
Multics Technical Bulletin MTB - COUOL MCS

To: Distribution

From: Robert M. May

Date: May 13, 1977

Subject: COBOL-74 Message Control System CCMCS) for MR6.0

This MTB gives the proposed design for the runtime package
to support the full Level-2 functional requirements of the ANSI
COBOL-74 Communications Module. This facility is required for
MR6.0 shipment.

Multics COBOL is being extended to process the ANSI COBOL-74
Message Control System (CMCS) syntax. Full Levet-2 functions are
provided for the SEND, RECEIVE, ENABLE, DISABLE, ACCEPT (MESSAGE
C 0 UN T > v e r b s o f C M C S • I n a d d it.?'i o n , t h e PU R G E v e r b f r o in t h e
CODASYL JOO is supported.

The primary purpose of the CMCS facility is to enable
Multics COBOL to fulfill the functional requirement imposed by
the Navy Audit Routines. Tests for COBOL MCS do not yet exist;
however, they are known to be under development and we must be
ready to run and pass them when they become available.

Please send all comments on this proposal to the author.

Send U.S. mail to: Robert M. May
Honeywell
P.O. Box 6000, M.S. K-28
Phoenix, AZ 85005

or send Multics mail on System Min Phoenix to:

or call me at:

May.Multics

(602> 249-7295
HVN 341-7295

Multics Project internal working documentation. Not
reproduced or distributed outside the Multics Project.

MTB-341 COBOL MESSAGE CONTROL SYSTEM

to be

Page 1

It is recommended
description of the
Stanaard.

that the reader be familiar
Communications Module in the ANS

with the
COBOL-74

1. HlOC Preliminary MCS Subroutine Specification, Otto
Newman, 12/26/76. Defines the object program interfaces
COPl> necessary for the rundnie package to support the full
level-21 ANSI COBOL-74 Communications Module.

2. ANSI COBOL-74 Standard Oef inition, ANSI X3.23-1974

3. Preliminary MTB, COBOL Mes, R. w. Franklin

4. CODASYL JOO, 19701 for a description of the PURGE verb.

To assist the reader in understanding the basic functional needs
imposed by the ANSI COBOL Standard, a copy of the descriptive
narration from the Standard is attached.

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 2

o queue hierarchy
The tree structure used by COBOL programs to access
messayes for <COBOL> Communications processing. There
can be up to four levels in any subtree. Each level is
identified by a level number and a level name. In the
Multics implementation, the 'level names are completely
logical; that is, the physical message queues are
identified with a separate name associated with each
terminating branch <tree path> in the hierarchy
definition.

o level number
The number, from 1-4, associated with each level in a
queue hierarchy definition. It is not necessary to use
all four levels.

o level name
The logical name, from 1-12 characters, associated with
each level in a queue hierarchy definition.

o tree path

0

The concatenation of the level names in a particular
branch of the subtree is called the tree path. It is
the tree path by which COBOL application programs
identify which particular physical message queue or
Queue hierarchy they wish to access. A tree path will
have one of two forms. Internally, it will always be a
48 character string, consisting of the concatenation of
the four, 12-character level names. The level names
are blank filled to a maximum of 12 characters, and
trailing~ unused level names must be supplied and
blank.

Externally, the tree path can be a quoted string of the
internal form or it can be a variable length string of
characters with up to four period-delimited l·evel
names, similar to the components of an entryname in the
storage system. In this form, the level names are not
blank filled. Note that it is possible to have a tree
path Cin this form) that is 51 characters in length if
all four level names are given and they are each 12
characters long.

Examples of the two formats of tree paths would be:

"orders.cloth.shirts.dress"
"orders cloth shirts dress "

absolute tree path
An absolute tree path is a tree path that specifies all
levels of a subtree necessary to identify a specific
physical message queue.

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 3

0

0

command line
When it is desired that a command be executed when a
physical message queue goes non-emPty (with a message
available for processing), a command line is specified
for the queue in the source for cmcs_tree_ctl.control.
Rules for constructing command lines are given in the
description of the cv_cmcs_tree_ctl command.

absin line
The absin line is similar
used when an absentee
non-empty queue.

to the command line and is
is submitted to process a

o physical queue name
In all subsequent discussions, the word "physical" will
be omitted from "physical queue name"; however, the
meanin~ is the same. The physical queue name defines
the name of physical message queue. The actual
entryname assigned will always have a suffix of
"cmcs_queue".

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 4

The COBOL-74 Communications Module is an ambiguous title for
the description of the C080L M~ssage Control System, hereafter
called CMCS, or COBOL MCS. COtiOL MCS is a general facility for
the writing and reading of messages in message queues, invoking
application routines to process messages, and controlling access
to the terminals and queues. <Terminal access in the Multics
iaplementation is controlled only as it relates to COBOL Mes;
outside the context of CMCS, no CMCS controls are imposed.)

1. Full Level 2 COBOL MCS functions must be delivered for
MR6.0. "Full Level 2" dictates that all functions provided
must adhere strictly to the ANSI COBOL-74 definition of
CMCS. <Some functions as defined in the CODASYL JOD are
also provided; however, it is nearly certain that ANSI will
incorporate these extensions into the next definition of
standard COBOL>.

2. Performance is secondary to complete functionality.

3. No changes to existing system software are allowed.

4. No metering or accounting
undefined) audit routines
the first release.

data is necessary to pass Cas yet
and therefore is not required for

5. Final implementation of COBOL MCS may drastically change,
depending on the implementation of Multics transaction
processing. In the meantime, it must be able to function as
an independent subsystem.

6. A four-level hierarchy (not including the root> is set on
top of the actual message queues. COBOL programs can request
a message from any point in the hierarchy, thus causing the
runtime package to look for a message in all queues defined
by that subtree. They can wait <go blocked) for any message
that becomes available in the specified subtree.

7. Messages can be any length, and can be written and read in
any number of pieces, thus allowing the possibility of
intermixed messages in the queues. Delimiters for the pieces
are specified, but cannot be imbedded in the data.

8. Terminals and queues can be
mentioned above) by any user
password; however, any messages
to complete.

MTB-341 CO~OL MESSAGE CONTROL SYSTEM

enabled and disabled <as
process with the right

in process must be allowed

Page 5

1. The Multics implementation of COBOL MCS is based on the
concept of a "station." A station is a logical entity,
having controls imposed by the system, that can be attached
by a process. Its primary reason for existence is to
provide a uniform mechanism for identifying sources and
destinations of messages. Thus, the facility is indePendent
from terminals, user-ids (including anonymous users), or
constraints placed upon interactive or absentee users>.

In this usage, the term
available resource becomes
a specific process. The
attachment does not apply.

"attach" means only that an
solely owned for current use, by
connotation of a Multics I/O

Specific stations can be attached to individuals; by
default, they are assigned to users dynamically on the basis
of terminal subchannels.

2. A process can attach one station. This can be extended

3.

after MR6.0 to allow a process to attach more than one
station, and to allow multiple processes to share a single
station.

A process can receive or send from/to any
queue. The difference between the station
others is that it is specifically dedicated
that station.

<authorized)
queue and all
for input to

4. Associated with every communications terminal
(communications subchannel), there is one and only one
station. Output 1Q a given terminal will always be written
first to the station's queue. (If, in the future, a user's
terminal can be shared among the user's proce's and other
processes, it may be possible to eliminate the double
bu f f e r i n g • >

CMCS will use the standard Multics interfaces for terminal
I/O. The only control imposed by CMCS is that the runtime
package will check to verify that a queue or terminal is
enabled before it attempts to do I/O with that target.

5. COBOL application programs will be invoked either implicitly
or explicitly. Implicit invocation (from a queue going
non-empty) requires one input argument, the COBOL hierarchy
tree path.

Explicit invocation of a COBOL MCS program uses no arguments
because the program must define the specific queue it wishes
to access.

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 6

6. Every process must attach its station before proceeding
further. The first attachment initializes the user's
environment for CMCS processing. At that point, the user
can perform any authorized CMCS operation.

7. All message queues and system control tables for a given set
of users will be contained in a single, user-specified
directory. If desired, a different set of users can operate
in a different directory.

8. The initial COBOL MCS facility is oriented strictly to
COBOL; other languages may be used but they must interface
to the COBOL runtime software. Integration with the
forthcoming transaction processing system will occur,
wherever possible, after user interfaces become defined;
however, it is a goal that no user source program changes or
recompilations will be necessary. <Integration is subject
to the time constraints of the MR6.0 release.>

9. The physical integrity of all CMCS queues and control
segments will be protected from indiscriminate user QUITs by
appropriate use of !PS masking.

In addition, a cleanup handler in cobol_mcs_, the single
user <object program> interface, will perform appropriate
cleanup of all messages in process.

10. The COSOL languag~ specification requires user programs to
specify a password for the ENABLE and DISABLE verbs. User
documentation will stress the need to avoid putting literal
passwords into program source.

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 7

o All COBOL application programs are benign, i.e., they will
always access CMCS queues and control segments through the
CMCS runtime interface. If this policy is violated, correct
operation is hi~hly unlikely.

o Most messages will be short. Thus, a message sent to
multiple destinations causes a copy of the message to be
placed in each destination's queue.

o When a user sends only a portion of a message, it is likely
that it is either a long report or a file data copy. Thus,
a maximum size holding buffer must be used. For this
reason, a temporary segment is assigned to each queue when
the user sends a partial message to that queue.

o vfile_ recovery is coming for MR7.0. By using indexed
vfiles for the message queues, CMCS will be able to take
advantage of the recovery features.

o The meaning of message length Cto a COBOL program) becomes
ambiguous if the slew controls are imbedded in the data.
For this reason, the slew control information is kept
separate from the message text until the message is to be
sent to an output device.

o The COBOL-74 Communications Module description is vague
about the number of passwords needed from CMCS. Thus, only
one password, at the CMCS system level, will be used. This
one password must be matched by all users wishing to perform
enable/disable functions.

0 All users are benign, in that they will access CMCS only
through the proper interfaces. Thus, there i s no use of
Lower rings tor database protection nor are there any
special gates developed for CMCS. (This change can be made
in the future without affecting user programs.>

o Since the primary goal of this implementation is to satisfy
the <undefined) audit routines, tools are not planned for
administrative functions that can be performed manually with
other Multics commands, i.e., ACL setting.

o Tree Path Policy

lt is implied but not required in the COBOL-74
Standard, that the COBOL Application Program use the
absolute tree path of the target queue to receive subsequent
pieces of a mes~age. To eliminate ambiguities in the
processing of receives with tree paths that are subsets of
an absolute tree path for a receive in process <not all
segments of the message have been read), the following rule
is established:

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 8

A receive request with a tree path of a.b, that is
resolved with a messaye frorn a.b.c, must be completed before
any other message request from a or a.b. can be processed.
Any attempt to use just a.b will be rejected.

Continuation receives for a.b.c are valid Cand
appropriate), as will be a receive request addressed to
a.b.d or a.b.f, where a.b.d and a.b.f are also absolute tree
paths.

As an example,

Tree Paths In-process Queue Name

a

a b

a b c yes queue_1

a b d yes queue_2

a b f yes queue_3

given that requests for absolute tree paths a.b.d and a.b.f
are in-process, a new request for tree Path a.b would be
rejected with cmcs_error_table_$ambiguous_tree_path. This
would cause a status key of "20'' to be returned to the
requesting COBOL application program.

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 9

The followin~ are response• to questions raised by Otto
Newman in his "Preliminary MCS. Subroutine Specifications." The
parenthesized numbers indicate the corresponding numbers of the
questions.

(1) There is one type of message queue,
two different ways. One use will
messages for terminals until they are
device. The other use will be to hold
they are read by the COBOL application

but it will be used in
be to hold the output
written to the output

input messages until
programs.

Because there is minimal distinction between the the queue
uses, it would be very little trouble to generalize this
capability and allow COBOL applicdtion programs to create
output messages that would in turn be read by other COBOL
application programs. This concept is basic to a transaction
processing capability.

<2> In the Multics implementation, there is no physical
distinction between queues accessed for receives and queues
used to hold messages for destinations.

Because of this, the CMCS queue hierarchy
include the specification of all queues,
queues and destination queues.

definHion must
both application

In send operations, the destination is translated into a
station name, and thus has a specific queue assigned to hold
the messages for output to a terminal device.

<3> In the initial implementation, the user can attach ("own")
only one station Cto receive output as a destination>. The
process does not "own" the queues it accesses for normal
receives.

The definition of passwor~ usage in the
somewhat ambiguous. Thus,, fo.r the present,
will be used to validate all enable and
If there is a future clarification that
passwords, this can be changed.

COBOL Standard is
only one password
disable requests.
requires multiple

(4) EMl and EGI message delimiters are processed identically by
the runtime package. Differentiation in the meaning of
these two <Logical> delimiters is left totally to the user
software.

(5) Yes. However, attempting to do a send and a receive on the
same tree path in the same process is not allowed in the
Multics implementation. Once either of the operations is
completed, the other can be started without any constraints.
Note that this implies a one-level tree path; otherwise,

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 1 0

(6)

there would be no way to match up the input source queue
with the output destination queue.

For multiple processes, locks are used for critical areas of
queue manipulation. Locking is kept to a minimium to reduce
inter-process interference.

Only the particular message being received is locked on an
extended basis. The entire queue is locked only long enough
to accomplish the message lock and changing the status
lists.

(There is no distinction made between EMI and EGI in the
Multics implementation.)

<7> A design choice was made to require a process to specify its
CMCS directory explicitly. This is done with the cobol_mcs
command. This constraint could be relaxed in the future.

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 11

o How much integrity protection should be built into the
system to protect benign, but careless, users from
themselves? <The facility will perform appropriate
processing of user QUITs with !PS masking.)

0 Does this design preclude extensions for security,
extension, or accounting?

o In the standard definition of COBOL MCS, the entering of
messages into the system and printing output are defined to
be terminal activities, with the implication that the
processing of input messages is indep~ndent from the
terffiinal activity. Is it legitimate to have the same Multics
process that enters a message into the system to also
process that message and generate its own output?

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 12

The following items are my interpretation of the requirements of
the COBOL standard:

1. Write <SEN . .P> message data with Q, es1, EMI, or EGI. o, ESl,
EMI, and EGI are logical trailing delimiters, corresponding
to end of partial message, end of (message> segment, end of
message, and end of (message) group, respectively. A
message group consists of one or more messages and a message
consists of one or more message segments. When writing the
message to the queue, only the highest level delimiter
specified.

Only when message data is written with EMI or EGI is the
message to be made available in the queue to readers. (The
implementation will assume that the complete message will be
good, and that message segments are written directly to the
queue, rather than holding them in a temporary buffer until
they are known to be good. Correspondingly, some means must
be provided by which queues can be "purged" of truly
invalid, or incomplete, messages.>

Messages and also message segments from multiple writers can
be written to a queue concurrently. Thus, message segments
for a given message are not necessarily contiguous in the
queue.

When the COBOL application program issues a send of a
partial message (zero value delimiter}, the system will
create a temporary buffer in which to concatenate subsequent
pie~es. Only when the message <or message segment> is
complete, will it be written to its queue<s>.

2. Read (RECEIVE) message or message segment data from a queue.
If the receiving buffer is smaller than the string of
message data, the system will cause only that sized portion
of the message entity to be written into the buffer and will
provide the next increment, up to the proper (logical>
delimiter, upon subsequent calls to the same queue. (Th~
system must maintain the necessary record locks and
pointers; by ANSI definition, these functions are external
to the user program.

Another implication is that the system must be able to
retrieve discontinuous portions of message data. For
example, assume that a program sent a messa~e to a queue as
two ~~ssa~e j~gm~o1~ of 100 characters each. Another
program did a receive messaye to the queue and got that
message. However, its buffer was only 75 characters long.
Thus, the system would move data into the receivin~ buffer
in the following manner:

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 13

Step
1
2
3

(message segment, character positions>
(1, 1-75>
c1, 76-100> (2, 1-SO>
c2, s1-100>

The receiving program would continue to issue receives until its
message delimiter status went from zero to EMI.

3. Enable a queue and disable a queue. This is nothing more
than allowing or disallowing user access to a Queue. In
COBOL, this a user-program function, requiring a password.

There is a corresponding facility to enable and disable a
station or stations from access to all or specific queues.

The setting of a disable flag does not necessarily
immediately prevent a terminal from accessing a queue for
input or output. Operations that were begun before the
disable flag was set are allowed to continue to completion.

4. Get counts of messages in a queue hierarchy or a single
queue. This is the momentary count of all valid <complete>
messages in the queue. It specifically does not include any
partial messages. Clt also does not include any messages
that are locked to other processes. This is my inference of
the ANSI standardi it will be clarified.>

5. Purge partially sent messages. This is not in ANS Standard
COBOL; however, it is expected that ANSI will adopt the
currently defined PURGE verb from the CODASYL JOD in the
next update of the Standard.

In the Multics implementation, procedures to perform this
function already exist to enable users to clean up the
queues.

MTB-341 COBOL MESSA~E CONTROL SYSTEM Page 14

QUEUE-XXX

RCD-011 RCD 1/1 RCD 2/1 RC D 2/ 2 RCD 3/1
CONTROL MESSAGE MESSAGE SEGMENT MESSAGE
INFO HEADER HEADER HEADER HEADER

SEGMENT SEGMENT DATA SEGMENT
HEADER HEADER HEADER
DATA DATA DATA

Notes:

1. Record zero is always reserved to contain control
information used in the processing of messages in the given
queue.

2. Any given message can span multiple non-contiguous records
of the file. Only the first record for a given message will
contain a message header. Subsequent pieces (segments>
contain just the segment header and data.

3. Keys for the vfile records consist of two adjacent fields of
fixed bin C35> values. The first field contains the ordinal
number of the CMCS message. The second field holds the
ordinal number for message segments within the given
message. Message numbers and message segment numbers always
begin with the value one. When the physical queue is
created, a record· with key values of 0/1 is stored. This
record will contain global control information for that
queue. It is called the queue control record.

4. Part of the header record for each message will be a pair of
forward and backward pointers. The message header of a
message will be linked into a list of pointer pairs, based
upon the status of the record.

Current status codes are the following:

1 - send in process (message being built)
2 - send complete (available for processing)
3 - receive in process
4 - receive complete Creddy for deletion>

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 15

The choice of an indexed vfile_ file structure for the
message queues is based on the following considerations:

1 • Message activity can be such that it
store all messages in a single
organization eliminates this problem.
is that the sum of the pieces of any
larger than a single segment.
implementation currently has a design
one piece not exceed one segment.>

may not be possible to
segment. The vfile_

A related requirement
given message can te
(The Multics CMCS
constraint that any

2. The pieces of a message may not be contiguous. This can
easily occur if there are multiple concurrent writers to the
file. This problem is eliminated by the indexed file
organization. A two-level key of message_number,
piece_number, provides nearly direct access to each piece as
needed.

3. Messages are variable in length.
management facilities eliminate
code in CMCS procedures.

The internal vfile_ space
the need for any similar

4. Linking of specific messages into any one of the message
status lists (incomplete, complete, in process, etc.>
requires an addressing mechanism that is process
independent. The vfile_ record_status control operation
solves this problem by returning an address consisting of
MSF component number and offset.

5. The forthcoming file integrity extensions to vfile will
also be available to COBOL MCS.

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 16

For a given set of users, the databases described and the
associated message queues must reside in a single directory. A
different set of users can have their control segments and queues
in a different directory.

It is apparent that some databases contain very little data.
This is undesirable from a performance standpoint, but that is
not an issue for MR6.Q, and it does simplify the implementation.

o cmcs_terminal_ctl.control
This database provides the default station_id for
interactive users (based on user-device channel>.

o cmcs_tree_ctl.control
This database contains the template definitions of all CMCS
queue hierarchies for a given set of users. This segment is
copied to the process_dir during the user's CMCS
initialization and is then dynamically updated with
user-specific information for each entry used.

o cmcs_station_ctl.control
This database defines all legitimate stations and contains
per-station flags to indicate enable/disable conditions.

o cmcs_wait_ctl.control
This database is shared by all processes performing a
receive ~ith wait. Entries are searched by queue hierarchy
on a first come, first served basis.

o cmcs_system_ctl.control
Initially, this segment will contain only the CMCS-wide
password Cup to 10 characters), used in granting permission
to perform the enable and disable functions as given in the
language.

o cmcs_queue_ctl.control
This database contains the flags for enable/disable
functions on a per-queue basis. Additionally, it holds the
message status counters and linked-list ptrs for each queue.
Entries in this table are searched to find occurrences of
available messages before the actual queues are accessed.

o cmcs_user_ctl.control
This per-process, external static database contain~ all the
common parameters used by the various CMCS subroutines.

MTB-341 COBOL MESSAGE CONTROL SYSTEM Page 17

The following commands are provided as part of the COBOL MCS
runtime support facility.

cobol_mcs

This command serves to establish the environment for further
CMCS processing. Users specifying the terminal option can
perform any of the functions of the COBOL send, receive,
enable, disable, accept message count1 and purge verbs. If
the station option is used, the command will perform the
process initialization and then return to command level.
This would normally be in preparation for the execution of a
COBOL application program.

cobol_mcs_admin

This administrative command currently has only two
functions. The first is to create necessary control segments
and message queues for a given CMCS directory, using the
cmcs_tree_ctl.control segment as input. The second is to
set or change the system-wide password, used to validate
enable or disable requests.

cv_cmcs_station_ctl
cv_cmcs_terminal_ctl
cv_cmcs_tree_ctl

These three commands are all control segment compilers. They
are based on the reduction_compiler tool. They each read a
source file called cmcs_xxx_ctl.src1 where XXX is station,
terminal, or tree, respectively, and generate a binary
control segment of the name cmcs_xxx_ctl.control.
Subroutines that access the binary control segments have a
name of the form cmcs_XXX_ctl_.

MTB-341 COBOL MESSAGt CONTROL SYSTEM Page 18

cobol_mcs cobol_mcs ----------
~~mi: cobol_mcs, cmcs

The cobol_mcs command provides a command interface to the
COBOL Message Control System CCMCS> functions in a manner similar
to that used inside a COBOL program. Refer to the ~ulti~~ '~aQL
!~icccn'c ~4DU4!, AS44, for a complete description of the
Co••unications Module.

The first time this
process, the process will be
Subsequent CMCS operations.
CMCS terminal, the command
user_input switch.

command is invoked in the user's
initialized for the execution of all

If the process is to operate as a
will read subcommands from the

cobol_mcs cmcs_dir {control_arg}

where:

1. cmcs_dir
is the path of the directory containing the desired
CMCS message queues and control segments.

2. control_arg
is one of two control_args. It must have the value
-station and be followed by a valid CMCS
station_name, or, it must have the value -destination
<-ds> and optionally be followed by a station_name.
If the station_name is not given for the -destination
control_arg, a default station_id will be used.

The use of -destination will cause the process to be
initialized to act as a CMCS terminal/destination.
The use of -station will cause the process to be
initialized for subsequent use by a COBOL application
program.

For MR6.0,
user's process
performed.

this command
before any

must be invoked to initialize the
other COBOL MCS functions are

Once cobol_mcs is invoked for terminal operations, the
command will read requests from the user_input switch. The
requests supported are receive, send, enable, disable, accept,

DRAFT: MAY 8E CHANGED 1 9 06/0Y/77 COBOL MCS

cobol_mcs cobol_mcs

purge, and quit. They are identical in function, although
slightly different in format, to the corresponding verbs
described in the ~ulti'~ 'Q~QL B~1~t~D'~ ~iOUil' Order No. AS44,
in the Communications Module. (purge is described in the CODASYL
JOO.) Full ANSI COBOL-74 Level 2 support is provided.

The requests and their abbreviated forms are listed here;
detailed descriptions follow the list, in the same order.

accept_message_count, amc

receive, r

send, s

prints a count of all messages available in the
specified queue hierarchy

prints and deletes all messages available in the
specified queue hierarchy

sends input ~ines as messages Cor message segments>
to the destinations specified (partial messages are
first accumulated until they are complete, before
writing to the destinations>.

enable_input, ei
enable_input_terminal, eit
enable_output, eo

enables a queue hierarchy, a station, or a set of
stations, respectively, for further activity.

disable_xxx, dxxx (same format as enable>

purge, p

quit, q

disables a queue hierarchy, a station, or a set of
stations, respectively, from further activity, after
the currently active messages have been processed.

The distinction is made because the COBOL
definition requires that messages currently being
processed must be completed before the queue or the
terminal is disabled.

causes all partially sent messages to be deletedr and
all partially received messages to be marked again as
available.

DRAFT: MAY BE CHANGED 2U 06/09/77 COBOL MCS

cobol_mcs cobol_mcs

causes the cobol_mcs command to purge any incomplete
send and/or receive messages and then return to
command level.

accept_message_count tree_path

Where tree_path is a character string of the form a.b.c.d.
The components, a, b1 c1 and d represent the four levels of a
CMCS Queue hierarchy (maximum>. The level names must be
alphanumeric <including underscore), and can be from 1-12
characters in length; trailing blanks are appended internally
when appropriate. At least the first component is reQuired;
trailing components are necessary only to define the desired
level in the queue hierarchy.

This request will cause the command to search the
appropriate queues for a count of all messages currently
available for proc~ssing (send complete) and print the sum on the
user_output switch. Unless there are no other CMCS users on the
system, the availability of messages may change between the
accept_message_count and any subseQuent receive reQuests.

receive delim tree_path

The delim argument is either esi or emi, to indicate that
either a mesage segment, or an entire messa~e is desired.

The tree_path is as defined above.

The receive reQuest will cause the appropriate queue or
queues to be searched for the first available message. If none
is found1 a "No messages" comment will be generated and the
command will return to request level. CThe cobol_mcs command
interface will never "wait" for a message to become available.>
If one is found, the message will be printed on the user-output
switch, along with any appropriate slew-control data.

After the complete message is printed, it is deleted from
the queue. when performing a receive_segment request, it will
find the first available message and print the first segment of
that message. Subsequent invocation of the request with either a
null or the same tree_path will cause the following segments of

DRAFT: MAY BE CHANGcD 21 06/09/77 COBOL MCS

cobcl_mcs cobol_mcs

the •essage to be printed. The message will be deleted after the
last segment of the messa~e is printed.

send delim dest1 {dest2 ••• destn}

Where delim is as described above.

dest1 destn is a list of one or
which the message will be sent. The list
for the first send operation. If the
subsequent sends, the previous list will be

more destinations to
is required at least
list is omitted on

used.

The send request duplicates the function
with one of the four logical delimiters co,
respectively.

of the send verb
ESI1 EMI, EGJ),

when any of the send requests are issued, the command will
enter an input mode, similar to that in the EDM. lines of input
are accumulated until a line is input with just a single period.
At this point, the accumulated data will be sent to the
appropriate destination<s>.

disable_input1 di tree_path
disable_input_terminal, dit station_name
diSable_output1 do dest1 {dest2 ••• destn}

Where tree_path and desti are as described above.

The disable requests will first request a password, using
the terminal's non-print function or a mask to avoid the printing
of the password. The password response is encoded and then
compared to the CMCS system password. If equal, the command will
then process the arguments on the request line. The result is
identical in function to that of the disable verb in the COBOL
language.

enable_input1 ei tree_path
enable_input_terminal, eit station_name
enable_output, eo dest1 {dest2 ••• destn}

DRAFT: MAY BE CHANGED 22 06/09/77 COBOL MCS

cobol_mcs cobol_mcs

The enable requests operate identically to that of the
disable requests, except that they enable the specified queues or
terminals.

purge s {dest1 ••• destn}
purge r {tree_path}
purge all

The purges request will cause all partially sent messages
<tor that process> being sent to the listed destinations to be
deleted. If no destination list is given, all partially sent
messages will be deleted.

The purge r request will cause all partially
messages in the specified tree_path to be returned to
status. If no tree_path is given then all partially
receive messages <for that process> will be returned.

received
avai table
processed

The purge all request will perform a purge of all partially
processed send and receive messages <for that process>.

quit

The quit request will cause an implied purge all request and
then cause the cobol_mcs command to return to command_level.

DRAFT: MAY BE CHANGED 23 06/09/77 COBOL MCS

The CMCS administrator must define and generate the system
databases Cand their containing directories>. The following
databases require a ~ource segment for compilation by CMCS
compilers:

cmcs~station_ctl.control
cmcs_terminal_ctl.control
cmcs_tree_ctl.control

The station control segment must be generated before the
terminal and tree control segments. After the tree control
segment is generated, the cobol_mcs_admin command is used to
create all queues and additional control segments:

cmcs_queue_ctl.control
cmcs_wait_ctl.control
cmcs_system_ctl.control

After the system control segment is created, the
administrator must use the set_system_psw request of the
cobol_mcs_admin command to set the initial password for the CMCS
system.

Additionally, the administrator must manually set the ACLs
on all CMCS segments, as appropriate for the given set of users.
All segments, with the exception of the cmcs_system_ctl.control
and cmcs_tree_ctl.control segments, must have read and write ~
access for all users. Only the administrator need have write
access on the cmcs_system_ctl.control segment.

The cmcs_tree_ctl.control segment MUST have only read access
for all users and have the copy switch set ON. This segment is
copied to the user's process_dir, so that it can be updated with
process-specific information.

Functions, such as accounting, recovery, metering, etc., are
not provided in MR6.0 CMCS.

DRAFT: MAY BE CHANGED 24 06/09/77 COBOL MCS

,...

cobol_mcs_admin cobol_mcs_admin

~~m~: cobol_mcs_admin, cmcsa

The cobol_mcs_admin command is used to perform the software
functions involved in COBOL MCS administration. When the command
is invoked, it will then read request lines from the user_input
switch. Command usage is terminated when the user enters the
quit request.

cobol_mcs_admin cmcs_dir

where cmcs_dir is the path of the desired CMCS directory.

As mentioned above, the comm•nd will read request lines from
the user_input switches until it encounters the quit request. At
that point, the cobol_mcs_admin command will return to command
level.

set_system_psw, sspsw

The user will be asked twice for a new password, the second
time to verify correctness of the first, where password is a
character string of 1-10 characters in length.

The password given will be encoded and written on top of the
old password without verification of the old password.

change_system_psw1 cspsw

The password is as defined above.

The user will be asked for the old password. If the
response is correct, the command will request the new
password. It will request it a second time to verify that
the first tyPein was correct. The password given will then
be encoded and written on top of the old password.

create_cmcs_queues, ccq

This request uses no arguments. The
cmcs_tree_ctl.control segment in the

DRAFT: MAY BE CHANGED 25

command will read the
cmcs_dir directory to

06/09/77 COBOL MCS

obtain the defined queue names and the command_line control
information associated with each queue. It will create
these queues if they do not already exist; if a given queue ~
already exists, the queue wi LL be truncated, a warning to
that effect will be printed1 and the command will continue.
In addition, the command will creaie <or recreate> the
cmcs_queue_ctl.control segment. This segment will contain a
list of the queues and, for each queue, the message status
lists and flags for enabling/disabling input and output to
and from the queues, respectively.

DRAFT: MAY BE CHANGED 26 06/09/77 COBOL MCS

,... -'~fii.IBUtl.l.tHi--'Qf:lf:1Af:H2-A.fHL6.aSl~-J.l~~S

TO BE SUPPLIED

DRAFT: MAY BE CHANGED 27 06/09/77 COBOL MCS

cv_cmcs_station_ctl cv_cmcs_station_ctl

Uam~: cv_cmcs_station_ctl

This COBOL MCS administrative command compiles a source file
named cmcs_station_ctl.src into a binary control file that will
be accessed by the CMCS runtime subroutines.

This particular command converts a source file that contains
a list of all valid stations. This list will be the master file
for all station names.

The source file has the following format:

<station_name>;

•
•

en di

The binary control file is set up with the standard CMCS
header, which gives information about the compilation and the ~
table sizes.

This compilation must be done before
cmcs_tree_ctl or cmcs_terminal_ctl compilations are
the cmcs_station_ctl.control segment is used to
station names used in the other source files.

DRAFT: MAY BE CHANGED 28 06/09/77

either the
done because

validate the

COBOL MCS

cv_cmcs_terminal_ctl cv_cmcs_terminal_ctl

~ami: cv_cmcs_terminal_ctl

This COBOL MCS administrative command compiles a source file
named cmcs_terminal_ctl.src into a binary control file that will
be accessed by the CMCS runtime subroutines.

This particular command
of terminal subchannels Ctty_
station names.

converts a source file g1v1ng pairs
device_channels> and their default

The source file has the following format:

<terminal_subchannel>: <default_station_name>;
•
•
•

end;

The binary control file is set up with the standard CMCS
header, which gives information about the compilation and the
table sizes.

This compilation must be done after cmcs_station_ctl.control
is generated; it uses information in that segment to validate
the station names.

DRAFT: MAY BE CHANGED 29 06/09/77 COBOL MCS

cv_cmcs_tree_ctl cv_cmcs_tree_ctl

~~me: cv.cmcs_tree_ctl

This COBOL MCS administrative command compiles a source file
named cmcs_tree_ctl.src into a binary control file that will be
accessed by the CMCS runtime subroutines.

This particular command converts a source file that defines
the COBOL MCS queue hierarchy, along with controls to be
associated with each message queue.

The source file has the following format:

(See below for a lengthy description.>

The binary control file is set up with the standard c"cs
header, which gives information about the compilation and the
table sizes.

This compilation must be done after cmcs_station_ctl.control
is generated; it uses information in that segment to validate ~
the station names.

1. There can be any number of
have from 1-4 levels. The
implied one, allowing the
flexibility in the hierarchy

subtrees, and each subtree can
"root" for all subtrees is an

CMCS administrator complete
definition.

2. The queue names specified in the queue hierarchy are
entirely logical. For the terminating queue name in any
branch, there is an associated name for the physical message
queue. The physical queue name defined in the source will
be suffixed with the string ".cmcs_queue", when the actual
queue is created.

3. The source file will consist of one or more PL/I-like
structure declaration statements. Each statement must begin
with a "declare" or "dcl" and end with a semicolon <;>. The
structure can be up to four levels deep. All lines but the
last line of a statement are terminated with a comma (,).
The source file is terminated with a statement of "endi".
PL/I-style comments may be included.

DRAFT: MAY BE CHANGED 30 06/09/77 COBOL MCS

,. cv_cmcs_tree_ctl cv_cmcs_tree_ctl

4. Immediately following the level indicator is the hierarchy
level name; this is the only required aryument. An optional
control for any line is the "command <command_line>" Cor
"absin <absin_line>"). This control is in effect for the
current level and all subordinate levels, unless overridden
at a subordinate level. The <command_line> argument will be
executed, if appropriate, when the associated queue goes
non-e11pty.

5. when a particular level is the final level of a given
tree-path (terminal node), the "queue <queue_name>" control
must be given. This will identify the desired name for the
given physical messaye queue.

6. Since all physical queues will exist in the same directory
(for the one source declaration), the associated names
should be unique. Since they will have a suffix appended
<.cmcs_queue), the names must be fewer than 22 characters in
length.

declare 1 <level_name>, /• for RECEIVES •/
2 <level_name> command "<command_line>",
3 <level_name> queue <queue_name>,
3 <level_name> queue <queue_name>,
2 <level_name> queue <queue_name>;

dcl 1 <level_name> queue <queue_name>
absin "<absin line>";

dcl 1 <level_name> queue <queue_name>
command "<command_line>";

I• declaration of a one-level send queue •/
dcl 1 <level_name> queue <queue_name>;

In
level 2
level 3
control

this example, the command control given
line causes the <command_line> to be set for
queues immediately following. Effect of

is terminated by the following level 2 line.

DRAFT: MAY BE CHANGED 31 06/09/77

in the first
both of the
the command

COBOL MCS

It should be noted that none of the CMCS subroutines are
intended to be called directly by user source code. The compiler
generates the object code calls according to use of COBOL MCS
verbs in the source.

cobol_mcs_SCreceive, receive_wait, send, enable_input_queue,
enable_input_terminal, enable_output,
di sable_input_qu·eue1 di sable_ input_terminal1
disable_output, pur~e, stop_run)

This subroutine is the one interface module for the COBOL
application programs. In general, it serves as a transfer vector
to the function-specific cmcs_xxx_ctl_ subroutines. It does do
some reformatting of the data received from the COBOL programs to
a more efficient internal form.

cmcs_tree_ctl_iCfind_tree_path, find_destination1
f ind_index>

This subroutine uses the tree control segment in the
process_dir. lt will search for the first occurrence of an entry
that matches the tree_path given in the input CO structure, or
the entry that matches a given output destination. The find_index
entrypoint just returns a pointer to a specific entry.

cmcs_terminal_ctl_$(find)

This subroutin~ does nothing more than to return a default
station name for a given terminal device_channel.

cmcs_status_list_ctl_$Cadd move delete>

This subroutine maintains the linked lists that group
status. together all messages of a particular processing

Separate lists are maintained for each queue.

cmcs_queue_ctl_$Csend1 receive, enable, disable, purge>

This subroutine performs the functions of message addition
and deletion to/from the message queues <thru vfile_>. For
message reading, it locks the next available message to the
process and returns message location and length information to
the reader

cmcs_station_ctl_$Cfind, lock>

This subroutine searches the cmcs_station_ctl segment. Its
current use is to find a given station and return a pointer to
that entry. If desired, the entry can be locked to the calling
process.

DRAFT: MAY BE CHANGED 32 06/09/77 COBOL MCS

~I

r

This subroutine maintains the list of processes who have
done a receive with wait and no message was available for
processing. The processes are added to the wait list and put to
sleep until a message becomes available. When a queue becomes
non-empty, the list is checked to see if any process is waiting
on that queue and if so, the process is awakened, etc.

cmcs_station_ctl_SCdisable_input_terminal,
disable_outPut_terminal, enable_input_terminal,
enable_output_terminal, attach, detach, validate,
input_disabled, output_disabled)

This subroutine performs
"attaching" and "detaching" of
enable and disable functions.

cmcs_fillin_hdr_

all functions related to the
stations and the processing of

This subroutine performs the 9eneral initialization of the common
header used in most CMCS files.

DRAFT: MAY BE CHANGED 33 06/09/77 COBOL MCS

Throughout all CMCS software, the following cod~s will be
used to identify major I/0 types and subtypes:

Major Type CVERS)

1 - Send

2 - Receive

3 - Enable

4 - Di sable

5 - Accept Message Count

6 - Purge

DRAFT: MAY BE CHANGED 34

Subtype

1 - Partial
2 - Segment
3 - Message
4 - Group

1 - Segment (No Wait>
2 - Message <No Wait>
3 - Segment (Wait)
4 - Message Cwait>

1 - Input Cto a queue>
2 - Input Terminal
3 - Output

1 - Input Cto a queue>
2 - Input Terminal
3 - Output

1 - Single Subtype

1 - Sends Only CCODASYL)
2 - Receives Only (Multics)
3 - Both (Multics>

06/09/77 COBOL MCS

cobol_mcs_ cobol_mcs_

~am~: cobol_mcs_

This COBOL MCS
module between the
package.

subroutine serves as the single interface
CO~OL object program and the CMCS runtime

~hen it is called the first time
ensure that the proper environment has
subsequent CMCS processing.

in a
been

process, it will
established for

All entrypoints and their usdges are described in Otto
Newman's memo, Preliminary MCS Subroutine Specifications.
Information from this document will be integrated into the
release documentation. Cit is avai table in BCO from Otto Newman,
in CISL from Betsy Kerr, and in Phoenix from Bob May.>

DRAFT: MAY BE CHANGED 35 06/09/77 COBOL MCS

cmcs_tree_ctl_ cmcs_tree_ctl_

~~mt: cmcs_tree_ctl_

This COBOL MCS subroutine is used to find entries in the
copy of cmcs_tree_ctl.control, contained in the user's
process_dir. Given an input CD pointer or an output station name,
it returns an index and a pointer to the entry matching the given
tree_path or destination station name, respectively. The last
entry returns a pointer to the entry corresponding to a given
index.

~01~~= cmcs_tree_ctl_$f ind_tree_path

This entrypoint . finds the first entry in tree control that
matches the tree path specified in the input CD structure. This
may be the top of a subtree and if so, the count returned will
indicate the number of entries in the subtree below. If the count
is zero, the entry found matches an absolute tree path, and is
for a message queue.

dcl cmcs_tree_ctl_Sfind_tree_path entry Cptr,fixed bin,fixed
bin,ptr,fixed bin C35));

call cmcs_tree_ctl_Sfind_tree_path
Cinput_cdptr,entry_index,count,entry_ptr,code);

Where:

1. input_cdptr <Input)
is a pointer to the input CD structure in the COBOL
program.

2. entry_index (Output)
is the index into the tree control segment for the
entry matching the tree path.

3. count (Output>
is the count of entries in a subtree for the matching
entry. If zero, it indicates the entry is for a
message queue.

4. entry_µtr (Output)
is a pointer to the matching entry.

5.. code (Output)
is a standard status return.

DRAFT: MAY BE CHANGED 36 06/09/77 COBOL MCS

cmcs_tree_ctl_ cmcs_tree_ctl_

----Notes for find_tree_path

tn1£¥: cmcs_tree_ctl_$find_destination

This entrypoint is used to find the entry that matches the
given <single> station name. It is used to process send requests.

dcl cmcs_tree_ctl_Sfind_destination entry (char <12),fixed
bin,ptr,fixed bin C3S>>;

call cmcs_tree_ctl_$find_destination
Cstation_name,entry_ind~x,entry_ptr,code);

where:

1. station_name <Input>
is the name of a destination station.

2. entry_index (Output>
is the index of the matching entry.

3. entry_ptr <Output>
is a pointer to the matching entry.

4. code (Output)
is a stdndard status return.

----Notes for find_destination

fOlL~: cmcs_tree_ctl_Sfind_index

This entrypoint is used to find
find_tree_path.

subsequent entries after a

DRAFT: MAY BE CHANGED 37 06/09/77 COBOL MCS

cmcs_tree_ctl_ cmcs.tree_ctl_

dcl cmcs_tree_ct.l __ $find_index entry (fixed bin,ptr,fixed bin
C3S»;

call cmcs_tree_ctl_$find_index Cindex,entry_ptr,code);

Where:

1. index <Input>
is the index of the desired entry.

2. entry_ptr (Output)
is as described above.

3. code <Output>
is a standard status return.

----Notes for find_index

DRAFT: MAY BE CHANGED 38 06/09/77 COBOL MCS

'r
cmcs_queue_ctl_ cmcs_queue_ctl_

~am~: cmcs_queue_ctl_

This COBOL MCS subroutine is called by cobol_mcs_ to
manipulate the message queues and the control information
contained in cmcs_queue_ctl.control. It accesses messages in the
inaexed files through vfile_ IO module, using a two-level key.
This subroutine also performs the actual movement of data to and
from the buffers of the COBOL programs.

Global locking of queues is done by vfile_ for record
addition and deletion; additional locks are used to manipulat~
the control information associated with the queues. These locks
are essentially independent from one another.

~D1t~: cmcs_queue_ctl_Ssend

This entry is the major procedure for all send functions. It
uses the output CD pointer supplied by the COBOL application
program to obtain the specific send controls to be used.

dcl cmcs_queue_ctl_Ssend entry Cptr, fixed bin, ptr, fixed
bin, bit <36), fixed bin C35));

call cmcs_queue_ctl_Ssend Coutput_cdptr, io_subtype,
bUffer_ptr, buffer_len, final_delim, slew_ctl, code)i

Where:

output_cdptr

io_subtype

buf fer_ptr

buffer_len

is the pointer to the COBOL program output CO
structure {Input>.

is the specific type of send operation required
Cinput>.

is the pointer to the COBOL .program buffer space
<Input>.

is the length of the message in the program buffer
<Input>.

DRAfT: MAY BE CHANGED 39 06/09/77 COBOL MCS

cmcs_queue_ctl_ cmcs_queue_ctl_

final_delim

code

is the logical delimiter to be assigned to the
current message portion (Input).

is a field defining the slew control operations to be
performed when the message is sent to an output
device (Input).

is a standard status return (Output>.

The io_subtype mentioned above indicates the type of message
delimiter to be used for the current portion of the output
message. It can have a value of 0-3.

0 This means that the COBOL program is sending out only a
piece of a message. Message Pieces will be accumulated
in the process space (a temporary segment) until a
delimiter of 1, 2, or 3 is specified to terminate the
current piece.

1 This delimiter specifies that the message buffer is to
be sent out as a message segment.

2 This delimiter sµecifies the the message buffer is to
be written out as a message.

3 This delimiter specifies that the buffer is to be
written with a message group delimiter.

f01L~: cmcs_queue_ctl_$receive

This entry is the major procedure to perform the receive
functions. It finds an avai table message and moves it to the
COBOL program buffer. It manages the movement of partial messages
to the user buffer and controls the subsequent processing of
receives to move subsequent pieces of a message into the user
buffer. rf a wait function is required, it will initiate this.

DRAFT: MAY BE CHANGED 40 06/09/77 COBOL MCS

cmcs_queue_ctl_ cmcs_queue_ctl_

dcl cmcs_queue_ctl_Sreceive entry Cptr, fixed bin, ptr,
fixed bin, fixed bin <35))i

call cmcs_queue_ctl_Sreceive Cinput_cdptr, io_subtype,
buffer_ptr, buffer_len, code);

Where:

input_cdptr

i o_ subtype

buffer_ptr

buffer_len

code

is a pointer to the COBOL program input CD structure
Clnput>.

is the type of receive function required (Input>.

is a pointer to the user input buffer <Input>.

is the maximum number of characters that can be
stored into the buffer <Input>.

is a standard status code <output).

1. If 1/0 is already in process, and it is also tor a receive,
it will continue that I/O. It the new request is for a
send, it will be aborted.

2. If I/0 is not in process, cmcs_queue_ctl.control will be
checked for available messages in the desired subtree. If
the function is a receive no-wait, and no messages are
available, it will set a status key and return.

3. If there is a message, the file will be attached, opened Cit
not already), and the record locked to the given process.
The message will then be moved into the user buffer.

4. If the entire message could be copied into the user buffer
in one pass, the message status will be changed from
available to complete. If not, the message status will be
set to receive-in-process.

DRAFT: MAY BE CHANGED 41 06/09/77 COBOL MCS

cmcs_queue_ctl_ cmcs_queue_ctl_

S. If no message is available and the receive specified a wait,
a wait request will be set into cmcs_wait_ctl.control, and
the process will be put to sleep, waiting for a new message.

~01!~: cmcs_queue_ctl_$enable

This entrypoint causes all queues specified by the tree_path
given in the input CD to be enabled for input.

dcl cmcs_queue_ctl_$enable entry Cptr, fixed bin, char C1Q),
fixed bin C35));

call cmcs_queue_ctl_$enable Cinput_cdptr, io_subtype,
password, code);

Where:

input_cdptr
is as described above (Input>.

io_subtype
must be 1 (Input).

password
is a Password to be encoded and matched with the CMCS
system-wide password <Input>.

code
is a standard status return <Output>.

----notes for enable

$oiLi: cmcs_queue_ctl_$disable

This entry is the main procedure to perform queue disable
functions.

dcl cmcs_queue_ctl_$disable entry Cptr, fixed bin, char
(10), fixed bin (35));

DRAFT: MAY BE CHANGED 42 06/09/77 COBOL MCS

cmcs_queue_ctl_ cmcs_queue_ctl_

call cmcs_queue_ctl_Sdisable Cinput_cdptr, io_subtype,
password, code);

Where:

input_cdptr

io_subtype

password

code

is as described above Clnput>.

is the disable function required. It must have a
value of 1 (Input).

is as described above <Input>.

is a standard status return (Output>.

----notes for disable

~01L~: cmcs_queue_ctl_Saccept_message_count

This entrypoint is the main procedure to obtain the count of
all available messages in the tree_path subtree specified in the
input CD.

dcl cmcs_queue_ctl_Saccept_message_count entry Cptr1 fixed
bin, fixed bin C35));

call cmcs_queue_ctl_$accept_message_count Cinput_cdptr,
io_subtype, code);

Where:

input_cdptr

io_subtype

code

is as described above <Input>.

is as described above. It must always have the value
of 1 Clnput).

is a standard status return (Output>.

DRAFT: MAY BE CHANGED 43 06/09/77 COBOL MCS

cmcs_queue_ctl_ cmcs_queue_ctl_

The total count is stored back into the input CD structure.

fC1Li: cmcs_queue_ctl_$purge

This entrypoint is the main procedure to perform all purge
functions. In addition to the purge of partially sent messages
as defined by the CODASYL JOD, it also is used to purge partially
received messages, or both.

dcl cmcs_queue_ctl_$purge entry Cptr, fixed bin, fixed bin
(35));

call cmcs_queue_ctl_$purge Ccd_ptr, io_subtype, code);

Where:

c d_ pt r

io_subtype

is a pointer to either an input CD structure, an
output CD structure, or null. The pointer definition
must correspond to the function defined by the
io_subtype. <Input).

defines the type of purge to be performed (Input>.
It must have a value of 1-3, for specifying a purge
of partially sent messages, partially received
messages, or all partially processed messages,
respectively.

In addition to the purge function called for by the COBOL
application program, the system uses this procedure to clean up
any unprocessed messages of either type. The purge "all"
function is invoked when the COBOL program does a stop run
command.

DRAFT: MAY BE CHANGED 44 06/09/77 COBOL MCS

cmcs_status_list_ctl_ cmcs_status_list_ctl_

~~me: cmcs_status_list_ctl_

This COBOL MCS subroutine is used to manage
status lists in each of the message queues. It
cmcs_queue_ctl_ when it needs to change the
particular message.

~D1Li: cmcs_status_list_ctl_Sadd

the message
is called by

status of a

dcl cmcs_status_list_ctl_$add Cptr, ptr, fixed bin, code>;

call cmcs_status_list_ctl_$add Crcd_loc_ptr, iocb_ptr,
status, code);

rcd_loc_ptr points to the record locator. The record
locator is a one-word structure giving the record location in
terms of file component number and word offset Chalf_word
values>. This location is process-independent.

iocb_ptr points to the iocb of the target file. Status
defines the particular status list for insertion. It must have
the value of 1 or 2. Code is the standard return code.

This entrypoint must be used only to insert the locator for
a new message into the status list, either in the list for
send_incomplete (1), if only a message segment was written, or
send_complete <2> if a complete message was written as one
Cvfile_> record.

fD1Li: cmcs_status_list_ctl_$delete

dcl cmcs_status_list_ctl_$delete Cptr, ptr, fixed bin,
fixed binC35));

call cmcs_status_list_ctl_$delete Crcd_loc_ptr, iocb_ptr,
status, code>;

Where all fields are as described above.

DRAFT: MAY BE CHANGED 45 06/09/77 COBOL MCS

cmcs_status_List_ctl_ cmcs_status_list_ctl_

This entrypoint is called by cmcs_queue_ctl_ when a message
<and all its segments) is to be deleted from the message queue.
The status coae will usually be 4, indicating that a message was
successfully processed and is now being deleted. However, the
status code could be 1, for examPle1 indicating a purge of an
incomplete message. The message specified by the rcd_loc_ptr
will be deleted from the list.

~DtLx: cmcs_status_list_ctl_$move

dcl cmcs_status_list_ctl_$move
bin, fixed binC35));

Cptr, ptr, fixed bin, fixed

call cmcs_status_list_ctl_Smove Crcd_loc_ptr, iocb_ptr,
old_status, new_status, code);

where rcd_loc_ptr,
above.

iocb_ptr, and code are as described

The function of the move entrypoint is effectively that of a
paired list delete and d list add.

The values given in old_status and new_status define the old
status list from which the message is being removed and the new
status list to which the message is being added, respectively.

DRAFT: MAY BE CHANGED 46 06/09/77 COBOL MCS

cmcs_wait_ctl_ cmcs_wait_ctl_

~~m~: cmcs_wait_ctl_

This COBOL MCS subroutine manages the wait functions for all
the processes that are waiting for a message to become available
in any specified queue. Entrypoints are provided to add, delete
and find wait_list entries in the cmcs_wait_ctl.control segment.

When the COBOL application program issues a
receive-with-wait, it can specify any level up in the queue
hierarchy. This means that the program wishes to receive the
next message that is Cor becomes> available anywhere in the
specified subtree. If no message is available, the program's
request will be added to the wait list and the process put to
sleep.

When another process causes a message to become available in
a queue, it will check the wait list to determine if any request
can be satisfied. If so, the second process will update the
specific wait entry with information about the new message and
then send a wakeup to the waiting process.

The requesting process will then obtain the specific message
controls from the wait entry and then delete the entry.

fD1Lx: cmcs_wait_ctl_Sadd

This entry will add a process to the list of processes
waiting to receive a message.

dcl cmcs_wait_ctl_$add entry CcharC48>, fixed bin, fixed
binC35));

call cmcs_wait_ctl_Sadd (rcv_tree_path, index, code);

where:
rcv_tree_Path

defines the hierarchy subtree from which a message is
requested <Input).

index <Output)

code

is the index of the wait
will access this entry
the available message.

entry. The awakened program
to obtain information about

is a standard status code <Output>.

DRAFT: MAY BE CHANGED 47 06/09/77 COtlOL MCS

cmcs_wait_ctl_ cmcs_wai t_ctl_

Once generated1 the
ipc_Sblock and hcs_$wakeup
subroutine will obtain
cmcs_user_ctl.control.

control information needed to do an
is fixed for the process. The

this data directly from

t.01Lx: cmcs_wait_ctl_$find

This entry is called by the process that causes the number
of available messages in a queue to go nonzero. Its function is
to determine if any process is waiting for that message and, if
one is found, send a wakeup to that process.

dcl cmcs_wait_ctl_Sfind entry Cchar(48), char(32), fixed
bin<35));

call cmcs_wait_ctl_ (abs_tree_path, queue_name, code)i

where:

abs_tree_path
is the full tree_path used to define the message
queue that went non-empty. This information will be
set into the COBOL application program's CD structure
<Input>.

queue_name
is the full entryname of the queue containing the

message <Input).

code
is a standard status code. (Output>.

fottx: cmcs_wait_ctl_$delete

This entry causes
moved to the free list.

the given wait entry to be zeroed and

dcl cmcs_wait_ctl_$delete entry (fixed bin, fixed bin<3S>>;

call cmcs_wait_ctl_$delete <wait_ctl_eindex, code);

DRAFT: MAY BE CHANGED 48 06/09/77 COBOL MCS

'

' ,... I

cmcs_wait_ctl_ cmcs_wait_ctl_

where:

wait_ctl_eindex
is the index to the particular wait entry to be moved
to the free list CinPut>.

code
is a standard status co~e.

..
DRAFT: MAY BE CHANGED 49 06/09/77 COBOL MC S

cmcs_term;nal_ctl_ cmcs_terminal_ctl_

~~ms: cmcs_terminal_ctl_

This COBOL MCS subroutine performs a search of
c•cs_ter•inal_ctl.control, to find the default station name for a
given terminal device_channel.

~01~~= cmcs_terminal_ctl_$find

This entrypoint does the work of searching the control
segment, looking for the given device_channel. When one is found,
the associated default station name ;s returned to the caller.

dcl cmcs_terminal_ctl_$find entry (char (8),charC12>,fixed
binC35));

call cmcs_terminal_ctl_Sfind
Cdevice_channel1station_name1code>;

Where:

1. device_channel <Input>
is the name of the terminal subchannel, as found in
the Channel Definition Table ccoT>.

2. station_name (Output>
is the default station name to be used bY the
interactive user.

3. code (Output>
is a standard status return.

----Notes for find

DRAFT: MAY BE CHANGED 50 06/09/77 COBOL MCS

----"

cmcs_station_ctl_ cmcs_station_ctl_

~am~: cmcs_station_ctl_

This COBOL MCS subroutine controls all functions related to
station attach, detach, enable, and disable.

~D%Lx: cmcs_station_ctl_$disable_input_terminal

This entry uses the station_nime from the input CD structure
and causes that particular station to be disabled for input.

dcl cmcs_station_ctl_Sdisable_input_terminal entry Cptr,
char <10), fixed bin (35)); .

call cmcs_station_ctl_SdiSible_input_terminal Cinput_cdptr,
password, code);

where:

1. input_cdptr (Input>
is a pointer to the input CD structure in the COBOL
program.

2. password <Input)
is the CMCS system pissword.

3. code <Output)
is a standard status return.

----Notes for disable_input_terminal

~ot.£~: cmcs_station_ctl_Sdisable_output_terminal

This entrypoint uses the
output CD structure and causes
output.

set of station_names from the
those stations to be disabled for

DRAFT: MAY BE CHANGED 51 06/09/77 COBOL MCS

cmcs_station_ctl_ cmcs_station_ctl_

dcl cmcs._station_ctl_Sdis.able_output_terminal entry Cptr1
char (1'0)·, fixed bin <35));

call cmcs_station_ctl_$disable_output_terminal
Cou.tput_cdptr1 password, code);

1. output_cdptr (Input)
is a pointer to the output C~ structure in the COBOL
program.

2. password <Input>
is the c~cs system password.

3. code (Output>
is a standard status return.

----~otes for disable_output_terminal

~D1L~~ cmcs_station_ctl_Senable_input_terminal

This entry uses the station_name from the input CD structure
and causes that particular station to be enabled for input.

dcl ~mcs_station_ctl_Senable_in~ut_terminal entry Cptr~ char
C1Q), fixed bin <35));

call cmcs_station_ctl_$enable_input_terminal Cinput_cdptr,
password, code>;

where:.

1. input_cdptr <Input)
is a pointer to the input CD structure in the COBOL
program.

2. password (Input)
is the CMCS. system password.

DRAFT: MAY BE CHANGED 52 06/09/77 COBOL MCS

I
. r

I
I

--

....

...

....

-
....

....

-

.....

cmcs_station_ctl_ cmcs_station_ctl_

3. code (Output>
is a standard status return •

----Notes for enable_input_terminal

~Dl~x: cmcs_station_ctt_Senable_output_terminal

This entrypoint uses the set of station_names from the
output CD structure and causes those stations to be enabled for
output •

dcl cmcs_station_ctl_Senable_output_terminal entry Cptr,
char C1Q), fixed bin C35));

call cmcs_station_ctl_$enable_output_terminal Coutput_cdptr,
Password, code>;

where:

1 • output_cdptr <Input>
is a pointer to the output co structure in the COBOL
program.

2. password <Input>
is the CMCS system password •

3. code <Output>
is a standard status return.

----Notes for enable_output_terminal

fOl!X: cmcs_station_ctl_Sattach

This entrypoint is used to attach a particular station by
name. It is needed by processes that wish to initialize their
environment for CMCS termindl operations.

DRAFT: MAY BE CHANGED 53 06/09/77 COBOL MCS

cmcs_station_ctl_ cmcs_station_ctl

dcl cmcs_station_ctl_$attach entry (char C12), fixed bin,
fixed bin <35));

call cmcs_station_ctl_$attach Cstation_name, entry_index,
code);

where:

1. station_name (Input)
is the name of the desired station.

2. entry_index <Output>
is the index of the given station in the station_ctl
structure.

3. code <Output>
is a standard status return.

----Notes for attach

t~1Lx: cmcs_station_ctl_$detach

This entrypoint uses an index into station_ctl to detach a
particular station.

dcl cmcs_station_ctl_$detach entry <fixed bin, fixed bin
<35));

call cmcs_station_ctl_$detach Centry_index, code);

where:

1. entry_index <Input)
is the index of the given station in the station_ctl
structure.

2. code (Output>
is a standard status return.

DRAFT: MAY BE CHANGED 54 06/09/77 COBOL MCS

'

' . -----------------
cmcs_station_ctl_ cmcs_station_ctl_

----Notes for detach

~DL~x: cmcs_station_ctl_Sdetach_name

This entrypoint uses the station_name to detach a particular
station.

dcl cmcs_station~ctl_$detach_name entry <char C12), fixed
bin (35>>;

call cmcs_station_ctl_Sdetach_name Cstation_name, code);

where:

1. station_name <Input>
is the name of the desired station.

2. code <Output>
is a standard status return.

----Notes tor detach_name

~QL£x: cmcs_station_ctl_Svalidate

This entrypoint is called by CMCS procedures that must check
the validity of a given station_name. The only set of station
names that can be assumed valid is contained in station_ctl.
Other databases containing station names must have verified those
names against the names contained in station_ctl.

dcl cmcs_station_ctl_Svalidate entry Cchar C12), fixed bin
(35));

call cmcs_station_ctl_$validate Cstation_name1 code);

DRAFT: MAY BE CHANGED 55 06/09/77 COBOL MCS

cmcs_station_ctl_ cmcs_station_ctl_

where:

1. station_name (Input>
is the name of the desired station.

2. code (Output)
is a standard status return.

----Notes for validate

~D1Li: cmcs_station_ctl_$input_disabled

Thi5 function entrypoint returns a flag to indicate whether
or not the given station is disabled for input.

dct cmcs_station_ctl_$input_disabled entry (fixed bin, bit
(1), fixed bin C35));

call cmcs_station_ctl_$input_disabted Centry_index, flag,
code);

where:

1. entry_index (Input>
is the index of the given station in the station_ctl
structure.

2. flag (Output)
indicates the disable status.

3. code (Output>
is a standard status return.

----Notes for input_disabled

DRAFT: MAY BE CHANGED 56 06/09/77 COBOL MCS

cmcs_station_ctl_ cmcs_station_ctl_

'ct~~= cmcs_station_ctl_$output_disabled

This function entrypoint returns a flag to indicate whether
or not the given station is disabled for output.

dcl cmcs_station_ctl_Soutput_disabled entry (fixed bin, b;t
(1), fixed bin (35));

c~ll cmcs_station_ctl_$output_disabled Centry_index, flag,
code>;

where:

1. entry_index <Input)
is the index of the given station in the station_ctl
structure.

2. flag <output>
indicates the disable status.

3. code <output>
is a standard status return.

----Notes for output_disabled

DRAFT: MAY OE CHANGED 57 06/09/77 COBOL MCS

cmcs_fillin_hdr_ cmcs_fillin_hdr_

---------~------

This COBOL MCS subroutine is used to set most of the header
information in CMCS control segments and queues.

dcl cmcs_fillin_hdr_ entry Cptr, fixed bin, fixed bin, fixed
bin, fixed bin C35>>;

call cmcs_fillin_hdr_ Chdr_ptr, version, hdr_len, entry_len,
code);

wnere:

1. hdr_ptr (Input>
points to the header of a newly created control
segment or queue.

2. version (Input)

3.

is the version of the given file.

hdr_len Clnput>
defines the length of special header data that is
unique to the given file.

4. entry_len (Input)
defines the length of the individual entries in the
file.

5. code COutput>
is a standard status return.

~Y convention, all CMCS control segments and message queues
are created with a standard header. Additional header
information must always follow the standard header. The header
is declared in cmcs_control_hdr.incl.pl1.

The hdr_len value is added to the length of the common
header data and the sum is subtracted from the maximum possible
length of a segment. The result is divided by the length of the
individual entry to give the maximum number of entries the
segment can contain.

DRAFT: MAY BE CHANGED 58 06/09/77 COBOL MCS

cmcs_fillin_hdr_

~~~iLQf~~~I-IAl~~ 

t:lAal.~B-~~llU. g e1:1u~ I-1 If;tl.S 

These items are necessary for a 
Although several of these items are 
nothing in this design must be 
development in the future. 

* 1. Queue Processing 

2. Terminal Management 

3. Backup, Recovery 

4. Accounting 

* 5. Testing, Q/A 

* 6. Documentation 

7. Security 

* 8. Assumptions, Philosophy 

* 9. Error Processing 

* 10. Definitions 

* 11 • Queue/Hierarchy Creation 

* 12. Data Bases 

* 13. Subroutine .Call lnterf aces 

14. Metering 

* 15. Command Interfaces 

* Required for M~6.01 COBOL MCS 

DRAFT: MAY BE CHANGED 59 

cmcs_fillin_hdr_ 

complete implementation. 
deferred until after MR6.0, 

allowed to preclude their 

06/09/77 COBOL MCS 



cmcs_fillin_hdr_ cmcs_fillin_hdr_ 

--~-------------

The following changes and extensions to the Phase 1 
implementation are recommended: 

o Restructure cmcs_tree_ctl.control. The initial 
implementation wastes considerable space, for multiple-level 
hierarchies, in that it reserves space for every level that 
is needed only at the lowest level. 

0 Allow the interactive user who wishes 
several destinations, to use a 
destinations. 

to send a message to 
segment to list the 

o Add controls to distin9uish between queues used by 
interactive users as terminals/destinations, and queues used 
only by the COBOL application programs. 

o Integrate the control segments for more efficiency. 

o Allow one process to attach more than one station, and allow 
multiple processes to share a single station. 

o Investigate the use of destination lists, to be associated 
with long messages being sent to several destinations. This 
facility, if needed, would reduce the amount of system 
storage used to store output messages until they are 
processed. 

o Kave the queues and control segments to ring 3, for security 
(and integrity>. 

o Provide a means for the interactive user of cobol_mcs to do 
simple editing of message data that is already entered into 
the system, but prior to being sent to the given message 
queues. 

DRAFT: MAY BE CHANGED 60 06/09/77 COBOL MCS 



cmcs_fillin_hdr_ cmcs_fillin_hdr_ 

The include files to support coaOL MCS are given below. They 
are not in final form. Listings of the include files can be 
rewiewed at ClSL <Betsy Kerr), BCO COtto Newman), and Phoenix 
(800 May). 

cmcs_control_hdr.incl.pl1 

c•cs_message_hdr.incl.pl1 

cmcs_message_key.incl.pl1 

cmcs_message_segment.incl.pl1 

cmcs_queue_ctl.incl.pl1 

cmcs_slew_ctl.incl.pl1 

cm c s _ s ta t i on_ c t l • i n c l • p L '1 

cmcs_terminal_ctl.incl.pl1 

cmcs_tree_ctl.incl.pl1 

cmcs_user_ctl.incl.pl1 

cmcs_wait_ctl.incl.pl1 

DRAFT: MAY BE CHANGED 61 06/09/77 COBOL MCS 


