
,/

MULTICS TECHNICAL BULLETIN MTB 337

To: MTB Distribution

From: E. J. Wallman

Date: 1977 May 9

Subject: New runoff implementation

This document describes a new implementation of runoff in­
tended for release with MR 6.0.

Comments may be returned via system mail to Wallman.Multics
on System M or regular mail to Ed Wallman, MailDrop K-28, Phoe­
nix.

INTRODUCTION

It has long been re~ognized that there are several major
deficiencies in the current implementation of runoff. Not the
least among these are:

m The implementation is done in a language (BCPL) not part of
the standard Multics product and not supported by Honeywell.

® The available expertise in the implementation language is so
thin that it is very difficult to schedule timely responses to
required bug fixes and virtually impossible to obtain commit­
ments for desirable enhancements.

® The formatting algorithms used do not lend themselves readily
to extension to sophisticated techniques of document produc­
tion (multi-column text, tabular data, insertion of line art
and graphics, etc.).

m The implementation does not lend itself to extension for sup­
port of modern document transcription devices such as Diablo (1)
printer terminals and photocomposing machines.

Multics Project internal working documentation. Not to be repro­
duced or distributed outside the Multics Project

(1) Registered Trademark, Xerox Corporation.

page 1

MTB 337 MULTICS TECHNICAL BULLETIN

When considered in the light of high levels of interest on
the part of various current and prospective customers, these (and
similar) deficiencies led to the conclusion that a new, more
flexible and extensible implementation of runoff was needed.
Hence, an implementation effort was begun in Phoenix embodying
advanced text formatting algorithms and a hi~h capability for
extensibility. This development has now reached a point where it
may be considered as a replacement for the BCPL implementaion.

HIGHLIGHTS OF THE IMPLEMENTATION

m A new control structure and syntax is provided. The new con­
trols have much more mnemonic content and generally occur in
matched pairs (e.g., "in"/"out", "on"/"off", "begin"/"end",
"left"/"right", etc.). The existing BCPL controls are mapped
onto a subset of the new controls.

m Input is taken from single segment files treated as continuous
character strings with lengths derived from the bitcounts of
the segments. The ability to specify up to 100 input files
per command invocation is retained. Output is written to I/O
switches attached through the tty or vfile I/O modules, thus
permitting output files to grov to multi=segment files for

'I

very large documents.

• The assumed default device for terminal output is the terminal
type recorded in the user's login data. The assumed default
device for file output is an ASCII line printer.

m All command control arguments are retained and they perform
the same (or equivalent) functions (see discussion of -ball
under INCOMPATIBILITIES following). Several new control ar­
guments are provided. The undocumented "A<name>" construct
implying negation of switch-type control arguments is not
supported.

m Formatting is accomplished by means of text blocks. Formatted
lines of text obtained from the input are accumulated until an
explicit or implied text break; then the block is composed
into the output page. If the block may be split between
pages, a m1n1mum number of lines (long known in the
typesetting industry as a "widow") must appear on each page.
The widow size is controllable by the user. Most blocks are
splittable, but certain ones (e.g., equation blocks, picture
blocks, "keep" blocks) are not. Most blocks may appear any­
where on the output page and are composed as they occur. Cer­
tain blocks (e.g., header blocks, footer blocks, named blocks)
either appear at fixed locations on the page or at a location
specified by the user.

page 2

MULTICS TECHNICAL BULLETIN MTB 337

® The characteristics of the device being used for transcription
are given in an external device driver table. The use of this
driving table technique greatly eases the problem of support­
ing new devices as they become available and allows the pro­
gram code (at least as a goal) to be device independent.

~ The implementation is stingy with CPU time without regard to
memory usage, reflecting the relative cost of these resources.
Testing has shown more than 40% less CPU time, somewhat more
memory usage, and more page faults than the BCPL
implementation for a set of more than 50 input test files.

Continuing development will address the issue of optimizing
system resource usage, assuring a minimum dollar cost.

The implementation makes extensive use of temporary segments
(and the temporary segment manager) instead of allocations in
free storage or in the stack. This technique allows much more
information to be retained during an invocation. For example,
insert file data is retained in a temporary segment and suf­
ficient space is available to allow the implementation to
"know" over 900 insert files. Part of the insert file data
retained is the <name> and location of every .la control en­
countered. This retained data makes it unnecessary to ever
rescan an input file when searching for labels. In support of
dynamic insert files (such as generated by the runoff fen
program), the bitcount and date-time-modified are also-re­
tained and checked on every file insertion.

Active functions are directly supported by treating them as
pseudo-variables during variable substitution. The same ac­
tive function syntax as that supported by the command
processor is used and the bracketed string is enclosed within
the special delimiter("%") characters. For example, if the
author of a document expected a response from the addressees
within a specified time limit, say two weeks from next Tues­
day, the string:

.ur Your response is expected by %[long_date Tue 2 weeks]%.

would generate an appropriate sentence.

INCOMPATIBILITIES

The following points are presented as actual and sus­
pected incompatibilities between this implementation and the
BCPL implementation. Most involve the placement of text on
the page and the visual aspect of the composed output.

page 3

MTB 337 MULTICS TECHNICAL BULLETIN

m Text lines are padded for alignment by attempting to distrib­
ute white space uniformly across the line instead of by the
alternating left-right method.

This algorithm more closely approximates the uniform propor­
tional expansion technique used in classical typesetting.
Moreover, it allows extention of the code to support devices
with the capability in a more straightforward manner.

m Multiple isolated occurrences of the special delimiter char­
acter ("I") do not yield multiple references to the value of
the internal page counter.

The conventional reference to the value
has been redefined as a single, unpaired
special delimiter character ("I") instead
rences. Hence, the control:

.fo ""page I of %""

of the page counter
occurrence of the
of isolated occur-

such as used in the automated MCR generator will not produce
the desired result. This construct must be rewritten as:

.fo ""page %Np3 of %Np%""

Note that the parsing algorithm for the special delimiter has
not been changed other than the redefinition of this one ex­
ceptional case.

m The "-nopagination" control argument is retained but is mapped
onto the "-galley" control argument.

Galley format is used traditionally in the printing industry
to check grammar, spelling, and techincal content of text be­
fore it is composed into pages. The format is defined as
unpaged, single column text without running headers and
footers and with footnotes immediately following the
referencing paragraph.

Note that the only real difference between the implementations
lies in the display of headers and footers, hence, the use of
-galley for info segs will produce identical results.

m The value displayed for the -number control argument is the
input file line number of that line containing the first
printed character of the output line.

This item has long been a sore point since the BCPL
implementation displays the line number of the input file line
that caused the line to be printed. This line may be nowhere
near the line that contains the string printed, as witness

page 4

MULTICS TECHNICAL BULLETIN MTS 337

header and footer lines in -number mode. Lines numbers are
not displayed on inserted blank lines.

m The label names in a file must be unique.

The retention of label information from files in order to re­
duce file searching precludes non-unique label names.

DETAILED DIFFERENCES

This sect;.on gives all the known differences
BCPL implement~on and the proposed one.

Missing:

between the

m A<name> negation of switch control args is not supported.

m An input file may not be an MSF.

Changed:

m New controls are proposed. See mapping below and control
descriptions in the attached MPM documentation.

m Line padding is distributed.

m The -ball <n> control argument is mapped into -device
2741-<n>.

m Only one single "%'' may be used for the page counter in
use-ref lines and title parts.

m Label names must be unique within an input file.

m The PadLeft builtin has a fixed value of 0.

m The number displayed for the -number option refers to the
input line containing the first character on the output line.

The maximum number of characters in a line has been raised
from 361 to 1800.

The -hyphenate control arg takes an optional value specifying
the smallest separated word part.

Three different breaks are defined; format, block, and page.
Most controls that break cause format breaks, some cause
block breaks, and a few cause page breaks.

page 5

MTB 337 MULTICS TECHNICAL BULLETIN

Picture blocks are not split. This means that three stacked
pictures, each 2/3 page, will occupy three pages in the out­
put, not two pages. Picture blocks are actually a special
form of keep blocks that permit main line text to be promoted
ahead of them.

Added:

m Automatic widow processing.

m Direct support of active functions.

m Controls embedded in text (using .ur controls).

m Builtin artwork and math symbols.

m New control arguments:

-lines pace
-galley
-lines
-no art

change default linespace value
unpaged output for proofing
to inspect format of small parts of doc
to inhibit artwork generation

m Documentation of the -no_control, -no_fill, and -file control
args.

m Additional control functions.

text alignment at right margin, page center, inside and
outside margins.

user defined counters

text titles

keep blocks

named blocks

localized hyphenation control

control over widowing

page 6

MULTICS TECHNICAL BULLETIN MTS 337

MAPPING OF OLD/NEW CONTROLS

The mapping of the old controls onto the new is as follows:

*
.ad
.ar
.bp
.br
.cc
.ce
.ch
.ds
.ef
.eh
.eq
.ex
.fh
.fi
.fo
.fr t
.fr f
.fr u
.ft

.gb

.gf

.he

.if

.in

.la

.li

.11
• m 1
.m2
.m3
.m4
.ma
.mp
.ms
.na
.ne
.nf
.of
.oh
.op
.pa
.pi
.pl
.rd
.ro

*
.alb
• srm ar
.brp
.brf
.cc
• bbc n
.ch
.ls 2
.foe
.hee
.bbe n
.ex
.hef
.fin
.foa
.ftr
.fth
.ftu
.bbf (odd occurrences)
.bef (even occurrences)
.go
.go
.hea
.if
.inl
.la
.bbl n
.pdw

·• vmt
.vmh
.vmf
.vmb
.vmt/.vmb
.ps
.ls
.all
.brn
.fif
.foo
.heo
.brp o
.brp nl+n
.bbp n
.pdd
.rd
.srm ro

page 7

MTB 337 MULTICS TECHNICAL BULLETIN

.sk .brs

.sp .spb

.sr .srv

.ss .ls 1
• tr • tr
.ts .ts
• ty . ty
.un .unl
• ur • ur
.wt .wt

Attached to this MTB is a draft of a new MPM description of
the runoff command.

NB Needless to say, this document and its supporting attachment
were produced by the proposed implementation.

page 8

runoff runoff

~= runoff, rf

The runoff command is used to prepare formatted
ments for production on various documentation devices
and user terminals. Output ~ages are composed from
controls provided in input files. Detailed control
provided by controls in the input file.

documents from text seg­
including line printers

various text blocks and
over page composition is

Details of the "source language" and various runoff controls are discussed
later in this description.

Usage

runoff paths {-control_args}

where:

1. paths

2.

are the pathnames of input files named <entryname>.runoff. The
runoff suffix must be the last component of the input file namest
however, the suffix need not be supplied in the command line. Ir
two or more pathnames are specified, they are treated as if runoff
had been invoked separately for each. Up to one hundred (100) input
files may be processed with one invocation of the command. Output
is produced in the order in which the pathnames are given in the
command line. Input files are restricted to being single-segment
files (SSF); output files for very large documents are converted to
multi-segment files (MSF).

control_args
may be chosen from
fied in the command
Control arguments
pathnames.

the following list. Any control argument speci­
line applies to all input file pathnames given.
may be freely intermixed with input file

-ball N, -bl N
specifies the typeball in use on 2741-type terminals. If the user's
login data does not indicate a 2741-like terminal type, the control
argument is ignored. This control argument is identical to the
"-device 2741-N" control argument except that "-device 2741-N" does
not check the login terminal type.

-character, -ch
flags certain key characters and lines in the output by writing the
composed output line to a segment named <entryname>.chars. Normal
output is not affected. Page and line numbers referring to the
normal output appear with each flagged line in <entryname>.chars.
The set of key characters is controlled with the characters control
in the input file. The default for this feature is OFF.

DRAFT: MAY BE CHANGED 1 05/09/77 AG92

runoff runoff

-device ~' -dv ~ prepares output compatible with the device specified. This control
argument is used when the target device for output is not the de­
fault device for the output mode selected. The default value for
~ is "ascii". If the -file/-segment control argument is given,
the default device is taken to be the online printer. If the
-file/-segment control argument is not $iven 1 the default device is
taken to be the user's terminal which is de~ermined from the login
data. Any device for which ~.rf_device_table exists is a sup­
ported device.

-from N, -fm N
starts printed output at page N. If the -page control argument is
given, printed output starts at the renumbered page N. The default
value of N is 1.

-galley, -gl, -nopagination -npgn -no_pagination
produces galley formal (contlnuous text without running headers and
footers) without pagination. The default for this feature is OFF.

-hyphenate N, -hyph N, -hph N
changes the default hyphenation mode from OFF to ON. The optional
parameter N is the length of the smallest separated word part. Its
default value is 3,

-indent N, -in N
adds N spaces at the left margin of the output. This extra space
has a default value of 20 if the output device is the online printer
and has a default value of O for all other devices. The space given
overrides the default value and is in addition to any indentation
given with indent-left controls in the text.

-lines N1,N2, -li N1,N2
produces galley format output with line numbers only for input line
N1 through NZ.. The default value of N1 is 1 and the default value
for N2 is the last line in the input file. If N2 is not given, a
comma need not be given. If N1 is not $iven, a comma must precede a
given value for N2. The default for this feature is OFF.

-linespace N, ~1s N
changes the default line spacing value to N. The line-space control
uses N as a minimum value. The default value for N is 1.

-name string) -nm string string is the name of an input file even though
it may nave the appearance of a numeric parameter or a control ar­
gument.

-noart, -no_art
disables the conversion of conventional artwork constructs so that
the details of those constructs may be seen in the formatted pages.
The default for the artwork conversion feature is ON •

.---nocontrol, -noc -no_control
: ignores ;ii controls in the input files. All control lines are
, ignored an<i all embedded controls are removed from the text. Only
\ raw text lines are composed as output. The default for this feature
~OFF.

-nofill, -nof, -no_fill
ignores all fill and align controls in the input files. Only ragged
text without regard to line length is composed. The default for
this feature is OFF.

DRAFT: MAY BE CHANGED 2 05/09/77 AG92

runoff

Notes

runoff

-number -nb
prints input line numbers at the left margin of the output. The
default for this feature is OFF.

-page N, -pg N
c~a~ges the initial page number to N. All subsequent pages are
similarly renumbered. If a break-page control in the text gives a
page number, the -page control argument is overridden and pages are
numbered according to the break-page control. The default value for
N is 1.

-parameter .ar:g, -pm ai;:g
assigns the string value arg to the internal variable "Parameter".
The default value for .ar.g is an empty string.

-pass N
processes the in~ut file N times to permit pro~er evaluation of ex­
pressions containing variables that are defined following their
reference(s) in the text. No output is produced until the last
pass. The default value for N is 1 •

. ------ ----segment, -sm, ~file, -fi-"
directs out-pu~ -to the file <entryname>. runout. This control 2 ar­
gument assumes by default that the document will be printed on the
online printer (see the -device control argument above). An extra
left margin space of 20 is assumed unless the -indent control argu­
ment specifies a different value or the -device control argument
specifies a device other than the default device. The default for
this feature is OFF.

-stop, -sp
waits for a newline character (ASCII NL) from the user before
beginning the first ~age of output to the terminal and after each
page of output including the last page. Any other characters typed
are ignored, thus any forms positioning and top-of-form notes for
special forms are easily accomplished. The default for this feature
is OFF.

-to N
ends output after the page numbered (or renumbered) N. The default
value for N is the last page.

-wait, -wt
waits for a newline character (ASCII NL) before beginning the first
page of output to the terminal, but n2.t_ between pages (see the -stop
control argument above). The default!'or this feature is OFF.

1. A runoff input file contains intermixed text and controls. Controls are
distinguished from text by their format· ".XXM <variable_field>". See
"Preparation of Input Files for runoff" laler in this description.

DRAFT: MAY BE CHANGED 3 05/09/77 AG92

runoff runoff

2. Summarl of text controls. See "Preparation of Input
later n this description. (~is a literal ASCII blank.)

Files for runoff"

·* .
.al

"kl
b
c
i
1
0
r

.bb
"kl
a
c
e
f
i

{<string>}
{<string>}

!<#>} <H>
~f

~ 1~:~l n <name>}
P <II>}

.be
"kl
a
c
e
f
k
1
n

.bip<name>

.br
"kl
b
f

~ f ~lolnl+n}
s ni{<string>}

.cc c
• ch ed ••
.ex <expr>
.fb

~ f :i~!:J
• fi

e

"kl
f
n

.fo
~
a
e
0

.ft
h
i
r
u

<#> ±n title> !<#>ll±nlltitle>I
<#> ±n title>
<#> ±n title>

DRAFT: MAY BE CHANGED 4

comment
comment
align

both (left/right)
both (left/right)
center
inside
left
outside
right

block-begin
inline
artwork
centered
equations
footnote
inline
keep
literal
named
picture

block-end
all
art
centered
equations
footnote
keep
literal
named
picture

block-insert
break

format
block
format
need
pa~e
skip

change-character
characters
execute
footer-block

begin
begin
end

fill
on
off
on

footer
all
all
even
odd

footnote
hold
insert
running
unreferenced

05/09/77 AG92

runoff

.go <name>

.hb

~ f~!~!:l
e

.he

~ 1~:~11f~11ftfi~~1 e <I> ±n title>
f <#> ±n title>
o <#> ±n title>

{ns,ns,ns, ..• }
.ht

d
f
n

~~g~~~~l
l<name>i c

.hy
M
f
n

.if <name> {<expr>}

.in
1 l±n}
r {±n}

.la <name>

. ls {±n}

.pd
M ld,w}
d ±n}
w +n}

.ps l±nl

.rd

.rt

.sp

.sr

.tb

~ {~gJ
iS <name> <expr>
c <name> <expr1> {by ±<expr2>}
m mode {<name>,<name>, ••• J
v <name> <expr>

b {clh}
e

• tr cd ••
. ts {<expr>}
.tt

c {<#>}{±n}{title>}
h {<#>}{+n}{title>}

.ty {<expr>T

.un

~ li~l
.ur <expr>
.vm i 1~rt)
.wi

DRAFT: MAY BE CHANGED 5

go-to
header-block

begin
begin
end

header
all
all
even
footnotes
odd

horizontal-tabs
define
off
on

runoff

hyphenate
default (from -hyphenate)
off
on

insert-file
indent

left
right

label
line-space
page-define

all
depth
width

page-space
read
return
space

block
block
format

set-reference
variable
counter
mode
variable

title-block
begin
end

translate
test
text-title

caption
heading

type
undent

left
left
left-nobreak
right

use-reference
vertical-margin

all
bottom
footer
header
top

widow

05/09/77 AG92

runoff

3.

text
footnote
text

wait

runoff

Summarv of builtin variables. See "Preparation of Input Files for
runoffb later in this description.

Ad, AlignBoth
AlignCenter
Aligninside
AlignLeft
AlignOutside
AlignRight
Art
BlockName
CallingFileName
Ce
CharsTable
Charsw
Date
Device
Eq
Eqcnt
ExtraMargin
Fi
FileName
Filesw
Foot
FootRef
Fp
Fr
From
Ft
Galley
Hyphenating
In
IndentRight
InputFileName
InputLines
Keep
LinesLeft
Ll
Lp
Ma1
Ma2
Ma3
Ma&
Ms
MultiplePagecount
NestingDepth
Nl
NNp
NoFtNo
NoPaging
Np
PadLeft
Page
Parameter
ParamPresent
Passes
Pi
Pl

align-both mode flag
align-center mode flag
align-inside mode flag
align-left mode flag
align-outside mode flag
align-right mode flag
artwork olock flag .
the name of the current text block
entryname of calling file
count of lines to be centered
translation table for .chars file
.chars mode flag
current date
device name
count of equation lines
equation reference count
extra left margin value
fill mode flag
entry name of current input file
file/segment output mode flag
footnote counter
footnote reference string
number of first printed page
footnote reset mode
value of -from parameter
footnote mode flag
galley mode flag
hyphentation mode flag
value of -indent parameter
value of right margin indentation
entry name of file bein~ processed
line number of current input file
keep mode flag
text lines left on page
current line length
number of last printed page
page top margin
header margin
footer margin
page bott?m margin
line spacing value
count of form feeds between pages
current insert file depth
line number on current page
next page number
footnote number supression flag
no-pagination flag
current page number
left/right pad switch (always O)
-page value
passed parameter value
passed parameter flag
-pass value
picture space waiting
current pagelength

DRAFT: MAY BE CHANGED 6 05/09/77 AG92

runoff

Print
Printersw
PrintLineNumbers
Roman
Selsw
Speech
Start
Stopsw
TextRef
Time
To
TrTable
Un
UndentRight
Userinput
VMargTop
VMargHeader
VMargFooter
VMargBottom
Waitsw
Widow
WidowFoot

print flag
-file/-segment control flag
line number control flag
roman page numbers flag
2741 ball number
special delimiter character
starting putput page number
-stop control flag
footnote reference string
command invocation time
-to value
-chars translation table
undent value
undent right margin value
label value for builtin function
page top margin
header margin
footer margin
page bottom margin
-wait control flag
current text widow size
current footnote widow size

runoff

Preoaration of Inout Files for runoff

This section discusses the runoff control "language" and the preparation of
runoff input files.

Output pages are composed from an optional header block, various text
blocks, and an optional footer block. If all blocks for a page are empty (zero
line count), a page number is skipped and no output is produced.

Output text blocks are constructed from input text and control strings• may
consist of plain language paragraphs, lineart diagrams, ruled tables, equations,
optional footnotes, or s~ace reserved for hand-art or picture addi~ion; may be
left and/or right justified or centered; and may be placed arbitrarily on the
~age. There are two types of text blocks; the inline block that is composed
into the output immediately upon the occurrence of a block break, and the named
block that is held for later insertion.

Header
to 20 lines
even pae;es 1
and a righ~

and footer blocks consist of top and bottom page margin space and up
of text. They may be specified the same or separately for odd and
and each text line may contain a left margin part, a centered part,
margin part.

Footnote blocks consist of collections of specially designated text lines
that are placed between the last main body text block on a page and the optional
footer block and may be composed with a format different from that used for the
main body text. Footnotes may be printed page-by-page as they occur or may be
held for insertion as the user chooses. The default is page-by-page. Any
pending held footnotes are inserted at the end of the document.

Pages may be numbered from any arbitarr starting page number and page num­
bers may be printed in any of the numeric display modes (see set-reference-mode
control below) •

DRAFT: MAY BE CHANGED 7 05/09/77 AG92

runoff runoff

Detailed control of page composition is provided by controls in the input
file. Controls have the form 11 .XXM <variable_field>" and may occupy an input
line by themselves or be embedded in the text as a delimited reference string as
appropriate for the particular control. Output may be directed back to the
user's terminal or to a file for eventual transcription to another medium
(online printer or magnetic tape, for example). If the output is directed back
to the user's terminal, it may be printed page by page to allow positioning of
special forms. Terminal devices with the full 95 character ASCII graphics set
are fully supported. For other devices having a limited character set, there is
a facility for replacing any character (or set of characters) with blanks or any
other characters of the user's choice. If special symbols are to be hand-drawn,
a separate segment with hand-art instructions can be created. The user can de­
fine variables and cause expressions to be evaluated. The user also has the
ability to refer to (and sometimes modify) variables connected with the func­
tioning of the program.

INPUT FILE ORGANIZATION

A runoff input file contains intermixed text and controls. Controls are
distinguished from text by their format; 11 .XXM <variable_field>". XXM is chosen
from the set of control mnemonic codes given below and <variable_field> depends
on the requirements of the particular control. One or more blanks must separate
XXM and <variable_field>.

If an input file line has a period in column one, the line is a control
line and may contain one and only one control. Controls may be embedded in the
text by enclosing them between special delimiter characters (see "Special
Delimiter" and "Embedded Controls" later in this description). Embedded con­
trols have that same effect as control lines except for possible space insertion
due to an end-of-line condition.

Input file lines starting with any character other than a period are proc­
essed as text lines. If an in~ut file text line is too short or too long to
fill an output line 1 text material is taken from or deferred to the next out~ut
line (unless the fill mode is specifically disabled). A line starting with
white space (ASCII SP or HT character) causes a format break. An empty line or
a line containing only white space (one or more ASCII SP or HT characters)
causes a block break and generates a blank line in the output.

Tab characters (ASCII HT) encountered in the input file lines are replaced
with that number of blanks required to reach the next Multics standard tab col­
umn (11ia21, 31, •••). (See the horizontal-tabs control below for a discussion
of tabu tion in the output.)

Normally when in fill mode and a format break has not occurred, each
new-line (ASCfI NL) character in the input file is replaced with a si11f1e blank
(ASCII SP). When an input text line ends with any of the characters .", "?•,
"I" ";" or ":", or with ".", "?" or "I" followed by a double quotation mark
or '')", two blanks precede the following word (if it is placed on the same out­
put line) instead of the normal single blank.

The maximum number of characters allowed on any input or output line is
1800. This value easily accommodates a twelve inch line at the sixty-per-inch
pitch of various plotting terminals.

DRAFT: MAY BE CHANGED 8 05/09/77 AG92

runoff runoff

TERMINOLOGY

The following ~aragraphs describe various terms used or implied throughout
the runoff description,

Text Blocks

A text block is a block of composed output that is treated as an entity.
It is formed by accumulating text from the input file until an explicit or im­
plicit block break is encountered. The text block is the basis for widow proc­
essing. The widow size specifies the minimum number of text block lines that
may be split away from the block for distribution. No text block containing
less than twice the widow size is ever split. Text blocks containing at least
twice the widow size are broken in such a way that each part contains at least
the widow size. The default widow size is two lines for main body text and one
line for footnotes. The widow size may be changed by the user with the widow
control.

Under certain conditions, the processing of a text block may be "sus­
pended". When a block is suspended, certain items associated with the block are
set aside (or "pushed") for possible resumption of processing in that block. If
the block is resumed, those items are restored to an active state (or "popped")
and processing of the block continues. The items involved are the text align­
ment mode, the fill mode, the line length, the line spacing value, and the
block mode (keep, picture, equation, etc.).

Breaks

A break is an event that causes an interruption of some processing mode.
Three different breaks are defined.

Format break
This break is caused by a text control that changes or interrupts the
current formatting mode, but does not define a text block. Examples
are indent, undent, page-define-width 1 and break-format. Any pending
input text is composed into the outpu~ as a short line. The current
text block is continued with the new formatting mode.

Block break

Page

This break is caused by a text control that defines a text block.
amples are space-block, break-block and break-page. The current
block is terminated (as appropriate~ with a format break, written
and a new text block of the type specified is begun.

break

Ex­
t ext
out,

This break is caused by a text control that forces a new page. Exam­
ples are break-page and break-need. A page break ensures that no text
following the control causing the breaK is printed on the current
page. If inline text is being processed, the current page is closed
out (with footnotes and footers as appropriate). Any pending text is
handled according to the control given lsee control descriptions be­
low).

DRAFT: MAY BE CHANGED 9 05/09/77 AG92

runoff runoff

Fill and Align Modes

The actions of fill mode and align-both mode are interrelated. In fill
mode, text is moved from line to line when the input text line either exceeds or
cannot fill an output line. In align-both mode, uniformly distributed extra
space is inserted into the filled lines until the text is even at both margins.
Initial white space on a line is not subject to alignment. For an undent con­
trol, the characters moved to the left of the established left indentation point
are not subject to alignment. Unfilled lines (including any short lines at the
ends of text blocks) are not aligned. Align-both mode is not enabled unless
fill mode is ON although fill mode be enabled without align-both mode, yielding
filled and ragged-right, ragged-left, or ragged-both output text depending on
the the modifier of the align control currently in effect.

Line Length

The line length is the space available for text in an output line
including all spaces and indentations, but not including margins set or implieA
by the -device, -indent, or -number control arguments. Space is measured in
units of 10-pitch charac~ers (10 characters = 1 inch).

Spacing between Lines

Vertical spacing within a text block is controlled by the line-space con-
trol. A line-space control with a value of N inserts N-1 line spaces between ~.
text lines. l

Vertical Margins

There are four vertical margins on a page. Their descriptions, controls,
and default values are:

Default
Margin ~ontrol ValY~

Between top-of-page and first header .vmt 4
Between last header and first text line .vmh 2

Between last text line and last footer .vmf 2

Between first footer and bottom-of-page .vmb 4

The actual space appearing at the top- and bottom-of-page margins may vary
among devices because of differing physical constraints.

DRAFT: MAY BE CHANGED 10 05/09/77 AG92

runoff runoff

Page Numbers

As the output is being prepared 1 a page number counter is kept. This
counter can be modified by the user with the break-page control. The current
value of the counter can be referenced by the use of a single unpaired special
delimiter character in the several header and footer' controls and in
use-reference controls. A page is called odd or front if the value of the page
counter is odd and even or back if the value is even. Page numbers can be
printed in any of the numeric display modes (see set-reference-mode control be­
low). The default is Arabic.

Headers and Footers

A header line is a line printed at the top of each page. A footer line is
a line printed at the bottom of each page. A page may have a header block
and/or a footer block, each containing up to twenty lines. Header lines are
numbered from the top down, footer lines from the bottom up. The two blocks are
completely independent of each other. Provision is made for different headers
and footers for odd and even pages. Both odd and even header (footer) lines are
set by use of the header (footer) control. They may be set separately by use of
the even and odd modifiers of the header and footer controls.

The <variable field> of a header or footer control may contain three op­
tional parameters;-a .l.1Jl§. number, a left margin adiustment, and a title. They
must be separated by one or more blanks.

The line number specifies which header or footer line is being set. If the
line number is omitted or has the value O, all previously defined headers or
footers of the type specified (oddi even, or both) are cancelled. If the line
number is given it must have a va ue less than or equal to to 20 inclusive,
and only the line specified is affected by the control. Once sel, a line is
printed on each output page until it is reset or cancelled.

The left margin adjustment must have the form ±N. If it is given without
the sign, the value is the column at which to ali!Pl the title. If it is given
with the optional sign, the value is a local adJustment to the current left
indentation value. If it is omitted, the title is' aligned at the current left
indentation point. A left margin adjustment may not be given unless a line
number is also given.

The title begins at the first non-blank non-numeric (including signs}
character in the variable field. This character is used as a local delimiter
(effective only for the line being processed) and may be any non-numeric char­
acter not used in the text of the title. The local delimiters divide the title
text into three parts, a left margin part, a centered part, and a right margin
part, which must be given in that order. Local delimiters for parts lying to
the right of the last desired part may be omitted. If two successive local
delimiters are given 7 the corresponding title part is set to an empty (zero
length} string. If the title consists of one or more occurrences of a single
character, then all parts are empty and the affected line is reset to a blank
line. If the title is omitted, the affected line is reset to a null line. Null
lines are not printed.

DRAFT: MAY BE CHANGED 11 05/09/77 AG92

runoff

If both the line number
block of the type specified
lines).

runoff

and title are omitted, the entire header or footer
(even, odd, or both) is set to empty (no printed

An occurrence of a single, unpaired special delimiter character in a title
part for a header or footer line is replaced with the current value of the page
counter when the line is printed. If multiple page number references or the
values of other variables are desired in a title part, the value of the program
variable "Np" must be substituted for the page number reference(s) (see "Program
Variables" later in this description).

Text Titles

Text titles are sequences of title lines that provide a heading or caption
for a figure, ruled table, section, or paragraph in a document. For the pur­
poses of composition they are treated as an integral ~art of the text block to
which they apply. There are four controls for the specification of text titles.

The number of heading lines is added to the widow size at the beginning of
a text block and the number of caption lines is added to the widow size at the
end of a text block for widow processing. Thus, if a text block must be moved
or split to prevent widows, the associated heading and/or caption is moved with
the parts of the split tex~ block, that is, the title is never separated from
the text block.

Special Delimiter

One character of the 95 character ASCII set is designated as a special
delimiter. The default character is percent ("%") and may be changed at any
time by the user with the change-character control. Special delimiters are used
to enclose a variable name to form a symbolic reference to the value of the
variable. These symbolic references are replaced with the corresponding values
during variable substitution. Single unpaired occurrences of the special
delimiter character in a control or title part signify a reference to the value
of the page counter.

Hyphenation

The algorithm for word hyphenation is based on a dictionary search. The
user has control over hyphenation (down to the line-by-line level) with the
hyphenate-on and hyphenate-off controls. The -hyphenation control argument
changes the default hyphenation mode from OFF to ON and allows specification of
the smallest separated word part.

EXPRESSIONS AND EXPRESSION EVALUATION

An expression can be numeric string, or relational and consists of sym­
bolic variable references, literal numbers, literal strings, and operators in

DRAFT: MAY BE CHANGED 12 05/09/77 AG92

runoff runoff

appropriate combinations. All numeric
decimal mode with precision (11,2). operations are performed in fixed point

The defined operators are (in order of precedence):

A (Boolean NOT), & (Boolean AND), I (Boolean OR),~ (Boolean EXCLUSIVE OR)

- (unary negation), * (multiplication), I (division), \ (remaindering)

+ (addition), - (subtraction)

= (equal), < (less than), > (greater than)

~ (not equal), ~(less than or equal), ~(greater than or equal)

Arithmetic operations yield fixed point decimal results, relational opera­
tions yield logical true or false results, and string operations yield string
results of the length of their longest operand.

1.

2.

3.
4.

Other guidelines for the use of expressions are:

Parentheses may be used for grouping.

Blanks outside of literal strings are ignored.

Octal integers consist of "#" followed by a sequence of octal digits.

Literal strings are enclosed by double 9uote characters. Certain charac­
ters whose literal occurrence is wanted in the strin§ must be given with a
conventional escape sequence beginning with the "* or "A" characters as
follows:

** asterisk character

*A caret character

*" double quote character

*b backspace character (ASCII BS)

*n newline character (ASCII NL)

*s blank character (ASCII SPACE)

*t horizontal tab character (ASCII HT)

*f formfeed character (ASCII FF)

*c.nnn. the ASCII character whose decimal value is n~y (1 to 3 digits)
(may also be given as *c#nnn with nnn in octa

The "*" characters are removed during escape processing while the "A"
characters are retained until the string is inserted into an output line.
This feature provides a "reconceal" function.

5. Concatenation of strings is performed from left to right.

6. For <string_expression> of length i and positive~ and k;

DRAFT: MAY BE CHANGED 13 05/09/77 AG92

runoff runoff

1.

8.

9.

<string_expression>(j..) is a string of length (1.-.i.+1) beginning with
the .ith character of <string_expression>, and

<string_expresssion>Ci,k) is a string
.ith character of <strTng_expression>.

of length k. beginning with the

If .i is negative, the string begins ~t the -1.th ch~racter befor~ the en~ of
<string_expression> and the length is set accordingly. If .k is negative,
the string ends at the -.kth character before the end of <string_expression>
and the length is set accordingly. In all cases, the ,kth character must
lie to right of the 1.th character in <string_expression>.

Evaluation of substrings as defined
tions; arithmetic operations have
opera~ions, and string operations
arithmetic operations.

above takes place after any concatena­
higher ~recedence than all relational

have higher precedence than all the

If a string value appears where a numeric value is required, or vice versa,
conversion is attempted to the mode required by the operator. If the con­
version is unsuccessful, an error diagnostic message is produced.

Expression evaluation takes place after variable substitution for those
controls allowing substituion of variables (see control descriptions fol­
lowing).

DEFINITION AND SUBSTITUTION OF VARIABLES

User variables can be defined with the set-reference-variable and
set-reference-counter controls and their values retrieved thereafter by a sym­
bolic reference. The names of variables are constructed with the alphanumeric
characters, decimal digits, and "-" with a maximum length of 32 characters.
When a variable is defined, it is given a type (strins or numeric) based on the
control and the type of the expression that is to be its value. Variables that
are undefined at the time of reference yield an empty string or a numeric zero
depending on the required type.

In substitution of variables, the name of the variable is enclosed by s~e­
cial delimiter characters. A single, unpaired occurrence of the special
delimiter character is replaced by the current value of the page counter. If
the literal occurrence of the special delimiter character is wanted in a line
that is subject to substitution, it must be be given as a unpaired, doubled
character ("J%" for the default character).

Substitution of variables takes place:

1. In all controls for which automatic substitution is specified (see
control definitions in "Controls" below).

2. In all header, footer, equation, and text title lines.

Many of the variables internal to runoff are available to the user (a com­
plete list is given later in this description). These variables include control
arsument values (or their defaults), values of switches and counters, and cer­
tain tables. However, the user need not be concerned about naming conflicts
since an attempt to modify the value of an internal variable by a means other
than the control provided for such modification is detected and causes an error

DRAFT: MAY BE CHANGED 14 05/09/77 AG92

runoff runoff

diagnostic message. Such errors are non-fatal but may produce anomalous re­
sults.

Two special builtin counters are provided for use in footnote and equation
numbering. "Foot" contains the value of the next footnote number available (or
the current footnote number if the reference is from within the text of the
footnote) and "Eqcnt" contains the value of the next available equation number.
The value of "Foot" is incremented when the closing block-end or
block-end-footnote control for a footnote is encountered. The footnote counter
may be allowed to run continuously for the entire document or may be reset
whereever the user desires (see the footnote control below). Any reference to
"Egcnt" returns the current value and increments the counter. Therefore its
value should be assigned to a variable and that variable be used in referring to
the equation.

User defined counters are controlled with the set-reference-counter control
in which an initial setting and an incremental value are specified. Each ref­
erence to a user defined counter returns its current value and changes the value
by the specifed increment.

1.

2.

3.

Three special cases of variable reference are defined.

If the name of the variable is "Userinput", the
from the stream user_in~ut. This feature allows
trol of the text formatting process. If the user
control will be processed just as though it had
file.

value is the string read
direct, interactive con­
types in a control, that
been read from the input

If the name of the variable is "[active_function_name]" the value is the
string returned by the active function (see Section II, l1Active Functions,"
of MPH Commands).

If the name of the variable begins with a period, the delimited string is
taken to be an embedded control with the defined control format instead of
a variable reference and is passed to the text control processor.

EMBEDDED CONTROLS

Under certain conditions it may be necessary or desirable to embed a con­
trol within the text without the space implied by the end of an input text line.
A prominent case is the shift to italics or boldface within a word for emphasis.
The capability is supported by permitting controls to appear within text as
pseudo-variables. The construct is:

.ur <text>%.XXM <variable field>%<text> •••

When this construct is encountered, the embedded control is processed just
as though it had occurred in a normal control line.

DEFAULT CONDITIONS

When no control arguments are given runoff sets all internal variables and
control parameter values to the default values shown in their respective de­
scriptions. (See "Controls" following and "Usage" earlier in this description.)

DRAFT: MAY BE CHANGED 15 05/09/77 AG92

runoff runoff

The control arguments establish a modified set of default values for the invo­
cation of the command. The working values of the internal variables may be
further modified by the text controls. If multiple input files are given, all
values are reset to the modified.default values for each input file.

CONTROLS

This section gives descriptions of the controls available in runoff. Each
description consists of a general control explanation followed by explanations
of the various modified forms.

Every explanation has a title line giving the control or modifier name
the mnemonic code and possible variable field template, the break type generated
(if any), and the substitution of variables mode. Modifier explanations are
indented to show their subordination to the control.

The template for the <variable_field> may contain the following symbolized
parameters:

<I>

<±n>

<expr>

<c>

<cd>

<name>

<string>

<title>

an integer constant

a numeric expression with an optional leading sign

an arbitrary expression (string, logical, or numeric)

any single character

any character pair

a name string up to 32 alphanumeric characters

an arbitrary character string up to 1800 characters

a three part title line of the form *part1*part1*part3* where "*"
may be any nonnumeric character not appearing in the parts

If any parameter appears without the enclosing less-than greater-than (<>)
signs, it is a literal and must appear as shown. Vertical strokes (i) separate
the choices, if any, for literal parameters. Parameters shown within braces
({}) are optional. An elipsis (•••) indicates continuation of a parameter
string to the entent given in the explanation.

align: .al{m}

Align the text within the defined text area on the page according to
the modifier given. Text processing is interrupted with a format
break, any pending text is processed as a short line 1 then processing
is resumed on a new line in the same text block with ~he new alignment
mode. When any form of the control is given, the mode for that form
is set ON and all other alignment modes are set OFF. The fill mode
may be either ON or OFF. If the fill mode is OFF 1 overlength lines
are not truncated. The default alignment mode is align-both (.alb).

DRAFT: MAY BE CHANGED 16 05/09/77 AG92

runoff

both:

runoff

.al, .alb; no parameters, format break, no substitution

Align the text at both the left and right margins according to
the c~rrent values.of left and ri~ht indentation and undentation.
Text is padded by insertion of uniformly distributed white space.
The fill mode must be ON for this mode to operate. If the fill
mode is OFF 1 this mode is identical to the align-left (.all)
mode. This is the default alignment mode.

center: .ale; no parameters, format break, no substitution

Center the text in the space defined by the current values of
left and right indentation and undentation leaving both the left
and right margins ragged.

inside: .ali; no parameters, format break, no substitution

Align the text on the inside mar$in (binding edge) according to
the current values of the appropriate indentation and undentation
leaving the outside margin ragged.

left: .all; no parameters, format break, no substitution

Align the text on the left margin according the current values of
left indentation and undentation leaving the right margin ragged.

outside: .alo; no parameters, format break, no substitution

Align the text on the outside margin (away from binding edge)
according to the current values of the appropriate indentation
and undentation leaving the inside margin ragged.

right: .alr; no parameters, format break, no substitution

Align the text on the right margin according to the current val­
ues of right indentation and undentation leaving the left margin
ragged.

block-begin: .bb{m}

Interrupt processing of the current block and either begin processing
a new block or continue the current block according to the modifier
given.

art: .bba; {<#>}, no break, no substitution

Begin flagging output text lines as artwork lines to be processed
by the artwork expander function. If # is given, then flag ex­
actly # output lines. If # is not given, then continue flagging
until the occurrence a block-end or block-end-artwork control.
This control form is disabled if the -noartwork control argument
is given. If the artwork feature is disabled, no lines are
flagged and the block is treated as a normal text olock.

centered: .bbc; {<#>}, format break, no substitution

Cause a format break, processing any pending text as a short line
in the current alignment mode. If # is given then suspend the
current alignment mode and fill modes and accumulate exactly #
unfilled output text lines aligned on the center column of the
available text area on the page. Control lines are not counted,
regardless of whether they add lines to the output or not. Fur-,,----··

DRAFT: MAY BE CHANGED 17 05/09/77 AG92

runoff runoff

therl establish the # output lines so accumulated as a keep block
with n the current text block. If # is not given, then change
the current alignment mode to be aligned on the cen~er column of
the available text area on the page and continue until a control
changes the alignment mode.

equation: .bbe; {<#>}, format break, no substitution

Cause a format break, processing any pending text as a short line
in the current alignment mode, then begin processing in~ut lines
as equation lines in the current text block. Equation lines must
have the <title> format as discussed previously. The equation
line parts will be aligned at the left and right indentation
points. If # is given then suspend the current block mode and
accumulate exactly # output equation lines. Control lines are
not counted, regardless of whether they add lines to the output
or not. Further, establish the # equation lines so accumulated
as a keep block within the current text block. If # is not giv­
en, then change the current block mode to equation mode and con­
tinue until the occurrence of a block-end or block-end-equation
control.

footnote: .bbf; {s}, no break, no substitution

Suspend processing of the current text block and begin processing
a footnote. The text processing mode parameters are carried
forward from the previous footnote or from the footnote defaults
if no previous footnote has occurred. Any modes set while proc­
essin~ footnotes carrr. forward to all subsequent footnotes. If
the literal parameter 's" (for "suppress") is given, the footnote
reference (e.g. "(2)") is omitted and the footnote counter is not
incremented.

inline: .bb, .bbi; no parameters, block break if inline, no substitution

If the current text block is an inline
break and begin a new inline block. If
a named block, then suspend copying
inline block processing.

block, then cause a block
the current text block is
that block and revert to

keep: .bbk; {<#>}, format break, no substitution

Cause a format break, processing any pending text as a short line
in the current alignment mode then establish subsequent output
lines as an unbreakable keep block within the current text block.
Keep blocks not subject to being s~lit between pages. If I is
given, then accumulate exactly # lines into the keep block re­
gardless of whether they are caused by text or controls. If # is
not given, then continue keep block accumulation until the oc­
currence of a block-end or block-end-keep control. The
break-page and break-need controls are disabled while processing
in this mode. If the number of accumulated output lines exceeds
the maximum text space available on a page as determined by the
vertical margins and any headers and footers, an error diagnostic
message is produced and the block is broken into full and partial
pages.

literal: .bbl; {<#>}, no break, no substitution

Begin processing input lines as text lines in the current text
block even though they may have control format. If # is given
then process exactly # input lines. If # is not given, then

DRAFT: MAY BE CHANGED 18 05/09/77 AG92

runoff runoff

continue literal line processing until the occurrence of a
block-end or block-end-literal control.

named: .bbn; {<name>}{,alr}, no break, no substitution

Begin copying input lines into the temporary insert file <name>
and hold them for later inline insertion with the block-insert
control as described below. The optional suffix is not part of
the name but indicates what action is to be taken on the new
block. "a" specifies that new lines are to be appended to any
ex~st~ng li~es; "r" specifies tha~ n!w lines are to replace the
existing lines. The default action is append. The copying of
input lines continues until the occurrence of any form of a
block-end or block-begin control that changes to some other
block, either named or inline. If <name> is not given, this form
is identical to the block-begin-inline (.bbi) form.

picture: .bbp; {<#>}, no break, no substitution

If I is ~iven, then define an unbreakable picture block of ex­
actly # lines of white space. If # is not given, then accumulate
output lines into an unbreakable picture block until the occur­
rence of a block-end or block-end-picture control. Text headings
and/or captions given while in picture mode (# not given) pertain
to the picture and not to a possible containing text block. A
picture block is a white space or formatted block that is in­
serted on a space available basis. If, at the completion of a
~icture block, sufficient space remains on the current page, it
is inserted immediately 1 including into the middle of the current
text block. If the picture block does not fit on the current
page, inline text is "promoted" ahead of the picture and the
picture is inserted at the top of the next page. If the size of
a picture block exceeds the maximum text space available on a
page as determined by the vertical margins and any headers and
footers, an error diagnostic message is produced and the block is
broken into full and partial pages. Multiple picture blocks are
queued, not merged into a single block. Queued picture blocks
are inserted in the order in which they were defined.

block-end: .be{m}

Stop processins text into the current text block and/or in the current
mode as determined by the modifier given.

all: .be; no parameters, block break if inline, no substitution

Suspend and/or stop processing in all of the modes discussed for
the block-begin- control above, saving the current formatting
parameters if appropriate, and revert to inline block processing.
If none of the block modes are in effect then cause a block
break and begin a new inline block. This form of the block-end­
control is the "broadside" form allowing the user to "back out"
of an arbitrarily nested set of blocks without having to be con­
cerned about the order in which they were begun.

art: .bea; no parameters, no break, no substitution

Stop flagging output lines for artwork conversion.
artwork mode is not in effect, the control is ignored.

DRAFT: MAY BE CHANGED 19 05/09177

If the

AG92

runoff runoff

centered: .bee; no parameters, format break, no substitution

Stop processing the centered block as begun by a previous
block-begun-centered control and revert to normal text process­
ing. If equation mode is not in effect, then ignore the control.

equation: .bee; no parameters, format break, no substitution

Stop processing equation lines and revert to normal text proc­
essing. If equation mode is not in effect, then ignore the con­
trol.

footnote: .bef; no parameters, no break, no substitution

Stop processing the current footnote unit and revert to main body
text, saving the footnote text processing mode parameters ana
restoring the main body text processing mode parameters. Incre­
ment the footnote reference counter unless the footnote- control
or the "s" optional parameter on the block-begin-footnote control
have specified that no reference to this footnote is to be made.
If not in footnote mode, then ignore the control.

keep: .bek; no parameters, no break, no substitution

Stop counting out~ut lines for the unbreakable keep block begun
with the block-begin-keep control and reactivate the break-page
and break-need controls. If the keep mode is not in effect then
ignore the control.

literal: .bel; no parameters, no break, no substitution

Stop processing all input lines as text lines regardless of for­
mat and revert to normal control processing. This is the only
control recognized while in literal mode. If the literal mode is
not in effect then ignore the control.

named: .ben; no parameters, no break, no substitution

Sto~ copying input lines into the current named block and resume
inline block processing. If the current text block is not a
named block, then ignore the control.

picture: .bep; no parameters, no break, no substitution

Stop accumulating output lines into the current picture block and
revert to inline block processing. If the picture will fit in
the space remaining on the current pagei then insert it immedi­
ately; otherwise queue the picture b ock for insertion on a
space available 6asis. If not in p~cture mode, then ignore the
control.

block-insert: .bi; <name>, no break, no substitution

Suspend processing of the current input file and process the named
block <name>. If <name> is not given or <name> does exist 1 an error
diagnostic message is produced. The named block <name> is ~reated as
though it were an external insert file (see the insert-file control
below).

DRAFT: MAY BE CHANGED 20 05/09177 AG92

runoff runoff

break: . br{m}

Interru~t processing according to the modifier given, then resume
processing with the same processing modes.

block: .brb; no parameters, block break, no substitution

Terminate the current text block and insert it into the output
document subject to the current processing modes. Any pending
text is formatted as a short line. This control has no effect
when processsing other than inline blocks.

format: .br, .brf; no parameters, format break, no substitution

Interrupt text processing, then resume with a new line in the
current text block with the current modes. Any pending text is
formatted as a short line.

need: .brn; {<#>}, possible block break, no substitution

If the number of available text lines left on the ~age is less
than # then cause a page break. Any pending text is .no.t_ proc­
essed but is deferred to the new page. The default vaIUe for I
is 1.

page: .brp; {elol<#>l<±n>}, page break, no substitution

Terminate the current text block and the current page, then begin
a new page according to the parameter given. An{ pending text is
formatted as a short line in the current text b ock. If the pa­
rameter is "e", then set the page number for the new page to the
next even value. If the parameter is "o", then set the page
number for the new page to the next odd value. If the parameter
is #, then set the page number for the new ~age to #. If the
parameter is ±n, then the current page number is changed by n to
obtain the new page number. If no parameter is given, then the
page number for the new page is the next sequential page number.
No separating blank pages are produced.

skip: .brs; {<#>}{<string>}, page break, no substitution

Terminate the current text block and the current page, then pro­
duce # sequentiallf numbered blank pages (with headers and
footers as a~propriate). The default value for I is 1. If
<string> is given, it is printed as a centered text block on the
blank pages.

change-character: .cc; c, no break, no substitution

Change the special delimiter character used to delimit variables for
substitution and for reference to the pa6e counter to "c". The spe­
cial delimiter character previously defined (including the default
special delimiter character) is treated as a normal character. If "c"
is omitted, the s~ecial delimiter character reverts back to the de­
fault special delimiter character. The default special delimiter
character is "%".

characters: .ch; <cd><cd> ... , no break, no substitution

Flags the occurrence of "c" by replacing it with "d" and writing the
output line to the <entryname>.chars file (see "Usage" earlier in this
description). The normal composed output is not affected. An

DRAFT: MAY BE CHANGED 21 05/09/77 AG92

runoff runoff

unpaired "c" at the end of the <variable field> is treated as though
it were paired with a blank. If any "d" Ts a blank the corresr.onding
"c" appears as itself in the <entryname>.chars file. If all 'c"s in
an output line are paired with blanks, the line is not written to the
<entryname>.chars file. The default set of character pairs is empty.

comment: .*; {<string>}, no break, no substitution

A comment line having no effect on any output.

comment: • ; {<string>}, no break, no substitution

A comment with no effect on normal output. <string> is written to the
<entryname>.chars file if the -character control argument is given.
If <string> is not given, a null line is written.

execute: .ex; <string>, no break, no substitution

<string> is passed to the Multics command processor for execution as a
command line.

fill: • fi{m}

Set the fill mode ON or OFF according to the modifier given. In fill
mode, text words are moved from line to line in such a way that the
last word, or parital word if hyphenation .mode is in effect (see the
"hyphenate-on" ~nd "hyphenate-o.ff" controls below and th.e -hyphenate
control a~gument under "Usage" eariler in this document), does not
violate the right margin. The default for this mode is ON.

off: .fif; no parameters, format break, no substitution

Set the fill mode OFF.

on: .fi, .fin; no parameters, format break, no substitution

Set the fill mode ON.

footer: • fo{m}

Define page footer lines according to the modifier given. The fol­
lowins actions are taken on the parameters for each of the modifiers.
If <title> is omitted, then line # is replaced with a null line and
the original numbering of lines in the footer block is not changed.
If <title> consists of one or more occurrences of the same character,
then line # of the footer block is replaced with a blank line. If n
is omitted, then <title> is ali~ed according the value of left in­
dentation at the time of footer insertion. If n is given without the
o~tional sisn, then <title> is aligned at column n. If n is given
with the optional sign, then n is used as a adjustment to the value of
left indentation at the time of footer insertion. n may not be given
unless # is also given. If # is omitted, then the footer block is
cancelled and <title> becomes line 1 of a new footer block. If # is
larger than the value of the next footer line, then intervening null
lines are inserted. If both ~ and <title> are omitted, then the
footer block is cancelled. Footer block lines are numbered from the
bottom up. Default footer blocks are empty.

DRAFT: MAY BE CHANGED 22 05/09/77 AG92

runoff runoff

all: .fo, .foa; {<#>}{±n}{<title>}, no break, substitution when inserted

Define footer lines for all pages.

even: .foe; {<#>}{±n}{<title>}, no break, substitution when inserted

Define footer lines for even pages only.

odd: .foo; {<#>}{±n}{<title>}, no break, substitution when inserted

Define footer lines for odd pages only.

footer-block: .fb{m}

Define a footer block according to the modifier given.

begin: ·.fb, .fbb; {elola}, no break, no substitution

Suspend text processing, then cancel the footer block of the type
selected by the given parameter, and define a new footer block of
the same tipe according to the input lines following. If the
parameter is "e" then define a footer block for even pages; if
the parameter is 11 0 11 then define a footer block for odd pages; if
the parameter is "a" then define a footer block for all pages.
Processing of lines into the footer block will continue until the
occurrence of a footer-block-end control. Input lines for the
footer block may be text lines, controls or <title> lines.
<title> lines may contain the optional left margin adjustment
given before the actual <title> and substitutable variables.
Substitution is done when the footer is inserted.

end: .fbe; no parameters, no break, no substitution

Stop processing a footer block as begun by a preceding
footer-block- control and revert to text processing. If not in
footer block mode, then ignore the control.

footnote: .ft{m}

Controls footnote positioning and numbering according to the modifier
given.

hold: .fth; no parameters, no break, no substitution

Do not insert footnotes on the page of their reference, but hold
them aside for insertion by the user with the footnote-insert
control. The footnote counter runs continuously until reset by
the footnote-insert control.

insert: .fti; {<#>}, no break, no substitution

Insert all pending footnotes and reset the footnote counter to #.
The default value for# is 1.

running: .ftr; {<#>}, no break, no substitution

Insert footnotes as they appear and on the page of their refer­
ence. The footnote counter is reset to # at the top of each new
page. The default value for# is 1.

DRAFT: MAY BE CHANGED 23 05/09/77 AG92

runoff runoff

unreferenced: .ftu; no parameters, no break, no substitution

Begin unreferenced footnote mode for all followin6 footnotes.
Footnotes are not numbered, the footnote counter is not incre­
mented, and footnote references are not set into the text.
Unreferenced footnotes are inserted according to the
footnote-hold or footnote-running controls. Unreferenced foot­
note mode continues until the occurrence of a footnote-hold or
footnote-running control.

go-to: .go; <name>, no break, no substitution

Reposition the input file to the line containing the label control
having <name> as its <variable_field>. The label control with that
<name> should be unique within the file for correct operation. If
<name> is not unique, the file is positioned to the first ".la <name>"
line. If <name> is not a label defined in the file, an error diag­
nostic message is produced, an end-of-file condition is simulated,
the current file is closed, and text processing resumes either with
the line following the insert-file control of the "calling" file or
the next input file. If <name> is defined, text processing resumes
with the input line following the ".la <name>" line.

header: .he{m}

Define page header lines according to the modifier given. The fol­
lowing actions are taken on the parameters for each of the modifiers.
If <title> is omitted, then line # is replaced with a null line and
the original numbering of lines in the header block is not changed.
If <title> consists of one or more occurrences of the same character, l
then line # of the header block is replaced with a blank line. If n
is omitted, then <title> is ali6Iled according the value of left in­
dentation at the time of header insertion. If n is given without the
optional si6n, then <title> is aligned at column n. If n is given
with the optional sign, then n is used as a adjustment to the value of
left indentation at the time of header insertion. n may not be given
unless # is also given. If # is omitted, then the header block is
cancelled and <title> becomes line 1 of a new header block. If I is
larger than the value of the next header line, then intervening null
lines are inserted. If both ~ and <title> are omitted, then the
header block is cancelled. Header block lines are numbered from the
top down. Default header blocks are empty.

all: .he, .hea; {<#>}{±n}{<title>}, no break, substitution when inserted

Define header lines for all pages.

even: .bee; {<#>}{±n}{<title>}, no break, substitution when inserted

Define header lines for even pages only.

footnote: .hef; {<#>}{±n}{<title>}, no break, substitution when inserted

Define the header for footnotes. If <title> is omitted, the
footnote header line is reset to the default string value. The
default footnote header line is a string of underscore characters
from the left margin to the right margin.

odd: .heo; {<#>}{±n}{<title>}, no break, substitution when inserted

Define header lines for odd pages only.

DRAFT: MAY BE CHANGED 24 05/09177 AG92

runoff runoff

header-block: .hb{m}

Define a header block according to the modifier selected.

begin: .hb, .hbb {elolalf}, no break, no substitution

Suspend text processing, then cancel the header block of the type
selected by the given parameter and define a new header block of
the same type according to the input lines following. If the
parameter is "e" then define a header block for even pages; if
the parameter is 11 0 11 then define a header block for odd pages; if
the parameter is "a" then define a header block for all pages;
if the I?arameter is "f" then define a header block for footnotes.
Processing of lines into the header block will continue until the
occurrence of a header-block-end control. Input lines for the
header block may be text lines, controls or <title> lines.
<title> lines may contain the optional left margin adjustment
given before the actual <title> and substitutable variables.
Substitution is done when the header is inserted.

end: .hbe; no parameters, no break, no substitution

Stop processing a header block as begun by a preceding
header-block- control and revert to text processing. If not in
header block mode, then ignore the control.

horizontal-tab: .ht{m}

Define and control horizontal tabulation according to the modifier
given. Up to 20 horizontal tabulation stop patterns may be in effect
at any one time.

define: .htd; <name> {<#><s>,<#><s>,<#><s>, ... }, no break, no substitution

Define pattern <name>, setting tab stops at columns
(<#>,<#>,<#>, ••.) inclusive. Up to 20 columns may be set for the
pattern independently of any other pattern(s) set. Each <#>
given may have associated with it a string, <s>, that specifies
the character pattern to fill any space ahead of the tab stop
column. <s> is repeated as necessary and is positioned so that
the last character of <s> is in the column just before the tab
sto~ column. <s> may quoted or unquoted. The default fill
string is blank characters. If no tab stop columns is given, the
pattern entry for <name> is cancelled. If no <variable_field> is
given, all tab stop patterns are cancelled.

off: .htf; {<c><c> ... }, format break, no substitution

Disable horizontal tabulation processing for
<c>. If no tab stop I?attern has been enabled
then that character is ignored. If no <c>'s
horizontal tabulation processing is disabled
patterns.

on: .htn; <name> <c>, format break, no substitution

the character(s)
for a given <c>,
are given, then
for all current

Enable horizontal tabulation processing for pattern <name>
associate the character <c> with the pattern. If <name> is
given or is not a defined tabulation pattern, or if <c> is
given, then an error diagnostic message is produced.

and
not
not

DRAFT: MAY BE CHANGED 25 05/09/77 AG92

runoff runoff

hyphentate: .hy{m}

Control hyphenation according to the modifier given.

default: .hy; no parameters, no break,

Set the hyphenation mode to the
tablished by the -hyphenation
earlier in this document).

no substitution

default value (ON or OFF) as es­
control argument (see "Usage"

off: .hyf; no parameters, no break, no substitution

Set the hyphenation mode OFF.

on: .hyn; no parameters, no break, no substitution

Set the hyphenation mode ON.

indent: .in{m}

Control the positioning of text with respect to the left and right
margins according to the modifier given.

left: .in, .inl; {<±n>}, format break, no substitution

If n is given without the optional sign, then set the left in­
dentation point to n columns to the right of the left margin.
The left margin is determined by the physical characteristics of
the output device and any possible value given or implied with
the -indent or -device control arguments. If n is given with the
optional signi then change the current left indentation point by
n columns. ¥ositive values for n cause movement to the right.
Any combination of parameters that results in a zero or negative
effective line length will produce an error diagnostic message.
The left indentation point will never be set to the left of the
left margin. The default value for n is O.

right: .inr; {<±n>}, format break, no substitution

If n is given without the optional sign 1 then set the right in­
dentation point to n columns to the lert of the right margin.
The right margin is determined by the physical characteristics of
the output device, any possible value given or implied with the
-indent or -device control arguments, and the page-define-width
control. If n is given with the op~ional sign, then change the
current right indentation point by n columns. Positive values
for n cause movement to the left. Any combination of parameters
that results in a zero or negative effective line length will
produce an error diagnostic message. The right indentation point
will never be set to the right of the right margin. The default
value for n is 0.

insert-file: .if; <name> {<expr>}, no break, no substitution

Processing of the current input file is suspended and file
<name>.runoff is opened and processed starting with line 1 of that
file. <expr> is evaluated and its value placed in the program vari­
able "Parameter" for use by the inserted file (any existing value in
"Parameter" is destroyed). When the processing of the inserted file
is complete (see the return control below), processing of the sus-

DRAFT: MAY BE CHANGED 26 05/09/77 AG92

runoff runoff

pended input file is resumed with the line following the line con­
taining the insert-file control. Files may be inserted to a nested
depth of 50.

label: .la; <name>, no break, no substitution

Establish <name> as a target for possible go-to controls.

line-space: .ls; {<.±n>}, no break, no substitution

If n is given without the optional sign, then set the linefeed count
to n. If n is given with the optional sign, then change the linefeed
count by n. The default value for n is the minimum value determined
by the -linespace control argument. The linefeed count specifies the
number of newline characters (ASCII NL) following each output text
line and causes (n-1) blank lines to separate lines of text.

page-define: .pd{m}

Set page definition parameters according the modifier given.

all: .pd; {<d>,<w>}, no break, no substitution

depth:

Define the page according to the ordered set of values <d>,<w>.
See the individual modifiers with the same letter codes following
for additional information. If a value is not given for a pa­
rameter, (i.e., its field is blank or null), then its default
value is used •

. pdd; {<.±n>}, no break, no substitution

If n is given without the optional sign 1 then
to n lines. If n is given with the op~ional
the current page depth by n. If the resulting
or negative, an error aiagnostic message is
fault value for n is 66.

set the page depth
sign, then change

page depth is zero
produced. The de-

width: .pwd; {<.±n>}, no break, no substitution

If n is given without the optional sign, then set the page width
to n columns. If n is given with the optional sign, then change
the current page width by n. If the resulting page width is zero
or negative, an error aiagnostic message is produced. The de­
fault value for n is 65.

page-space: .ps; {<.±n>}, no break, no substitution

If n is given without the optional sign, then set the formfeed count
for the online printer to n. If n is given with the optional sign,
then change the formfeed count by n. The default value for n is 1.
This control affects only output destined for the online printer. The
formfeed count specifies the number of formfeed characters (ASCII FF)
sent to the online printer after each page is printed and causes (n-1)
blank pages to separate pages of output.

DRAFT: MAY BE CHANGED 27 05/09/77 AG92

runoff runoff

read: .rd; no parameters, no break, no substitution

Read one line from the user input data stream and process it as an
input line. Normal processTng resumes with the line following the
line containing the read control or as determined by a possible con­
trol line read from user_input.

return: .rt; no parameters, no break, no substitution

Terminate processing of the current file and close it. If the current
file is an inserted file (see the insert-file control above), resume
processin~ the last sus~ended file in the insert file stack. If the
current file was given in the command line, then begin processing the
next file in the input file list. If the input file list is ex­
hausted, then terminate the command normally.

set-reference: .sr{m}
(

Set variable values and attributes according to the modifer given.

counter: .src; <name> <expr1> {by ±<expr2>}, no break, substitution

<expr1> is evaluated and assigned as the value of <name>.
<expr2> is evaluated and assigned as the increment for <name>.
If the sign is not given for <expr2>, it is assumed positive. If
<expr1> is omitted or cannot be evaluated properly an error di­
agnostic is produced. If the "by ±<expr2>" clause is omitted, a
default value of +1 is assumed. If <name> exists, it must be a
user defined counter. If <name> does not exist, it is created as
a user defined counter.

mode: .srm; {mode} {<name>,<name>, ••• }, no break, no substitution

Set the display mode for variables {<name>,<name>, ••• } to {mode}
according to the mode list below. If the variable name list,
{<name>,<name>, ••• }, is not given, then the display mode of the
builtin page counter is set. The default value for {mode} is
"ar".

ar

bi

oc

al

au

rl

ru

Display

arabic numerals (0,1,2, •••)

binary numerals (0,1,10,11,100, •••)

octal numerals (0, 1 , 2, •.• , 7 , 10 , 11 , ••.)

lowercase alphabetic (M,a,b, ••• ,z,aa,bb, ••• ,zz, •••)

uppercase alphabetic (M,A,B, ••• ,z,AA,BB, ••• ,zz, .••)

lowercase roman (M,i,ii,iii,iv,v,vi, •••)

uppercase roman (M,I,II,III,IV,V,VI, ..•)

variable: .sr, .srv; <name> <expr>, no break, substitution

<expr> is evaluated and assigned as the value of <name>. <name>
may be either a user defined variable or a builtin program vari­
able subject to change by the user. If <name> exists and its
type does not match the type of <expr>, conversion to the type of

DRAFT: MAY BE CHANGED 28 05/09/77 AG92

runoff runoff

<name> is attempted. If <name> does not exist, it is defined as
a user variable with the type of <expr>. If <expr> is omitted or
cannot be evaluated properly, or the attempted conversion fails,
or <name> is a read-only program variable, an error diagnostic is
produced.

space: • sp{m}

Insert blank lines into the output according to the modifer given.

block: .sp, spb: {<I>}, block break, no substitution

Cause a block break processing any pending text as a short line,
then, if sufficient space remains on the current page, insert •
blank lines. If there is not sufficient space, then begin a new
page but do not carry forward any blank lines. A blank or null
line in the text has the effect of a ". sp 1" control. The de­
fault value for I is 1.

format: .spf; {<I>}, format break, no substitution

Cause a format break processing any pending text as a short line
then, if sufficient space remains on the current page, insert j
blank lines. If there is not sufficient s~ace, then begin a new
pa~e, print the current text block, and insert I blanks lines.
This control form has the effect of a "conditional keep" that
assures contiguous white space. The default value for I is 1.

title-block: .tb{m}

Define a heading or caption for the current text block according to
the modifier given.

begin: .tb, .tbb {hlc}, no break, no substitution

Suspend text processing, then define a text title block of the
type specified according to the input lines following. If the
r.arameter is "h" then define a text headin~; if the parameter is
'c" then define a text ca~tion. Processing of lines into the
title block will continue until the occurrence of a
title-block-end control. Input lines for the title block may be
text lines, controls or <title> lines. <title> lines may con­
tain the optional left margin adjustment given before the actual
<title> and substitutable variables. Substitution is done when
the title is inserted.

end: .tbe; no parameters, no break, no substitution

Stop processing a title block as begun by a preceding
title-block-begin control and revert to text processing. If not
in title block mode, then ignore the control.

test: .ts; <expr>, no break, substitution

Skip the next in~ut line if the evaluated <expr> is zero, false, or
null. If <expr> is omitted, the control is ignored.

DRAFT: MAY BE CHANGED 29 05/09/77 AG92

\
I
I

I
i
i

runoff runoff

tex~-title: .tt{m}

Define text heading or caption according to the modifier given. The
following actions are taken on the parameters for each of the modifi­
ers. If <title> is omitted, then no title line is produced. If
<title> consists of one or more occurrences of the same character,
then a blank title line is produced. If n.is omitted, then <title> is
aligned according the value of left indentation at the time of header
insertion. If n is given without the optional signi then <title> is
aligned at column n. If n is given with the optiona sign then n is
used as a adjustment to the value of left indentation at the time of
header insertion. n may not be given unless # is also given. I
specifies the number of separating blanks lines for the title line.
The blank lines follow a heading line and precede a caption line. The
default value for # is 0.

caption: .ttc; {<#>}{<±n>}{<title>}, no break, substitution when inserted

Define a text ca~tion to be appended to the end of the current
text block. Multiple occurrences of the text-title-caption con­
trol within a text block are accumulated into the ca~tion. Any
blank lines specified by # precede the title line. The
accumulated number of caption lines is added to the text block
size and to the current widow size when the text block is com­
posed into the output page.

\ heading: .tth; {<fl>H<±n>H<title>}, no break, substitution when inserted

Define a text heading to be appended to the beginning of the
current text block. Multiple occurrences of the
text-title-heading control are accumulated into the heading. The
heading must be complete before the first text line of the block.
Any blank lines specified by # follow the title line. The
accumulated number of heading lines is added to the text block
size and to the current widow size when the text block is com­
posed into the output page.

translate: .tr; <cd><cd> ••. , no break, no substitution

The nonblank character "c" is rerilaced with the character "d" in the
9omposed output. An 1:1npaired 11 9 1 at the end of the <variable_field>
is treated as though it were paired with a blank. Any number of "cd"
pairs mar, be given (without separating blanks) in the <variable field>
and the 'cd" pairs from multiple occurrences of the translate control
are accumulated. The translation specified by a "cd" pair may be
cancelled only by a translate control giving "cc" in the
<variable_field>. Translation of characters to blanks is useful in
preserving the contiguous identity of strings during line filling and
adjustment. If the <variable_field> is empty, the control is ignored.

type: .ty; {<expr>}, no break, substitution

The string <expr> is evaluated and written to the error_output stream.
If <expr> is omitted, a blank line is written.

undent: .un{m}

Adjust the indentation point for the next output line .Q!lJ.y according
to the modifier given. The following actions are taken on the param­
eter for each of the modifiers. If n is unsigned or has the + sign,

DRAFT: MAY BE CHANGED 30 05/09/77 AG92

runoff runoff

the indentation point is moved toward the associated margin by n col­
umns. If n has the - sign the indentation point is moved toward the
center of the pa$e by n columns. The default value for n is the cur­
rent associatea indentation value.

left: .un, .unl; {<±n>}, format break, no substitution

Adjust the left indentation point.

left-nobreak: .unn; {<±n>}, no break, no substitution

Adjust the left indentation point but do not cause a format
break. This control causes the preceding text line (if any) to
be padded if the align-both mode is ON.

right: .unr; {<±n>}, no break,

Adjust the right indentation point.

use-reference: .ur; <expr>, no break, substitution

<expr> is subjected to substitution of variables. Substitutable
variables delimited with the current special delimiter character are
replaced with their current values and the nesting level of special
delimiter characters is reduced by one. Variables that are undefined
at the time of reference are given the values, zero, null, or false,
depending on the required mode.

vertical-margin: .vm{m}

Set vertical margin parameters according the modifier given.

all: .vm; {<t>,<h>,<f>,}, no break, no substitution

Define the vertical margins according to the ordered set of val­
ues <t>,<h>,<f> . See the individual modifiers with the same
letter codes following for additional information. If a value is
not given for a parameter, (i.e., its field is blank or null),
then its default value is used.

top: .vmt; {<±n>}, no break, no substitution

If n is given without the optional sign 1 then set the top margin
to n lines. If n is $iven with the op~ional sign 1 then change
the current top mar$in by n. If the resulting ~op margin is
negative, an error diagnostic message is produced. The default
value for n is 4.

header: .vmh; {<±n>}, no break, no substitution

If n is given without the optional sign, then set the header
margin to n lines. If n is given with the optional sign then
chan$e the current header mar$in by n. If the resulting header
margin is negative, an error diagnostic message is produced. The
default value for n is 2.

footer: .vmf; {<±n>}, no break, no substitution

If n is given without the optional sign, then set the footer
margin to n lines. If n is given with the optional signL then
change the current footer margin by n. If the resulting rooter

DRAFT: MAY BE CHANGED 31 05/09/77 AG92

runoff runoff

margin is negative, an error diagnostic message is produced. The
default value for n is 2.

bottom: .vmb; {<±n>}, no break, no substitution

If n is given without the optional sign, then set the bottom
margin to n lines. If n is given with the optional sign then
chan$e the current bottom margin by n. If the resulting bottom
margin is negative, an error diagnostic message is produced. The
default value for n is 4.

widow: .wi{m}

Change the minimum number of lines to be left or moved when splitting
text between pages according to the modifier given.

text: .wi, .wit; {<±n>}, no break, no substitution

If n is given without the optional si~, then set the widow size
for text blocks to n. If n is ~iven with the optional sign, then
change the text block widow size by n. If the resulting widow
size is negative, then an error diagnostic message is produced.
The default value for n is 2.

footnotes: .wif; {<±n>}, no break, no substitution

If n is given without the optional si$n, then set the widow
for footnotes to n. If n is given with the optional sign,
change the footnote widow size by n. If the resulting widow
is negative, then an error diagnostic message is produced.
default value for n is 1.

wait: .wt; no parameters, no break, no substitution

size
then
size
The

Read one line from the user input stream and discard it before pro­
ceeding with text processing-(also see the read control).

BUILTIN SYMBOLS

This section gives descriptions of the builtin program variables. The
format of the title line of each descriptive paragraph is:

Name : mode : default value : controls

where:

Name is the name of the variable.

mode is the storage mode; possible value is string, numeric,
flag, counter, or function.

default value is the default value of Name; assigned if no control or
control argument specifyin~ a value is given, or if a con­
trol with a null variable field is given.

controls is a blank separated list of controls affecting the value.

DRAFT: MAY BE CHANGED 32 05/09/77 AG92

runoff runoff

Ad, AlignBoth : flag : true : .al
This flag has the value "true" when text lines are being padded to
achieve aligned left and right margins.

AlignCenter : flag : false : .al
This flag has the value "true" when text blocks are to have ragged
left and right margins.

Aligninside : flag : false : .al
This flag has the value "true" when text blocks are to be aligned on
the binding edge of the page.

AlignLeft : flag : false : .al
This flae; has the value "true" when the left margin of text blocks is
to be aligned.

AlignOutside : flag : false : .al
This flag has the value "true" when text blocks are to be aligned away
from the binding edge of the page.

AlignRight : flag : false : .al
This flag has the value "true" when the right margin of text blocks is
to be aligned.

Art flag : false : .bba .bea
This flag has the value "true" when lines are being flagged for
artwork.

BlockName : string : "" : • bb • be
The name of the current text block. Inline blocks have a null name.

CallingFileName : string : "" : .if .rt
The entryname of the calling file if Depth is greater than O.

Ce : numeric : 1 : .bbc #
The number of lines to be composed into an unbreakable, centered text
block (if given).

CharsTable : string : collate() : .ch
The translation table for the .chars output file.

Charsw : flae; : false : none
This flag has the value "true" if the -chars control argument has been
given.

Date : string : date() : none
The current date in the form mm/dd/yy.

Depth : numeric : O : .if .rt
The current nesting depth of inserted files.

Device : string : "ascii" : none
The name of the device for which output is being composed.
is set with the -device or -ball control arguments.

This value

Eq : numeric : 1 : .bbe #
The number of lines to be composed into an equation block.

Eqcnt : counter : 1 : none
The equation reference counter.

ExtraMargin : numeric : 20 if -file/-se$ment; otherwise 0 : none
The amount of extra left margin to be added to all output lines.

DRAFT: MAY BE CHANGED 33 05/09/77 AG92

runoff runoff

Fi : flag : true : .fi
This flag has the value "true" when text lines are being filled.

FileName : string : member of input file list : none
The name of the input file (from the input file list) currently being
processed.

Filesw fla~ : false : none
This flag has the value "true" when the -file/-segment control argu­
ment is given.

Foot : counter : 1 : .ft .bef
The footnote counter.

FootRef : string : "" : .bbf .bef

Fp

Fr

From

The parenthesized string value of the footnote counter as used for
footnote numbering.

numeric: 1 : none

flag

The page number of the first output page to be printed. This value is
reset to the value of From at the beginning of each pass.

: true : • ftr
This flag has the value "true" when the footnote counter is being
reset to 1 at the beginning of each page and is "false" if the foot­
note counter is running continuously through the document.

numeric : 1 : none
The number of the first output page to print as given by the -from
control argument.

Ft flag : false : .bbf .bef

Galley

This flag has the value "true" when text is being composed into a
footnote.

fla~ : false : none
This flag has the value "true" only when the -galley or -lines options
are chosen.

Hyphenating : flag : false : .hy
This flag has the value "true" when hyphenation is being attempted.

In : numeric : 0 : .in .inl
The current value of the left indentation.

IndentRight : numeric : O : .inr
The current value of the right indentation.

InputFileName : string : <current input file> : none
The name of the current input file as taken from the input file list
given in the command line.

InputLines : numeric : 0 : none
The current line number of the current input file (does not count
through inserted files).

Keep flag : false : .bbk .bek
This flag has the value "true" when the current text block has been
designated as a keep block.

LinesLeft : numeric : 54 : .pdd .vmt .vmb .bbf .bef
The number
text.

DRAFT: MAY BE CHANGED

of lines left on the current page available for main body

34 05/09/77 AG92

·-

runoff runoff

Ll numeric : 65 : .pdw
The line length, that is, the number of text columns available in
output lines.

Lp : numeric : (last page) : none
The number of the last page to be printed.

Ma1 : numeric : 3 : .vmt
The top margin, that is, the number of blank lines between the top of
the page and the first header line.

Ma2 numeric : 3 : .vmh
The header margin, that is 1 the number of blank lines between the last
header line and the first ~ext block.

Ma3 numeric : 3 : .vmf
The footer margin, that is 1 the number of blank lines between the last
text block (or last footno~e) and the last footer line.

Ma4 numeric : 3 : .vmb
The bottom margin, that is the number of blank lines between the
first footer line and the bottom of the page.

Ms : numeric : 1 : .ls
The line spacing value; 1 = single-space, 2 = double-space, etc.

MultiplePagecount : numeric : 1 : .ps
The number of formfeed characters separating pages in -file mode.

Nl : numeric : 1 : none
The number of the current output line on the page.

NNp : numeric : 1 .br
The page number of the ~ page to be printed.

NoFtNo : fla~ : false : .ft .bbf s
This flag has the value "true" when footnote numbering is being sup­
pressed.

Np : numeric : 1 : .br
The number of the current page.

PadLeft : flag : false : none
Obsolete left/right padding switch. It is always "false".

Parameter : string : "" : .if
The value of the strin~ passed via the -parameter control argument or
the value passed to an inserted file.

ParamPresent : flag : false : .if <expr>
This flag has the value "true" is Depth is greater than 0 and <expr>
was given for the insert-file control.

Passes numeric : 1 : none

Pi

Pl

The number of processing passes to perform as given by the -passes
control argument.

numeric : 0 : .bbp
The accumulated number of picture lines reserved.

numeric : 66 : .pdd
The current page length in lines.

DRAFT: MAY BE CHANGED 35 05/09/77 AG92

runoff runoff

Print : flag : true : none
This flag has the value "true" when
printed.

the current output line is to be

PrinterSw : flag : true : none
This flag has the value "true" when the -file option has been chosen.

PrintLineNumbers : flag : false : none
This flag has the value "true" when the -number option has been cho­
sen.

Roman flag : false : .srm
This flag has the value "true" when the page counter is to be dis­
played in Roman lowercase numerals.

Selsw : numeric : 0 : none
The number of the typeball given by the -ball control argument.

Speech : string : "%" : .ch
The current special delimiter character.

Start : numeric : 1 : none
The starting page number as given by the -from and -page control ar­
guments.

Stopsw : flag : false : none
This flag has the value "true" when the -stop option has been chosen.

TextRef : string : "" : .bbf .bef
The superscripted or parenthesized string value of the footnote
counter as used for footnote references in text.

Time numeric : <time> : none
The current time given as the number of seconds since 0000 hours,
January 1, 1901.

To : numeric : (last page) : none
The number of the last page to be printed.

TrTable : string : collate() : .tr
The current character translation table.

Un : numeric : 0 : .unl .unn
The value of left undentation.

UndentRight : numeric : O : .unr
The value of right undentation.

Userlnput : function : internal label : none
The label value of the frocedure that substitutes variables with
strings read from the user s terminal.

VMargTop : numeric : 3 : .vmt
The top margin, that is, the number of blank lines between the top of
the page and the first header line.

VMargHeader : numeric : 3 : .vmh
The header margin, that is 1 the number of blank lines between the last
header line and the first ~ext block.

VMargFooter : numeric : 3 : .vmf
The footer margin, that is 1 the number of blank lines between the last
text block (or last footno~e) and the last footer line.

DRAFT: MAY BE CHANGED 36 05/09/77 AG92

r

runoff runoff

VMargBottom : numeric : 3 : .vmb
The bottom margin, that is the number of blank lines between the
first footer line and the bottom of the page.

Waitsw : fla$: false : none
This flag has the value "true" when the -wait option has been chosen.

Widow : numeric : 2 : .wi .wit
The current text widow size.

WidowFoot : numeric : 1 : .wif
The current footnote widow size.

CONSTRUCTING ARTWORK

The artwork feature permits the user to insert certain conventional
overstruck character patterns into an input file and to display them as various
symbols and lineart features. The feature is invoked by the use of the
"artwork" control in a text block. If a text block is designated as an artwork
block, any of the conventional overstruck patterns described below are displayed
with ~he closest representation possible for the output device of the intended
symbols or lineart feature.

For ASCII devices, the nearest character is chosen from the 95 character
graphic set· for devices with plotting capability, a plotted string is
generated; ror photocomposing devices, a symbol from a special font or an ap­
pro~riate rule is chosen. The characteristics and capabilities of supported
aevices are kept in external data segments known as device driver tables. These
tables are named <device>.rf device table and are discussed in "Device Driver
Tables for runoff" below. The runoff program locates the device driver tables
by application of search rules.

Artwork blocks are searched for occurrences of the overstruck character
patterns that indicate the size 1 shape, and ~osition of the desired artwork.
Any plain text is reproduced at its given location.

Artwork Symbol Conventions

The following characters are syntactically significant if they are overstruck
with another character from the set or with a valid size character.

Line
art Math Meaning

element of a horizontal rule

element of a vertical rule or a vertical bar (depending on
overstrike pattern)

I I element of a +45 degree slant rule or a division sign (depending on
overstrike pattern)

\ element of a -45 degree slant rule

DRAFT: MAY BE CHANGED 37 05/09/77 AG92

runoff

(

)

v

<

>

•
II

H

s

(

runoff

left semi-circle or a left parenthesis (depending on overstrike
pattern)

right semi-circle or a right parenthesis (depending on overstrike
pattern)

up arrow, diamond top vertex,
(depending on overstrike pattern)

half-line up, or superscript

down arrow, diamond bottom vertex, half-line down, or subscript
(depending on overstrike pattern)

left arrow or a diamond left vertex (depending on overstrike pat­
tern)

right arrow or a diamond right vertex (depending on overstrike pat­
tern)

[left bracket

] right bracket

left brace

} right brace

X multiplication sign (one-high math symbol only)

vertical or slant rule terminator •

H

s

horizontal rule terminator.

replicator character showing overstrike but having no pictorial
meaning.

half-line control, up or down (depending on overstrike pattern)

superscript/subscript control (depending on overstrike pattern)

= double vertical bar "concatenate" symbol

o "bullet" (one-high math symbol only)

If any of the characters of the set in the column labeled Line art is
overstruck with another member of the set, it is treated as part of a lineart
construction.

If any of the characters of the set in the column labeled Math is
overstruck with a numeric or alphabetic character (not part of either set) it is
treated as part of a math symbol and the overstrike character is interpreted as
the symbol size as follows: ·

0
a - z
A - Z

1 through 10 lines '
11 through 36 lines
31 through 56 lines

Ambiguous cases are resolved in favor of lineart by the use of the
replicator character.

DRAFT: MAY BE CHANGED 38 05/09/77 AG92

"'

runoff runoff

Artwork Source Syntax

The syntax for artwork construction is as follows:

1. "adjust" and "fill" controls should be OFF to preserve element position
in an artwork block.

2. Lineart may be contained within math symbols and vice versa.

3. All rules continue through intersections unless they are specifically
terminated by an appropriate terminator character.

4. The minimum size of lozenges (flattened diamonds) is four lines.
Smaller lozenges will not have their slant sides positioned properly.

5. Unterminated horizontal rules will generate a reported syntax error at
the right margin.

6. Unterminated vertical or slant rules will generate a reported syntax
error at the end of the artwork block.

1.

8.

Vertical positioning of plain text is the responsibility of the source
author. Conventional subscript, superscript, and half-line controls
are provided for this purpose.

The slant line terminators (11 7" or "~") must appear to the left (or
right) the number of columns one less than the height of the line. For
example, the "7" terminating a 5-high ri~ht slant line must be 4 lines
below and 4 columns to the left of the "' beginning the slant line.

DEVICE DRIVER TABLES FOR RUNOFF

The runoff program expects to find the artwork characteristics and capa­
bilities for a device in an external static data segment named
<device>.rf device table. In this context, <device> is the device name, either
the default- ASCII-device or the name given with the -device control argument.
The segment is located by application of the users search rules.

The device driver tables are best created by the use
create_data_segement tool providing data for the following structure:

I* Begin include file rf_device_table.incl.pl1 *I

of the

I* This include file describes the external device driver segment used by
doc_runoff to drive the target device. The segment described must be
named <device>.rf_device_table and may be created with CDS. *I

dcl 1 device_table based (rf_stat$devptr),

2 devx fixed bin, I* device index value */

I* MATH SYMBOL PARTS

math symbol index values
1 = [1 2 =], 3 = {1 4 = J, 5 = (1 6 =)i 7 = I, 8 = 11
9 = vigule/solidus ~/), 10 = X, 11 =bu! et

12 = half-line up, 13 = half-line down,

DRAFT: MAY BE CHANGED 39 05/09/77 AG92

runoff runoff

14 = superscript, 15 = subscript,
*I

(2 top (8) char (80)
2 half_top (8) char ~~O),
2 middle {8) char (60 ,
2 bottom (8) char (60 ,
2 half_bottom (8) char (40),
2 one_high (15) char (80)
2 other_part (8) char (55j,

I* full line top parts */
I* half line top parts */
I* full line middle parts */
I* full line bottom parts */
I* half line bottom parts */
1* 1.5 line complete symbols*/
I* vertical parts for expansion of

multi-line symbols */

I* LINE ART PARTS *I
2 vert_part char (42), /*
2 daro char (80) I*
2 uparo char (7oj) varying, /*
2 horiz, (I*

·3 start char (16), I*
3 line char (12) I*
3 term char (16)' varying, (I*

2 laro char (64)~ /*
2 raro char (64)1 varying, /*
2 diamond /*

3 top char (40) varying, /*
3 left, (I*

4 start char (10), /*
4 body char (45)) varying, /*

3 right, (/*
4 start char (10), /*
4 body char (45)) varfing, /*

3 bottom char (50) varying, /*
2 left_slant, (I*

3 start char (20), I*
3 line char (50)) varying, /*

2 right_slant, (I*
3 start char (21), 1*
3 line char (50)) varying, (I*

2 left_circle char (100) I*
2 right_circle char (1ooj) varying, /*

vertical line element *I
downward arrowhead */
upward arrowhead */
horizontal line */
veritcal positioning */
one column line element */
vertical positioning */
left-pointing arrowhead *I
right-pointing arrowhead */
diamond parts */
top vertex */
left vertex */
positioning */
actual vertex */
right vertex */
positioning */
actual vertex */
bottom vertex */
left slantin~ line (\) *I
positioning •;
line element */
right slanting line (/) *I
positioning *I
line element */
left semi-circle */
right semi-circle */

I* MISCELLANEOUS STRINGS *I
2 DTAB char (6) varying; I* direct tab control */

1• End include file rf_device_table.incl.pl1 *I

The strings described above are substituted in various combinations and
orders for the conventional artwork constructs and the resulting output line is
transmitted to the output device in "rawo" mode. The standard system provides
five device tables as follows:

Device
Name
ascii

dtc300s
selecterm

27 41-963
2741-015

DRAFT: MAY BE CHANGED

Dey ice
The default ASCII terminal device
Data Terminals and Communications 300/S
Bedford Computer Systems S75
IBM 2741 (EBCDIC)
IBM 2741 (Correspondence)

40 05/09/77 AG92

r -

runoff

EXAMPLES

This section gives examples of plain text and artwork using runoff.

Plain Text Example

The lines following represent a printed list of a "test.runoff" file.

* *
Input file for plain text example

.sp

. tth 1 0 ""TEXT SAMPLE""

.un -5
The runoff command lets the user format text segments through
a variety of controls. The controls specify such things as:
.sp 2
. in 10
.un 5
1. Page depth and width (with .pd, .pdd, and .pdw controls).
If not specified by the user, these parameters are given
default values of:
.sp
.in +5
page depth 66 lines
.brf
page width 65 columns
. in 0 * End of test.runoff file

The same input as formatted:

TEXT SAMPLE

runoff

The runoff command lets the user format text segments through a variety of
controls. The controls specify such things as:

1. Page depth and width (with .pd, .pdd, and .pdw controls). If not
specified by the user, these parameters are given default values of:

page depth
page width

DRAFT: MAY BE CHANGED

66 lines
65 columns

41 05/09/77 AG92

runoff

Artwork Example

The lines following represent a printed list of an "artwork.runoff" file.

*
*

Input file for artwork example

.sp
• in 16
.nf
.tth 0 '"'ARTWORK SA!.!PLE""
.tth O ""Section 4 of Flowchart""
.bba

!!
• I

! ~ type 1 3 l
A'WAA'u JU B 3 type 2 3 l All JU type node All

! ~ type 3 3 l

.be a ' '
The same input formatted for an "ascii" terminal.

I
I
I

ARTWORK SAMPLE

Section 4 of Flowchart

(A))
type 1
type 2
type 3

> type node I >(B) --,.
I
I
I

The same input formatted for a OTC 300/S terminal.

ARTWORK SAMPLE

Section 4 of Flowchart

{II type , II} type 2 --+ type node
type 3

DRAFT: MAY BF.: Cl!ANGED

.--
I
I
I

05/09177 AG92

