
MULTICS-TECHNICAL BULLETIN MTB-333 oage 1 

Toa Olstrlbutlon 

From• T. H. Van Vleck 

Datel Harch zz, 1977 

SubJectl Multics Transactlon Processing 

llitEQDUCTIQ~ 

Transaction processlng ls what most real-world customers do 
with on-line computers. Alrllne reservatlons, Insurance claims 
and pollcles, medical records, and many other types of data bases 
are managed by transaction processing environments. Although 
Multics ls ideal for the support of such apolicatiors, we 
currently lack a unlfled system whlch makes such support easy. 
This memo describes our plans for a transactlon processing 
environment. 

Host manufacturers have at least one transaction processing 
subsystem available within their operating system. All such 
transactlon processing subsystems follo• the same general 
oat tern I 

o An operator at a terminal inputs messages 

o The messages cause an applicatlon program (usual ty COBOL) 
to be run 

o The appllcatlon program usually accesses and may modify a 
big data base 

o The apollcatlon program produces output which ls usually 
sent back to the operator 

Thls sounds something like classical tlme-sharlng, except that 
commands aren•t allowed to read input from tre tyoewrlter. 
However, because the Nlsslon of the transaction processln~ system 
ls aulte different from that of a general tlme-sharlng system, 
transaction processing systems tend to o~tlmlze a different set 
of characterlstlcs. 

~~~~~-·----------------· ----------------------~----------Hultlcs Project Internal working documentatlon. Not to be 
reproduced or dlstrlbuted outside the Multics Protect. 



MULTICS TECHNICAL BULLETIN HTB-333 oage 2 

RESPONSE 

The demand for system response ln transaction processing 
systems arises from a need to make operator productivity as high 
as possible. In some applications, the organizatlon•s Image may 
be affected if clients of the organization must walt Mhile a 
transaction processing inquiry proceeds. Since transactions tend 
to be of comparable slze, scheduling for transaction processing 
must solve a different problem than that of general time-snaring 
scheduling. In particular, consistent response may be preferred 
to optimum response in some cases. 

DATA BASE PROTECTION 

Since operators are unskilled, and since the data bases 
being manipulated are complex ln structure and of high value, 
transaction processing systems take special care to insure data 
base consistency if a transaction program terminates abnormally. 
A fault ln a single orogram causes any cha~ges it has made to be 
undone; recovery after a system crash backs out all 
half-completed transactions• changes to the data base. 

MESSAGE HANDLING 

Since it may be costly to repeat or 011it a transaction which 
was in progress at the time of a crash, transaction processing 
systems are also designed to perform careful message bookkeeping 
so that an operator can determine whether the system has sctualty 
heard a reQuest, and •hether the reQuest has completed. 

Transactions are often input from video terminals, ln order 
to ellmlnate paper handling and because these termirals are 
inexpensive. Vldeo terminals are often used in block transfer 
11ode, wlth protected fields defining forms to be fll led In; a 
single transaction message may therefore be Quite long. 

Because operator training ls costly, transaction processing 
systems provide elaborate facilities for tailoring the operator 
interface. 

THROUGHPUT 

System efficiency ls less important than the functional 
issues described above. Eff lciency cannot be gained at the 
expense of reliablllty. Nevertheless, it ls important to be able 
to obtain very hlgh throughput wlth almost all system features ln 
use, including the data base manager, Journallzatlon, and COBOL. 

Slnce many transaction processing systems spend 80Y. of their 
time ln system code, the natural ef ficiencv of Multics gives us a 



- ' 

MULTICS TECHNICAL BULLETIN MTB- 333 page 3 

good chance to be cost competltlve. (Manv other operatlng 
systems cannot take advantage of multlole CPu•s, for example.) 
Some orders of magnltude are ln orders 

USGS benchmark 
Alcoa 
IRS benchmark 
Harketlng wish 

14 t/sec 
1 

30 
100 

Because the transactlor, processing envlron•ent ls wel I def!ned, 
not alt the facllltles of a fully general Jser program need to be 
provided for each application program•s environment. 

Thls section descrlbes our plans for Multics transaction 
processing. Actual lmplementatlon may be broken into several 
phases. 

The Multics transaction processing l•olementatlon supolles 
three i•Portant interfaces& the administrator interface, the 
appllcatlon programmer Interface, and the operator Interface. 

ADMINISTRATOR INTERFACE 

The admlnlstrator of a transaction processing subsyste~ o~ 
Multics wll I use table compliers to speclfv the following Items: 

o Lines and terminals 

Dialed versus dedicated; particular operator; grouo 
membership; authorization; signon required; ID code 
reQuired. 

o Oata Bases 

Journal 1 za t ion; lockln9; audl t tral I; open lng. 

o Applicatlon Programs 

Permission reQulred; keyword Napping; conversational; 
maximum CPU limit; prlorlty; termlnatior on deadlock; 
simultaneity; error handling. 

o Operators 

Password; prlvlleges; group me•bership. 



MULTICS TECHNICAL BULLETIN HTB- 333 page '+ 

The transactlon 
tables and wlll 

processing 
be able 

processing ls running. 

admlnlstrator wil I comolle these 
to inst al I them whl le transaction 

The transactlon processlng admlnlstrator must also function 
as a data base admlnlstrator for hls data bases. This Involves 
him ln both deflnitlon and security conslderatlons. 

To start transaction processing, the admlnlstrator executes 
the coinmand 

start_tp 

ln a process which the~ becomes the transaction processing master 
process. Ourlng startup, the master process will discover lf 
data base recovery ls necessary, and lf so wlll operate on the 
data base and the Journal file to produce a conslstent sltuation. 
Transactlons which were Incomplete at the tlme of the failure 
wltt be automatically restarted, unless the admlnistrator has 
soeclf led otherwise. 

The master process may be started automatically by the 
system_start_up.ec on every bootload lf lt ls a permanent part of 
the svstem•s capabilities; or a permanent absentee Job can be 
created to always start the application. 

APPLICATION PROGRAHMER INTERFACE 

Application programs to be run under Multics transactlon 
processing must obey a few simple rules. They may be written in 
any language& COBOLt PL/I, FORTRAN, 0ASIC, APL, LINUS and even 
ALH wlll work, as wlll user-supplied compliers and procedures 
speclfled ln Multics command language via exec_com. Apoficatlon 
programs wlll obtain thelr input ln a standard fashlon. The 
programs must not atte~pt to read from the terminal; attempts to 
read or ask Questions wll I terminate the program. The 
appllcatlon programs must not use data flies other than those 
defined by the transaction processing administrator lf they wish 
to have fut I failure backout protection. 

The Multics Oat~ Base Manager, wlth both HIOS and HROS 
interfaces, wl II probably be heavily used In thls envlron•ent. 
Special optlons to avoid redundant openlng and closing of flies, 
both MOBH and regular language I/O, will be provided. 



MULTICS TECHNICAL BULLETIN MTB- 333 page 5 

OPERATOR INTERFACE 

The operator interface to Multics transactlon processlng can 
be tallored to meet the needs of the appllcation. The 
transactlon processing admlnlstrator defines what the commands. 
are, how lhe operator signs on, and how messages wlll be routed. 
The standard Multics terminal software provides 
device-Independent support for all terminals. 

The transaction processlng master 
causes several other processes to 
actual transaction processlng. 

process, defined above, 
be created to perform the 

One or several message control processes wit I be 
handle terminal input/output and message Queueing. 
control processes manage groups of terminal I ines; 
perform demultiplexing on multidrop lines. The llnes 
be dedicated or attached to the control process 
f ac 11 i ty. 

created to 
The message 

they may 
hand I ed may 
by the dlal 

One or several worker processes wil I De created to perform 
the actual appl !cation execution. The worker processes will 
execute one transaction at a time, Queueing output messages which 
wll I be sent to th~ operator lf the transaction completes 
correctly. The worker processes establlsh an environment which 
protects against abnormal termination of an application program. 
The start of each transaction causes the worker process to make a 
mark ln the recovery Journal f11e so that cleanup operations can 
dlscover what operations were ln progress but had not co~pfeted 

at the time of a crash or fault. 

The worker processes cooperate wlth the data base software 
and the transaction processing master process to protect the 
subsystem from deadlock. 

Batch processes may also operate on the sa•e data bases 
which are ln use by a transaction processing application; batch 
Processes also are protected from deadlock. 

Figure 1 shows a simplified diagram of the relationships of 
the various processes. 

Many other features are planned for the Multlcs transaction 
processing subsystem. Some of these wll I be oresent ln the 
lnltlal version, and some will be deferred untll we are sure of 
the most general way of meetlng customer needs. A list of such 
t 0 p l cs f 0 I I 0 WS I 



MULTICS TECHNICAL BULLfTIN MTB- 333 

sophlstlcated schedullng 
forms termlnal support 
message routing 
testing Interface 
tralnlng Interface 
keeping multl-llne messages together 
batched transactions 
Inter-terminal messages 
broadcast messages 
starting absentee Job from transaction 
transaction chalnlng 
updating programs without shutdown 
statlstlcs 
AIM·multllevet security 

Page & 


