, when the associated queue goes
non-empty.

when a particular level 1is the final Llevel of a given
tree-path (terminal node), the "queue <queue_name>" control
must be given. This will identify the desired name for the
given physical messaye queue.

Since all physical queues will exist in the same directory
(for the one source declaration), the associated names
should be wunique. Since they will have a suffix appended
(scmcs_queue)s the names must be fewer than 22 characters in
length.

Syntax_Exaomple

declare 1 <level_name>, /* for RECEIVES */

2 <level_name> command "<command_Lline>",
3 <level_name> gqueue <queue_name>,

3 <tevel_name> queue <queue_name>,

2

<level_name> gueue <queue_name>/

dcl 1 <level_name> gueue <queue_name>
absin "<absin Lline>"~

del 1 <level_name> queue <queue_name>
command "<command_Lline>"/

/* declaration of a one-level send queue */
del 1 <leyel_name> queue <queue_name>,

end.

In this examples the command control given 1in the first

level 2 line causes the <command_line> to be set for both of the
Level 3 queues immediately following. Effect of the command
control is terminated by the following level 2 line.

DRAFT: MAY BE CHANGED 31 06709777 coBoL MCs

MAJQB_SUBBQUIINE.SUUNARYX

It should be noted that none of the CMCS subroutines are
intended to be called directly by user source code. The compiler
generates the object code calls according to wuse of COBOL MCS
verbs in the source,

cobol_mecs_$(receive, receive_waits, send, enable_input_queue.,
enable_input_terminal, enable_output,
disable_input_queue, disable_input_terminale,
disable_output, purgye, stop_run)

This subroutine is the one interface module for the COBOL
application programs. In general, it serves as a transfer vector
to the function-specific cmcs_XXX_ctl_ subroutines. It does do
some reformatting of the data received from the COBOL programs to
a more efficient internal form,

cmes_tree_ctl_s(find_tree_path, find_destinations
find_index)

This subroutine uses the tree control segment in the
process_dir. 1t will search for the first occurrence of an entry
that matches the tree_path given in the input CD struCture, or
the entry that matches a given output destination. The find_index
entrypoint just returns a pointer to a specific entry.

cmcs_terminal_ctl_%$(find)

This subroutine does nothing more than to return a default
station name for a given terminal device_channel.

cmcs_status_Llist_ctl_%$(add move delete)

This subroutine maintains the tinked Llists that group
together all messages of a particular processing status.
Separate lists are maintained for each gueue.

cmcs_queue_ctl_$(sends, receiver enable, disable, purge)

This subroutine performs the functions of message addition
and deletion to/from the message queues (thru vfile_). For
message reading, it locks the next available message to the

process and returns message lOcation and length information to
the reader

emes_station_ctl_%(find, lock)
This subroutine searches the <cmcs_station_ctl segment, Its
current use is to find a given station and return a pointer to

that entry. 1f desireds, the entry can be Llocked to the calling
process,

DRAFT: MAY BE CHANGED 32 06709777 COBOL MCS

cmecs_wait_ctl_$(add, delete, find)

Y This subroutine maintains the Llist of processes who have

~ done a receive with wait and no message was available for
processing. The processes are added to the wait lList and put to
sleep until a message becomes available. When a gueue becomes
non—empty, the List 1is checked to see if any process is waiting
on that queue and if so, the process is awakened, etc.

cmcs_station_ctl_3%$(disable_input_terminal,
disable_output_terminale, enable_input_terminal,
enable_output_terminal, attach, detach., validate,
input_disableds output_disabled)

This subroutine performs all functions related to the
"attaching” and "detachinyg” of stations and the processing of
enable and disable functions.

cmes_fillin_hdr_

This subroutine performs the general initialization of the common
header used in most CMCS files.

DRAFT: MAY BE CHANGED 33 06709/77 coBOL MCS

10 _TYRES ANR_SUBIYRES

Throughout all CMCS software,

used to

Major Type (VERB)

1

DRAFT:

Send

Receive

Enable

Disable

Accept Message Count

Purge

MAY BE CHANGED

34

the following codes will be
identify major 1/0 types and subtypes:

Subtype

1 - Partial

2 - Segment

3 - Message

4 - Group

1 - Segment (No Wait)

2 - Message (No Wait)

3 - Segment (Wait)

4 - Message (Wait)

1 - Input (to a queue)

2 - Input Terminal

3 - Qutput

1 = Input (to a queue)

2 - Input Terminal

3 - Qutput

1 - Single Subtype

1 - Sends Only (CODASYL)
2 ~ Receives Only (Multics)
3 - Both (Multics)

06709777 coBOL MCS

cobol_mcs_

Nape: cobol_mcs_

This COBOL MCS subroutine serves as the single interface

module between the (COBOL object program and the CMCS runtime
package,

shen it is <called the first time 1in a process, it will
ensure that the proper environment has been eStablished for
subsequent (M(CS processing,

ALl entrypoints and their usages are described in Otto
Newman's memos Preliminary MCS Subroutine specifications.
Information from this document will be integrated inNnto the
release documentation. (It is available in BCO from Qtto Newman.,
in CISL from Betsy Kerrese and in Phoenix from Bob May.)

DRAFT: MAY BE CHANGED 35 067109777 coBOL MCS

Name: cmcs_tree_ctil_

This COBOL M(CS subroutine is used to find entries in the
copy of cmcs_tree_ctl.control, contained in the user's
process_dir. Given an input (D pointer or an output station name,
it returns an index and a pointer to the entry matching the given
tree_path or destination station name, respectively., The last
entry returns a pointer to the entry corresponding to a given
index.

Eotry: cmcs_tree_ctl_%$find_tree_path

This entrypoint finds the first entry in tree control that
matches the tree path specified in the input (D strutCture, Thisg
may be the top of a subtree and if so, the count returned will
indicate the number of entries in the subtree below. If the count
is zero, the entry found matches an absolute tree path, and is
for a message queue,

Usage

dcl cmecs_tree_ctl_3$find_tree_path entry (ptrsfixed bin,fixed
binsptro.fixed bin (35));

call cmecs_tree_ctl_$find_tree_path
(input_cdptrsentry_indexscountsentry_ptr,code);

Wwhere:

1. input_cdptr (Input)

is a pointer to the input (D structure in the COBOL
program,

2. entry_index (Qutput)
is the index into the tree control segment for the
entry matching the tree path,

3. count (Output)
is the count of entries in a subtree for the matching
entry. If zeror it indicates the entry is for a
message queue.

4. entry_ptr (Qutput)
is a pointer to the matching entry,.

5. code (Qutput)
is a standard status return.

DRAFT: MAY BE CHANGED 36 06709777 €C0BOL MCS

cmecs_tree_ctl_ cmes_tree_ctl_

---=-Notes for find_tree_path
Entry: cmcs_tree_ctl_3$find_destination

This entrypoint is wused to find the entry that matches the
given (single) station name, It is used to process send requests.

Usage

decl cmcs_tree_ctl_$find_destination entry (char (12),fixed
binesptr,fixed bin (35));

call cmcs_tree_ctl_$find_destination
(station_namesentry_indexsentry_ptr,code);

Wwhere:

1. station_name (Input)
is the name of a destination station.

2. entry_index (OQutput)
is the index of the matching entry.

3. entry_ptr (Qutput)
is a pointer to the matching entry.

4, code (Qutput)

is @8 standard status return,.

Ngtes

--=--ijNotes for find_destination
Entry: cmcs_tree_ctl_S$find_index

This entrypoint is wused to find subsequent entries after a
find_tree_pathe

DRAFT: MAY BE CHANGED 37 Q6709777 COQOL MCS

e w wp w w- — n —-—— - . o - — - - -

cmecs_tree_ctl_ cmecs_tree_ctl_

dcl cmcs_tree_ctl_s$find_index entry (fixed binsptr.fixed bin
(35));

call cmcs_tree_ctl_%$find_index (indexsentry_ptrscode);
Where:

1. index (Input)
is the index of the desired entry.

2. entry_ptr (Qutput)
1S as described above.

3a code (Qutput)
is 8 standard status return,

Noies

-=-~Notes for find_index

DRAFT: MAY BE CHANGED 38 06709777 £0BOL MCS

- - - - — -y - - o - -

Name: cmecs_qgueue_ctl_

This C0BOL MCS subroutine is called by cobol_mcs_ to
manipulate the message queues and the control information
contained in c¢mcs_gueue_ctl.control. It accesses messages in the
indexed files through vfile_ [0 moduler, wusing a two-lLevel key.
This subroutine also performs the actual movement of data to and
from the buffers of the COBOL programs.

Global locking of queues is done by vfile_ for record
addition and deletion, additional locks are wused to manipulate
the control information associated with the queues. These locks
are essentially independent from one another.

Entey: cmcs_queue_ctl_$send

This entry is the major procedure for all send functions. It
uses the output CD pointer SsSupplied by the (0BOL application
program to obtain the specific send controls to be used.

Usage

dcl cmcs_gqueue_ctl_$send entry (ptr, fixed bin, ptr, fixed
bin, bit (36), fixed bin (35)):;

call cmcs_gqueue_ctl_$send {(output_cdptrs, io_subtype,
buffer_ptrs, buffer_Lens, final_delims slew_ctl, code)s

Where:

output_cdptr
's the pointer to the (C0B0OL proyram output CD
structure (Input).

io_subtype
is the specific type of send operation required
(Input).

buffer_ptr
is the pointer to the COBOL .program buffer space
(Input).

buffer_Len

is the Llength of the message in the program buffer
(Input).

DRAFT: MAY BE CHANGED 29 06709777 t0BOL MCS

- ——— - = - - e ar wn - . -

final_delim
is the logical delimiter to be assigned to the
current message portion (Input).

slew_ctl
is a field defining the slew control operations to be
performed when the message is sent to an output
device (Input).

code
is a standard status return (Output).

Notes

The io_subtype mentioned above indicates the type of message
delimiter to be used for the current portion of the output
message, It can have a value of 0-3,

0 This means that the COBOL program is sending out only a
piece of a message. Message pieces will be accumulated
in the process space (a temporary segment) wuntil a
delimiter of 1, 2, or 3 is specified to terminate the
current piece.

1 This delimiter specifies that the message buffer is to
be sent out as a message segment.

2 This delimiter specifies the the message buffer is to
be written out as a message,

3 This delimiter specifies that the buffer 1is to be
written with a message group delimiter.

Entry: cmcs_queue_ctl_Sreceive

This entry 1is the major procedure to perform the receive
functions. It finds an available message and moves it to the
C0BOL program buffer., It manages the movement of partial messages
to the wuser buffer and <controls the subsegquent processing of
receives to move subsequent pieces of a message into the user
buffer, if a wait function is regquireds, it will initiate this.

DRAFT: MAY BE CHANGED 40 06709777 COBOL MCS

- o o —— e — - - R e e e]

Usage

dcl cmcs_queue_ctl_sreceive entry (ptr, fixed bins ptrs
fixed bins fixed bin (35)):

call cmcs_queue_ctl_3%receive (input_cdptrs, io_subtype,
buffer_ptr, buffer_Llen, code).

where:

input_cdptr
is a pointer to the COBOL program input CD structure
(Input).

io_subtype
is the type of receive function required (Input).

buffer_ptr
is a pointer to the user input buffer (Input).

buffer_Llen
is the maximum number of characters that can be
stored into the buffer (Input).

code
is a standard status code (Qutput).

Naotes

Te If I/0 is already in processs, and it is also for a receive,
it wiltl continue that I/0. If the new reqguest is for a
send, it will be aborted.

2. If I/0 is not in process, cmcs_queue_ctl.control will be
checked for available messages in the desired subtree. If
the function is a receive no-wait, and no messdges are
availables, it Wwill set a status key and return.

3. If there is a message, the file will be attacheds, opened (if
not alreadyl), and the record locked to the given process.
The message will then be moved into the user buffer,

4a If the entire message could be copied into the user buffer

in one pass, the message status will be <changed from
available to complete., If not, the message status will be
set to receive=in-process,

DRAFT: MAY BE CHANGED 41 06/09/77 COBOL MCS

S5e If no message is available and the receive specified a wait,
a wait request will be set into <cmcs_wait_ctl.control, and
the process will be put to sleepr, waiting for a new mesSSage.

Entcy: cmcs_queue_ctl_$Senable
This entrypoint causes all queues specified by the tree_path

given in the input CD to be enabled for input.

Usage

dcl cmcs_queue_ctl_%enable entry (ptr, fixed bin, char (10).,
fixed bin (35));

call cmcs_queue_ctli_%$enable (input_cdptres io_subtype,
password, code),

Where:

input_cdptr
is as described above (Input).

io_subtype
must be 1 (Input).

password
iS a pPassword to be encoded and matched with the CM(CS
system~wide password (Input).

code
is a8 standard status return (OQutput).

Notes

-=-==-notes for enable

Entry: cmcs_queue_cti_$disable
This entry is the main procedure to perform queue disable

functions.

Usage

dcl cmcs_queue_ctl_%$disable entry (ptr, fixed bins, char
(10), fixed bin (35)).

DRAFT: MAY BE CHANGED 42 06709777 CoBOL MCS

. ——— - - - - e o - wn e - -

call cmcs_queue_ctl_%$disable (input_cdptrs, io0o_subtypes,
passworde, code);

Where:

input_cdptr
is as described above (Input).

io_subtype
is the disable function required. It must have a
value of 1 (Input).

password

is as deScribed above (Input).
code

is a Standard status return (Output).
Notes

--=-=-pnotes for disable

Eptry: cmcs_queue_ctl_%accept_message_count

This entrypoint is the main procedure to obtain the count of
all available messages in the tree_path subtree specified in the
input CD,

Usage
dcl cmcs_queue_ctl_%accept_message_count entry (ptr, fixed
bin, fixed bin (35));
call cmcs_queue_ctl_daccept_message_count (input_cdptr,
io_subtype, code)’
Where:

input_cdptr
is as described above (Input).

io_subtype
is as described above. It must alwaysS have the value
of 1 (Input).

code

is a Standard status return (Qutput).

DRAFT: MAY BE CHANGED 43 067091777 coBOL MmCS

- e > wr w. WD ——m —-— - - - -

botes

The total count is stored back into the input CD structure,

Epntry: cmcs_queue_ctli_%purge

This entrypoint is the main procedure to perform all purge
functions, In addition to the purgye of partially sent messages
as defined by the CODASYL JOD, it also is used to purge partially
received messages, or both.

Usage

dcl cmcs_queue_ctl_3purge entry (ptr, fixed bin, fixed bin
(35)).

call cmcs_queue_ctl_$purge (cd_ptr, io_subtype, code)’;
Where:

cd_ptr
iSs a pointer to either an input CD structure, an
output CD structure, or nutl., The pointer definition
must correspond to the function defined by the
io_subtype, (lInput).

jo_subtype
defines the type of purge to be performed (Input).
It must have a value of 1-3, for specifying a purge
of partially sent messagess partially received
messagess, Or all partially processed messages.s
respectively.

Noles

In addition to the purge function called for by the COBOL
application program, the system use$S this procedure to clean up
any wunprocessed messages of either type. The purge "all™
function is invoked when the (COBOL program does a stop run
commande.

DRAFT: M™MAY BE CHANGED 44 06709777 €0BOL MCS

A —— - R . - o - - - — - - . - - VS S e a— -

- . - — - ——— . —— - - - - - - e S S W am T e

Name: cmcs_status_Llist_ctl_
This €0BOL MCS subroutine 1is used to manage the message
status Llists in each of the mesSage queues. It 1is called by

cmcs_queue_ctl_. when it needs to change the status of a
particular message.

Eptey: cmcs_status_Llist_ctl_3$add
dcl cmcs_status_Llist_ctl_%$add (ptr, ptr, fixed bins, code);

call cmcs_status_list_ctl_%add (rcd_loc_ptrs iocb_ptr.
statuss code).,

rcd_Lloc_ptr points to the record Llocator. The record
Locator is a one-word structure giving the record location in
terms of file <component number and word offset (hal f_word

values). This location 1S process~-independent.

iocb_ptr points to the iocb of the target file. Status
defines the particular status list for insertion, It must have
the value of 1 or 2. <Code is the standard return code.
dates

This entrypoint must be used only to insert the locator for
a8 Nnew message 1into the status Llists, either in the list for
send_incomplete (1), if only a message segment was written, or

send_complete (2) if a complete message waS Written as one
(vfile_) record.

Entry: cmcs_status_Llist_ctl_$delete

dcl cmcs_status_Llist_ctl_%delete (ptr, ptr, fixed bin,
fixed bin(35));

call cmcs_status_Llist_ctl_s$delete (rcd_Lloc_ptr, iocb_ptr.
status, code),

Where all fields are as described above.

DRAFT: MAY BE CHANGED 45 06709777 coBOL MCS

cmcs_status_List_ctl_ cmcs_status_Llist_ctl_

- wn A wwn O wn - an - - e - - - - — - —— - - - -

Notes

This entrypoint is called by c¢mcs_queue_ctl_ when a message
(and all its segments) is to be deleted from the message queue.
The status code will usuatly be 4, indicating that a message was
successfully processed and is now being deleted. However, the
status code could be 1, for examples indicating a purge of an
incomplete mesSage. The message specified by the rcd_Lloc_ptr
will be deleted from the Llist.

Eptey: cmes_status_Llist_cti_%$move

dcl cmcs_status_Llist_ctl_%move (ptrs, ptr, fixed bin, fixed
bin, fixed bin(35));

call cmcs_status_Llist_ctl_%move (rcd_loc_ptr, itocb_ptr,
old_status, new_statuss, code).,

Wwhere rcd_Lloc_ptre iocb_ptr, and <code are as described
above.

The function of the move entrypoint is effectively that of a
paired list delete and a list add.

The values given in old_status and new_status define the old

status list from which the message is being removed and the new
status list to which the message is being added, respectively.

DRAFT: MAY BE CHANGED 46 06709777 coBgoL MCS

- s - - - - - - - - -

- ———— - - - B e e S Sy

Name: cmcs_wait_ctl_

This COBOL MCS subroutine manages the wait functions for all
the processes that are waiting for a message to become available
in any specified queue. Entrypoints are provided to adds, delete
and find wait_Llist entries in the cmcs_wait_ctl.control segment.

When the coBoL application program issues a
receive-yith-wait, it can specify any Llevel up 1in the gqueue
hierarchy. This means that the program wishes to receive the

next message that is (or becomes) available anywhere in the
specified subtree. If nNO meSsage is availabler the program’'s
request will be added to the wait Llist and the process put to
sleep,

when another process causes a message to become available in
a queues it will check the wait List to determine if any request
can be satisfied. If so, the second process will wupdate the
specific wait entry with information about the new message and
then send a wakeup to the waiting process.

The requesting process will then obtain the specific message
controls from the wait entry and then delete the entry,

Eptry: cmcs_wait_ctl_Sadd

This entry will add a process to the list of processes
waiting to receive a message.

Usage

del cmecs_wait_ctl_%$add entry (char(48), fixed bin, fixed
bin(35)):

call cmcs_wait_ctl_%add (rcv_tree_paths, index, code)’

where:

rcv_tree_Path
defines the hierarchy subtree from wWhich a message is
requested (Input),

index (Qutput)
is the index of the wait entry. The awakened program
will access this entry to obtain information about
the available message,

code
is a standard status code (Output).

DRAFT: MAY BE CHANGED 47 06709777 CoB0OL MCS

- wn O w wn - - s . - -

cmcs_wait_ctl_ cmcs_wait_ctl_

- ——— e - - - - —— -

Notes

Once yenerateds, the control information needed to do an
ipc_%block and hcs_$wakeup 1is fixed for the process. The
subroutine will obtain this data directly from

cmcs_user_ctl,control,

Eptry: cmcs_wait_ctl_$find

This entry is <called by the process that cauSes the number
of available messages in a queue to go nonzero. Its function is
to determine if any process is waiting for that message and, if
one is found, send a wakeup to that process.

Usage

dcl cmcs_wait_ct!l_3find entry (char(48), char(32), fixed
bin(35)); .

call cmcs_wait_ctl_ (abs_tree_path, queue_name, code):
where:
abs_tree_path
is the full tree_path wused to define the message

queue that went non-empty. This information will be
set into the C030L application program's (D structure

(Input).
queue_name
is the full entryname of the queue containing the
mesSage (Input).
code

iS a Standard status code, (Output).

Entry: cmcs_wait_ctl_%delete

This entry causes the given wait entry to be 2zeroed and
moved to the free list.

Usage

del cmcs_wait_ctl_%delete entry (fixed bin, fixed bin(35));

call cmcs_wait_ctl_%delete (wait_ctl_eindex, code);

DRAFT: MAY BE CHANGED 48 06709777 €0BOL MCS

- A - - - - - -y e - - -

where:

wait_ctl_eindex
is the index to the particular wait entry to be moved
to the free List (Input).

code .
is a standard status code.

DRAFT: MAY BE CHANGED 49 06709777 coBOL MCS

- - -y A W - - . . - - —

Name: cmcs_terminal_ctl_
This coaoL MCS subroutine performs a search of

cmcs_terminal_ctl.controls, to find the default station name for a
given terminal device_channel.

Eptry: cmcs_terminal_ctl_$find

This entrypoint does the work of searching the control
segments, looking for the given device_channel. When one is found,
the associated default station name is returned to the caller.

Usage

del cmcs_terminal_ctl_%$find entry (char (8),char(12),fixed
bin(35)),

call cmcs_terminal_ctl_$find
(device_channelesstation_namescode);

Where:

1. device_channel (Input)
is the name of the terminal subchannel, as found in
the Channel Definition Table (CDT),

2. station_name (Output)

is the default station name to be used bY the
interactive user.

3. code (Output)
is a standard status return,

Notes

-~-~-=-Notes for find

DRAFT: MAY BE CHANGED 50 067091777 coBOL MCS

- ——— - —— -

Name: cmcs_station_ctl_
This COBOL MCS subroutine controls all functions related to
station attach, detachs enables, and disable.

Eotry: cmcs_station_ctl_dsdisable_input_terminal

This entry uses the station_name from the input CD structure
and causes that particular station to be diSabled for inpute
Usage

dcl cmcs_station_ctl_%$disable_input_terminal entry (ptr,
char (10), fixed bin (35));

call cmcs_station_ctl_Sdisable_input_terminal C(input_cdptr,
password, code).,

where:
1. input_cdptr (Input)
is a pointer to the input CD structure in the CO0BOL

program.

2. password (Input)
is the (MCS system password.

3. code (Qutput)
is a standard status return.

Nofes

--~-=-Notes for disable_input_terminal
Eotry: cmcs_station_ctl_$disable_output_terminal

This entrypoint uses the set of station_names from the
output CD structure and causes thoDse Stations to be disabled for
Output,

DRAFT: MAY BE CHANGED 51 06709777 coBOL MCS

—— - —— - - - ———— - e - -

Usage

decl cmcs_station_ctl_%disable_output_terminal entry (ptr.
char (10), fixed bin (35)),

call cmcs_station_ctl_%$disable_output_terminal
(output_cdptrs passworde code);

where:
1. output_cdptr (Input)
is a pointer to the output CD structure in the COBOL

program.

2. password (Input)
is the CMCS system password.

3. code (Qutput)
is a standard status return.

beotes

~~~-Notes for disable_output_terminal

Eptry: cmcs_station_cti_$enable_input_terminal

This entry uses the station_name from the input (D structure
and causes that particular station to be enabled for input.

Jsagse
decl cmcs_station_ctl_$enable_input_terminal entry (ptrs, char
(10), fixed bin (35));
call cmcs_station_ctl_3enable_input_terminal (input_cdptr,
passwords codel;
where:
1. input_cdptr (Input)
is a pointer to the input CD sStructure in the COBOL
program,

2. password (Input)
is the CMCS system password.

DRAFT: MAY BE CHANGED 52 06709777 coBOL MCS



3. code (Qutput)
is a3 standard status returne

Notes

----Notes for enable_input_terminal

Entry: cmcs_station_ctl_%enable_output_terminal

This entrypoint uses the set of station_names from the
output CD structure and causes those sStations to be enabled for
output.

Usiage

dcl cmcs_station_ctl_Senable_output_terminal entry (ptrs,
char (10), fixed bin (35)),

call cmcs_station_ctl_%enable_output_terminal (output_cdptr,
Passwofds code)’

where:
1. output_cdptr (Input)
is a pointer to the output (D structure in the COBOL

program.

2. password (Input)
is the CMCS system password.

3. code (Qutput)
is @ standard status return,

Notes

----Notes for enable_output_terminal

Eptcy: cmcs_station_ctl_%attach

This entrypoint is used to attach a particular station by
name. It is needed by processes that wish to initialize their
environment for CMCS terminal operations.

DRAFT: MAY BE CHANGED 53 | 06/09/77 COBOL MCS



- - - —— > - - - - - -

cmcs_station_ctl_ cmcs_station_ctl_

Usage

dcl cmcs_station_ctl_Sattach entry (char (12), fixed bin,
fixed bin (35));

call cmcs_station_ctl_3%attach (station_name, entry_index.,
code);

where:

1. station_name (Input)
is the name of the desired station,

2. entry_index (Qutput)
is the index of the given station in the station_ctl
structure,

3. code (Output)
is a standard status returne.

Notes

--=-~-Notes for attach
Entcy: cmcs_station_ctl_s$detach

This entrypoint uses an index into station_ctl to detach a
particular station.

Usage

del cmcs_station_ctl_%$detach entry (fixed bin, fixed bin
(35));

call cmcs_station_ctl_%detach (entry_indexs, code),
where:
1. entry_index (Input)
is the index of the given station in the station_ctl

structure.

e code (Qutput)
is a8 standard status return,

DRAFT: MAY BE CHANGED 54 36/09/77 coBOL MCS



- - — - - - - - - —— - W -

botes

---=Notes for detach
Entry: cmcs_station_ctl_%Sdetach_name

This entrypoint uses the station_name to detach a particular
station,
isage

dcl cmcs_station_ctl_$detach_name entry (char (12), fixed
bin (35));

call cmcs_station_ctl_%$detach_name (station_name, code)’
where:

1. station_name (Input)
is the name of the desired station.

2. code (Qutput)
is 8 standard status return,
Nates

--=-=-Notes for detach_name
Entry: cmcs_station_ctl_3$validate

This entrypoint is called by CMCS procedures that must check
the validity of a given station_name. The only set of station
names that can be assumed valid is contained in station_ctl,.
Other databases containing station names must have verified those
names against the names contained in station_ctl.

Usage

dcl cmcs_station_ctli_%validate entry (char (12), fixed bin
(35)):

call cmcs_station_ctl_svalidate (station_name, code);

DRAFT: MAY BE CHANGED 55 06709777 COBOL MCS



cmcs_station_ctl _ cmcs_station_ctl

. - - W A - - —— - W —

where:

1. station_name (Input)
is the name of the desired station,

2e code {(Qutput)
is a standard status return,

Nates

-~=-~Notes for validate

Entry: cmcs_station_ctl_3%input_disabled

This function entrypoint returns a flag to indicate whether
or not the given station is disabled for input.

Usage

dcl cmcs_station_ctl_3%input_disabled entry (fixed bins, bit
(1), fixed bin (35));

call cmcs_station_ctl_3sinput_disabled (entry_index, flag.,
code)

where:
1. entry_index (Input)
is the index of the given station in the station_ctl

structure,

le flag (Output)
indicates the disable status.

3. code (Qutput)
is @ standard status return,

Notes

----Notes for input_disabled

DRAFT: MAY BE CHANGED 56 06709777 CoBOL MCS



D s —— - - - - L R e ke e R R RN

cmcs_station_ctl _ cmcs_station_ctl_

- —— . —n - > . - — - - e s ap A > an an o m -

Eptry: cmcs_station_ctl_3%output_disabled

This function entrypoint returns a flag to indicate whether
or not the given station is disabled for output.

Usage

dcl cmes_station_ctl_Soutput_disabled entry (fixed bin, bit
(1), fixed bin (35));

call cmcs_station_ctl_Ssoutput_disabled (entry_index, flage
code).

where:

1. entry_index (Input)
is the index of the given station in the station_ctl
structure,

2. flag (OQutput)
indicates the disable status.

3. code (Qutput)
is a standard status return,

MNotes

~--~hotes for output_disabled

DRAFT: MAY BE CHANGED 57 06709777 CoBOL MCS



- it ar - - - s - - - - - o - - -

Name: cmcs_fillin_hdr_

This C0OBOL MCS subroutine is wused to set most of the header
information in CMCS control segments and queues,

Usage

del cmes_fillin_hdr_ entry (ptr, fixed bin, fixed bin, fixed
bins, fixed bin (35));

call ecmes_fillin_hdr_ C(hdr_ptrs, versions, hdr_len, entry_Llen,
code), '

where:

1. hdr_ptr (Input)
points to the header of a newly created control
segment or gueue,

2. version (Input)
is the version of the given file.

3. har_Llen (Input)
defines the length of special header data that is
unique to the given file.

4. entry_len (Input)
defines the Llength of the individual entries in the
file.

Se code (Qutput)
1s a standard status returne.

Notes

By conventions all CMCS control segments and message queues
are created with a standard header. Additional header
information must always follow the standard header. The header
is declared in cmcs_control_hdr.incl.plt.

The hdr_len value is added to the length of the common
header data and the sum is subtracted from the maximum possible
Length of a segment., The result is divided by the length of the
individual entry to give the maximum number of entries the
segment can contain,

DRAFT: MAY BE CHANGED 58 06709777 coBOL MCS



- - - — -y oy B wn o > - - - - . - -

REVELQPYUENI _TASKS
DAJOB DEVELOPMENI_IIEMS

These 1items are necessary for a complete 1implementation.
Although several of these items are deferred until after MR6.0,
nothing in this design must be allowed to preclude their
development in the future.

* L Queue Processing
2e Terminal Management
3. Backups Recovery
4, Accounting

* 5. Testing, Q/A
* 6. Documentation

7. Security

* &. Assumptions, Philosophy

* 9. Error Processing

* 10, Definitions

* 11, Queue/Hierarchy Creation

* 12, Data Bases

* 13, Subroutine Call Interfaces

14. Metering

* 15. Command Interfaces

* Required for MR6.0, COBOL MCS

DRAFT: M™MAY BE CHANGED 59 06/09/77 cos0L MCS



- D L N DN MM SR R R AR U em e L R N L L E R APy WY

cmcs_fillin_hdr_ emes_fillin_hdr_

LHANGES _FQR_PHASE_ ¢

The following changes and extensions to the Phase 1

implementation are recommended:

o]

Restructure cmcs_tree_ctle.controt, The initial
implementation wastes considerable space, for multiple-level
hierarchies, in that it reserves space for every level that
is needeg only at the lowest level.

Allow the 1interactive user who wishes to send a message to
several destinationse to use a segment to Llist the
destinations.,

Add controls to distinguish between queues used by
interactive users as terminals/destinations, and queues used
only by the C0BOL application programs.

Integrate the control segments for more efficiency.

Allow one process to attach more than one stations and altlow
multiple processes to share a single station,

Investigate the wuse of destination Llists, to be associated
with long messages beiny sent to several destinations. This
facility, if neededs, would reduce the amount of system
storage wused to store output messages wuntil they are
processed,

Move the queues and control segments to ring 3, for security
(and integrity).

Provide a means for the interactive user of cobol_mcs to do
simple editing of messade data that is already entered into
the systems, but prior to being sent to the given message
queues .

DRAFT: MAY BE CHANGED 60 06709777 COBOL MCS



INCLUDE_EILES

The include files to support C030L MCS are given below. They
are not in final form. Listings of the include files can be
reviewed at CISL (Betsy Kerr), BCO (Otto Newman), and Phoenix
(Boo May).

cmecs_control_hdr.incle.pl

cmcs_message_hdr.incl.pl1

cmcs_message_key.incl,pl1?

cmcs_message_segment.,incl.pl

cmcs_queue_ctl.incl.pli

cmcs_slew_ctl.incl.pli

cmes_station_ctl.incl.pl?

cmcs_terminal_ctl,incl.pl?

cmcs_tree_ctl.incl.pl

cmes_user_ctlsincla.plt

cmecs_wait_ctlainclapl

DRAFT: MAY BE CHANGED 61 06/09/77 CoBOL MCS



