MULTICS TECHNICAL BULLETIN MTB-332

To: Distribution
From: Robert S. Coren & Jerry Stern
Date: 03722177

Subject: Multics Terminal Types

LuIBQRUCTION

This document describes a proposal to reimplement the
hanoling of terminal types by MCS in such a way as to allow =2ach
site to define its own set of terminal types. The principal rea-
son for doing this is thats, with the wide (and increasing) wvari-
ety of terminals availables the rather limited set defined by the
present Mdultics sotfttware is becoming increasingly inmadeguate. To
expand the Llist of statically-defined types, and their associated
ring O tabless to include all known and conceivable terminals
would be a waste of space even i1f it were possible. Users can, of
course, regefine their own terminals on an individual basis by
substituting the appropriate tables (as described in MTB 290).,
but 1t is unreasonable to require a large community of userss all
using a particular terminal that does not happen to ke precisely
descriped by any of the system-supplied detinitions, to take this
special action 1in order to get their terminals to run properly.
B8y means ot a replaceable table, generated from an ascll file
that can pe edited by a system administrator, a site can descrice
with whatever precision it desires the terminrals it expects to be
most commonly connected to its System.

In order to explain how this can be dones it seems advisasble
first to define what is meant by a "terminal type" from the point
ot view of M(S (something that has never been done before), ang
to gescribe the presently-implemented method of determining and
acting on a given terminal's type.

DEFINITION QF _TTERMINAL_TYRE!

The <concept of "terminal type'" is used to distinguish among
terminals ON the basis of their physical characteristics and he-
havior. In particular, the following attributes are components of

Multics Project working documentation, Not to be reproduced or
distributed outside the Multics Project.

-1-

MULTICS TECHNICAL BULLETIN MTB-332

a terminal's type:

- character set
- character codes (e.g.r EBCDIC, ASCII, etc.)

- pehavior in response to "carriage movement” characters
(linefeeds, carriage return, etc.)

- behavior in response to other control sequences

- time required for carriayge movement functions ("de-
Lays")

- software control of horizontal tabs

-~ Lline length and page length

A terminal type is to be distinguished from a "line type,"”
which defines the communications protocol used to control a ter-
minal or related device. In M(S, the terminal type associated
with a communications channel i1s uSed by the ring 0 software.,
whereas the line type is primarily of interest to the FNP.

From the point of view of the ring 0 softwarer, a terminal
type is specified by a set of tables (used by tty_read and
tty_write when processing input and output respectively) and a
few other attributes. These items are SummariZed belows. The ta-
bles are deScribed in MTB 290, their use is described in more de-
tail 1in MTgs 234 and 262. Most of the tables and attributes can
be changed by a user on an individual basis;, the terminal type 1is
a way of specifying a complete set of consistent attributes,

Iranslation_lables

Input and output translation tables are used to transi{ate
between ASCII and the terminal's character code, These tables may
be absent for an ASCII terminal.

MULTICS TECHNICAL BULLETIN MTR-332

Ioput_Cooversigon_Table

The 1input conversion table is used to identify certain spe-
clal characters on inputs, such as eScape characters.

Quitput_Sonyversion_Table

The output conversion table is used in conjunction with the
special characters table (see below) to identify carriage controt
characters and characters that are to be replaced by control se-
quences or escape sequences (escape seguences are used to fittl
gaps in the terminal's character set).

Special _Characters_Table

The special characters table specifies control sequences for
carriage movement, ribbon shift, and the disabling and enabling
of local copy ("printer off" and "printer on'"); in addition, it
contains output escape sequences and defines the results of input
escape sequences,

Belay _Taples

A delay table specifies the number of "delay'" (NUL) charac-
ters required to allow the terminal to perform various kinds of
carriage motion, Clearly these numbers depend on the speed of the
terminal; accordingly, several different delay tables may be
assaciated with a single terminal type, one for each of several
speeds.

Qther_Attributes

INITIAL MODES

A string suitable for passing to icx_%$modes is provided to
specify the minimal set of modes suitable to the terminal. Page
length (if any) and line length are included here; some other
modes related to physical <characteristics of a terminal are

-3-

MULTICS TECHNICAL BULLETIN MTB=-332

ttechos, crecho, tabecho, tabss, and vertsp.

HORIZONTAL TAB SETTING

For some terminalss, horizontal tab stops are settable &by
softwarers by sending a control seguence to the terminal, For
such terminals, a string is supplied that may be used to set tab
stops at the Multics standard tab positions (columns 1, 11, 21,
etc.).

EDITING CHARACTERS

The editing characters are those recognized by tty_read as
"erase" and "kill" characters. The selection of these characters
is actually a software consideration rather than an attribute of
the terminal (except in the case ot a terminal that lacks either
of the standard editing characters), however, an initial specifi-
cation of these characters is included for convenience as part of
the specification of a terminal type.

KEYBOARD LOCKING AND UNLOCKING

Some terminals lock and unlock their keyboards in response
to certain control sequences. These control sequences are defined
on the basis of line type in the FNP software. If the terminal's
lLipe type is "ASCII"™ (normal ASCII asynchronous protocol) the use
of this feature is controlled by the terminal type; for example,
the Teletype Model 37 has this feature, while the TermiNet 300
dcoces not. For IBM line types (2741 and 1050) the locking and un-
lccking of the keyboard is essentials, and cannot be disabled; for
other Line types the feature is not supported.

Ten terminat types are recognized by MCS at present, and
several programs contain assumptions about possible types, the
addition of other types is therefore difficult without major
restructuring such as is proposed in this MTB, Most of the infor-
mation needed to specify the terminal types iS kept in a ring O
segment named tty_tables, which i1s generated from a mexp source

MULTICS TECHNICAL BULLETIN MTB-332

segment. These types are known in ring OJ by numbers; an include
file wused 1in the user ring associates names with these numbers,
The terminal type number is an index into an array of structures
at the base of tty_tables that contain the offsets of the tables
used by the various types. In particular, each structure in the
array contains the offsets of the input and output translation
tables, the input and output conversion tables, the special char-
acters table, and delay tables to be used at 10, 15, 30, and 120
characters per second, A 0O offset means that the corresponding
tacle does not exist for the particular terminal type. When a
terminal®s type 1is determined initially when the terminal dials
upes or is changed by means of a "set_type"™ order, pointers to
these tables are derived from the offsets described above and
stored in the terminal's ring 0 control block. These pointers may
ve replaced individually with pointers supplied by the wuser of
the terminals sincers however, these are pocinters in the user's
address space, the pointers to the Jefault tables in tty_tables
must be restored whenever the terminal is assigned to another
process.

The initial modes and the tab-setting strings for each ter-
minal type are kept in a user-ring data base called the initial
modes table, which is indexed (like tty_tables) by terminat type
number, A modes call using the string suppliead in the initial
modes table is made whenever the terminal type is set.

Editing characters default for all terminal types to "#" and
"&" for erase and kill respectively. They may be replaced by in-
dividual users,

The keyboard-locking feature i1s enabled for terminal typ= 3
(TTY37) and disabled for all other ASCII terminal types.

The initial terminal type 1is assigned on the basis of an
"experiment”" conducted by the answering service, using the haud
rate, answerbacks line type, and information stored in the (DT,

QVEBVIEW.QFE PRBQROSEDR_CHANGES

In order to permit the definition cf terminal types on a per
installation basis, a new administrative data base will be
created, The system administrator will maintain an ASCII source
file for tnis data base callea the Terminal Type file (TTF). The
TTF will be converted to a binary data base called the Terminal
Type Table (TTT) by a reduction-compiler translator. All termi-
nal type information will reside in the TTT, a ring 4 segment ac-

MULTICS TECHNICAL BULLETIN MTB-332

cessible to the answering service and users alike. Fach terminal
type will be 1dentified by an ASCIIl name.

Whenever a terminal type is set for a specified terminal.,
all of the needed terminal type data will be copied into ring 0.
Normally, such data will be extracted from the TTT7. However.,
this is not strictly necessary, The TTT merely represents a user
ring convention for associating a name with a collection of ter-
minal type data. This convention will be observed by the wuser
ring tty_ I/0 module, However, it will be possible for a user to
bypass this conventione if desired. Thuss a user can manufacture
his own terminal type data and present it to ring 0. Ring 0 re-
quires only that the data be self-consistent. As an aid to the
user ringes ring U will remember the terminal type name, but will
not depend on i1t in any manner,

The ring 0 data bases related to terminal management will be
reorganized to accommodate the new methcd of defining terminal

types (ang also to make certain general improvements),
Currently, the segment called tty_tables is used to hold static
terminal type data. Under the new Scheme, tty_tables will be

used to store terminal type data received from the user ring.
Since it is expected that at any given Site many users will share
the same terminal typess, space wusage in tty_tables <can be
minimized by sharing various itemS of terminal type Jdata. The
wired seygyment called tty_buf is currently used to store terminal
1/0 puffers as well as two different data structures for each
terminal. Since these data structures will have to be enlarged,
it is sensible to separate information that needs to be wired
(for reference at interrupt time) from information that need not
be wired. Therefore, a new unwired segment called tty_data will
be <created to store unwired terminal data. Wired terminal data
will continue to be stored in tty_buf,

One ot the crincipal motivations for providing
installation-defined terminal types is so that the answering seéer-
vice can correctly determine terminal characteristics at dialup
time. Therefores the answering service will be modified to com-
pute a terminal type at dialup based on factors such as the ter-
minal baud rates the line type, the answerback (if any), and an
optional default terminal type specified in the (DT. The way in
which these factors are combined to select a terminal type s
controlled by the system administrator,

IMPLEMENTATION
User_Riny
User ring changes required to support installation-defined

terminal types include the addition of new orders to tty_, the

-5 -

MULTICS TECHNICAL BULLETIN MTB8-332

handling of obsolete orders by tty_» and modifications to the
set_tty command. Alsors the user_info_ subroutine and the user
active function must be changed.

The new orders for tty._ include set_terminal_type,
terminal_info, and set_tabs. The set_terminal_type order re-
places the current set_type order, Given a terminal type name,
1t will extract the relevant data from the TTT and pass this data
into ring U. The caller specifies whether tabs and/or modes are
tc be set according to the default values for the terminal type.
Normallys, the terminal type for a yiven terminal i1s requirea to
be compatible with the line type. However, the set_terminal_type
order allows this restriction to be overriddena. The
terminal_info order is similar to the current info order, Hcuauev-
ers terminal_info returns a terminal type name (rather than 3
number) ang will also indicate the line type. The set_tabs order
transmits a tab-setting string to a given terminal. If no info
structure is supplied, then the default tab string for the termi-
nal type (i f any) is gotten from the TTT. Otherwisers a
tab-setting string is described by the info structure. Declara-
tions for the info structures used by the three new orders are
given in the Appendix,

The new scheme for defining terminal types by name will ob-
solete the terminal type numbers now used. This will affect the
set_type and 1info orders to tty_. Compatibility considerations
require that these two orders continue to work, at least for a
moderate period of time, Therefore, the préparer of the TTF will
specify an "old" terminal type number for each terminal type.
This will permit tty. to map a set_type order into a
set_terminal_type order, Furthermore, set_terminal_type will
pass the old type number into ring 0 along with the other termi-
nal type data. This will permit ring 0, and hence tty_, tOo con-
tinue to support the info ordere. Of course, new terminal types
will wundoubtedly be defined for which no old counterpart exists.
In this case, the TTT will specify an old type number of =-1. Us-~
er programs that call the info order will not recognize the =1,
just as they would not recognize any new ferminal type number.,

The set_tty command must be changed to take advantage of the
three new orders to tty_. This should actually simplify set_tty
considerably. It is proposed that the interpretation of the
-reset control argument be modified. <Currently, -reset turns off
all modes that are not turned on in the default mode string for
the terminal type. (The default mode string normally specifies
only positive modes.) This has the undesirable effect of turning
off modes that are irrelevant to the terminal type. For example,
the presence or absence of replay mode is of no consequence toO
most terminal types. Therefore, the default mode string for a
terminal type should specify all required modes, both positive
and negative. Then, "set_tty -reset" will simply set the default
modes and leave other wodes unchanged,

-7 -

MULTICS TECHNICAL BULLETIN MTB-332

The tty_data entry point to the wuser_info_ subroutine re-
turns a terminal type number and therefore will become obsolete.
A new entry point called terminal_data will be provided as a re-
placement and will return a terminal type name, Of course, the
old entry point must be retained for compatibility. Hence.,
user_info_%tty_data will —return the "old" terminal type number
from the TTT, Since user_info_ obtains its information from the
PIT, both the terminal type name and the old terminal type nurber
must bpe stored in the PIT by the answering Service., This re-
quires adding a new field, the terminal type name, to the PIT,
The user active function must be changed to call
user_info_3terminal_data rather than user_info_%$tty_cdata to han-
dte the "term_type" keyword.

As mentioned <earlier, it is possible for a user program to
create 1ts own terminal type data and to pass this data to ring
0. In ygeneral, however, this would reguire at lLeast a moderate
amount of programming effort. To reduce this effort, it is in-
tended that a user be able to employ the TTF translator to pro-
duce his own private TTT. This provides a relatively simple
means for the knowledgeable user to create the necessary terminal
type data. This still reguires, hOwevers, that the user deal di-
rectly with the ring 0 interface. This 1inconvenience <could be
eliminated by the addition of another order to tty_ called
set_terminal_type_table. As the name implies, this order woutd
instruct tty_ to reference the uUser's TTT rather than the system
TTT. Thus, setting a non-standard terminal type becomeS asS easy
as setting a standard terminal type. Althcugh such a feature

could pe readily suppliedese it is not known to be worthwhile, It
is expected thats, in yeneral, a site will Supply a TTT that can
accommodate atl of its userse. Therefore, the

set_terminal_type_table order may not be implemented initially.

Riong.Q

Changes to ring O for dinstallation-defined terminal types
include the addition of new orders to ring 0 MCS, the handling of
obsclete orderses and the management of terminal type data sup-
plied by the user ring. Also, per-channel data structures will
be reorganized to separate wired and unwired data.

Two new orders for ring 0 MCS are called set_terminal_data
and terminal_info. The set_terminal_data order accepts an info
structure (see Appendix for declaration) that defines the varijous
items of terminal type data. Also included is the old terminal
type number, The wuser ring tty_ 1/0 module calls the
set_terminal_data order when it receives a set_terminal_type or-
der. The terminal_infoc order, as implemented by ring 0, is
equivalent to the user ring terminal_info order,

MULTICS TECHNICAL BULLETIN MTB8~-332

The set_type and info orders now supported by ring 0 MCS
will become obsolete., As described earlier, ring 0 can continue
to support the info order because the set_terminal_data order ob-
tains the old terminal type numver, However, the set_type order
can no longer be supported at the ring 0O interface. Any user
programs that call ring U directly must be <changed to use
set_terminal_data rather than set_type.

The tty_tables segment will become a dynamic data base used
to stgre translation tables, conversion tables, special character
tables, and delay tables, These tables are set collectively by
the set_terminal _data order and individually by several other ex-
isting orders, Since orders for setting individual tapbles allow
the <caller to specify that the default table for the terminal
type be used, ring O MCS will always remember the default tables
for a terminal type (as supplied by a set_terminal_data order)
even after an individual table has been replaced. Currently, the
use of a3 non-stangard table reyuires that the user provide perma-
nent storage for the table in the user ring. This will no longer
be necessary.

A new program will be provided to manage tty_tables. This
program will be responsible for the allocation and deallocation
of table storage space. Each time a new table is about to be
addeds a search will be made to discover if an identical table is
alreaay present in tty_tabtles. If sor, the new table need not be
added. Howevers, a reference count must be maintained in order to
properly interpret subseguent reqguests for table deletion.

Two data structures called the FCTL and the (TL are now
maintained for each terminal channel. These structures must be
expanded to contain new pieces of terminal type information.
doth C(TLs and FCTLs are stored in tty_buf, a wired segment,
Since much of the information in the CTL need not be wired, this
information will be moved to an unwired segment called tty_data.
To facilitate the reorganization, CTLs and FCTLS will be replaced
Dy new data structures called T{BsS (terminal control blocks) and
WTCBs (wired terminal control blocks).

Apswerinog_Secrxicge

Answering service changes required for installation-defined
terminal types include a new method for determining terminal
types at dialup time, use of 3 new order to set terminal types,
and a TTT installation mechanism. AlsO Oof interest is the dispo-
sition of terminal types following a "new_proc" or "logout
-hold".

The determination of a terminal type at dialup time will de-
pend upon a4 combination of factors. As is presently the case.
the answerback from a terminal, 1f any, can be used to ascertain

-0 -

MULTICS TECHNICAL BULLETIN MTHB-332

the terminatl type. However, before the answerback can be read,
an initial terminal type must be set, Currently, each CDT entry
contains an optional default terminal type number, This number
must be replaced vy an ASCII name. I1f a default terminal type 1is
specified in the CDT entry for a terminal, then that type is used
for the initial terminal type. 1f no default type is specified
in the CuT, then the answering service will examine a new data
base contained in the TTT. This data base consists of an ordered
list of triples, each containing a baud rate, line type, and ter-
minal type. A special symbol is used to indicate a "wild card"”
bauo rate or line type. The Llist is scanned until a match is
found for the baud rate and line type of the given terminal. The
assoclated terminal type becomes the initial terminal type.

Having set the initial terminal type, the answering service
then <c¢nhecks a new flag 1in the (BT entry for the terminal
indicating whether an attempt sShould be made to read the
answerback. If sor, the answerback is read anrd decoded according
to another new data base contained in the TTT, This data base
describes how to recognize answerbacks that indicate specific
terminal types and also how to separate the terminal Id, If the
answerback indicates a different type from the initial type, ther
the new terminal type is set.

In order to set terminal types, the answering service must
make use of a new order, The answering service does not wuse
tty_» but rather uses ring 0 M(S directly, Therefore, the an-

swering service must use the set_terminal_data order. The an-
swering service wWill also set tabs and modes whenever it sets a
terminal type. For tab setting, it will share a common

subroutine with tty_.

A mechanism for installing a new TTT must be added to the
answering service, This will be handled in a manner similar to
that of other tables. A new TTT must be checked to ensure that
all default terminal types mentioned in the (DT are defined 1in
the ¥TT7T. (onverselys a new CDT must satisfy the same check,

One aspect of installing a new TTIT is different from that of
most other administrative tables. The TTT is not only an answer-—
ing service data base, but also 3 user data base, The deletion
of an old 7TT could adversely affect user processesS, Therefore.
when a new TTT is installeds the old copy will be renamed and not
deleted until the next answering service initialization,

There is some gquestion as to what effect a "new_proc” or
"logout —~hold" should have on terminal attributes. The current
implementation is peculiar in that certain terminal characteris-
tics, e.9. modes, are retained whereas other characteristicse,
e.g. translation tables, are reset to the default for the current
terminal type. The terminal type itself is not changed. This
odd behavior is clearly undesirable and no lcnger made necessary

-10~-

MULTICS TECHNICAL BULLETIN MTB-332

by implementation considerations.

In the case of a new_procs, it is proposed that all terminal
characteristics be retained since this is most often the desired
result. Occasionallys a user may get into trouble by i1mproperly
adjusting certain terminal attributes and would like new_proc to
rescue him. It will not.

The <case ot Llogout ~-hold is somewhat less clear-cut. This
operation may be used by 3 person who is simply changing brojects
and wishes to retain the same terminal characteristics. On the
other hands the terminal may be passing from one useér to another,
The second user may or may not wish to retain the first user's
terminal characteristics. As a matter of <clarity <(and perhaps
security), it seems sensible that each new lLogin should produce a
pregictable result wunaffected by the actions of previous users,
Furthermore, the new terminal type scheme should 1increase the
likelihood that the terminal type selected by the answering sefr-
vice is the one the user wants. Hence, there seems little reason
to retain terminal characteristics following a logout -hotld.

System_Administrator

The system administrator will have the responsinility of
maintaining the TTF, A standard TTF will be distributed with
each system release and will define all commonly wused terminal
types. Although the system administrator will have the freadom
to change terminat type names in the standard TTF, to do so would
probably cause compatibility problems. User programs already de-
pend on recogni2ing certain standard terminal type names. Theocre-
fore, these names should be retained.

As described previously, installation-time <checks will be
made to ensure the mutual consistency of the (DT and the TTT,
From the administrator's point of views, however, it is somewhat
inconvenient to discover an error at installation time. It would
pe more convenient if such errors could be detected at compila-
tion time. Therefores cv_cmf, the CMF to (DT translator, will be
made to check that each terminal type specified in the (MF i1s ac-
tually defined in the installed TTT. This is the only way to
verify a terminal type name. A warning will be issued if an un-
known terminal type is found. Having the TTf to TTT translator
perform the reverse check seems unnecessary.

lostallatign_Blan
The new terminal type scheme requires a combination of
harccore, answering servicer, and system library changes, Fortu=

nately, however, it is possible to accomplish the necessary
changes without requiring combined hardcore and online installa-

-11-

MULTICS TECHNICAL HULLETIN M13-33°

tions. An installation plan specifying major steps is given be-
Low.

1. Add interim versions of the new set_terminal_data and
terminal_info orders to ring 0 MCS. The interim

set_terminal_data will ignore all information except the old ter-
minal type number and will behave exactly like the set_type or-
der. The interim terminal_info will convert a terminal type num-
ber to a terminal type name.

2. Create a TTF containing information equivalent to that of the
current tty_tables, Compile this to obtain a TTT and install it.

3. Use the new cv_cmf to compile the current CMF into a new CDT.
The new (DT will contain new fields (terminal_type_name and

read_answerback_flayg).

4. In a special session, install the new answering service,
Then use the new answering service to install the new CDT.

5. Install the new ring 0 MCS.

6. Install ontine changes.

12

MULTICS TECHNICAL BULLETIN MTB-332

The following is draft documentation for the System
Administrator's Manual describing the syntax of the terminal type
file. Several references are made to the description of some or-
ders to the tty_ 1/0 modute in the MPM Subsystem wWriter's Guide;
this version of the SWG has not been publisheds but the same in-
formation is presented in MTB 290.

SYNTAX_QF THE_TIE

The TTF consists of a series of entries describing terminal
typess, tabless, and answerback interpretations. Each entry con-
sists of a series of statements that begin with a keyword and end
with a semicolon. White space and PL/I-style comments encloseu by
/* and */ may appear between any tokens in the TTF. The lLast en=
try in the TTF must be the end statement. Global statements spec-
ifying defaults may appear anywhere before the end statement, the
agefaults they specify are in effect for all subsequent terminal
tyce entries, until they are overridden by Subsequent global
statements, Except for the end statement, all stateTents consist
of the statement keyword, a colon, the wvariable field of the
statements, and a semicaolon.

Ierminal_Iype_Entry

The entry for each terminal type consists of a terminal_type
statement naming the terminal typer, fOllowed by statements
describing the attributes of the terminal type. Attributes not
specified for a terminal type are set from the defaults estab-
Lished by global statements or supplied by the cv_ttf command,

A description of each statement found in a terminal type en-
try is given below.

terminal_type: <type name> [like <type name>]’
The terminal_type statement is required. It specifies
the name of the terminal type described by the state-
ments following it. The type name has a maximum Ltength
of 16 characters, AlLL lowercase letters in the type
name are translated to uppercase before being stored 1in
the TTT. If the optional Llike keyword is supplied, it
indicates that the attributes of the current terminal
type are to te copied from the entry for the type whose
name follows the like keyword, except for those that
are overridden by subseguent statemMents in the current

-14-

MULTICS TECHNICAL BULLETIN MTB-332

entry. The lLike keyword must refer to a ‘\
previously-defined terminal type.

modes: <model>, <mode2>, ... <modeN>;
The modes statement is required, It specifies the modes
to be set when the terminal's type is assigned. A mode
Nname may be preceded by a " character to indicate that
the specified mode is off for the terminal type. The
Line-length specification (Lln) must be included in the
modes Statement.

tab_string: "<string>";
The tab_string statement is optional. If present., 1t
specifies a string, enclosed in gquotess to be sent to
the terminal in raw mode in order to set all its hori-
zontal tabs.

Daucs: <baudl1> <baud2> ... <baudN>;

The bauds statement is required if any delay statements
(see below) are provided, and it must precede all delay
statements, It specifies the baud rates to which the
values supplied in the delay statements apply. A speci-
fication of "other" in the bauds Statement meanS that ‘-\
the corresponding values in the delay statements apply
to all baud rates not specified in the bauds statement,
If “other" is not specifieds, then delay values of 0 are
assumed for all baud rates not specified in the bauds
statement. The following is a Llist of the baud rates
that may be specified:

1149
133
150
300
600
1200
1800
2400
4800
7200
96u0

Delay Statements
Each delay statement is of the form:

<delay keyword>: <valuel1> <value2> ... <valueN>; -~

14

)

MULTICS TECHNICAL BULLETIN MTB-332

The same number of values must be supplied as baud
rates in the bauds statement., Each value specifies the
number of delays to be used for the character described
by the velay keyword (see below) at the baud rate spec-
ified in the corresponding positicn in the bauds state-
ment (see example below). The possible delay keywords
are.

vert_nl_delays
the numpber of delays to be sent wWith a
linefeed

horz_nl _delays
the number of delays to be sent for each col-
umn position traversed by a carriage return

const_tab_delays
the minimum number of delays to be sent with
a horizontal tab

var _tab_delays
the number of additional delays to be sent
for each column position traversed by a hori-
zontal tab

backspace_delays
the number of delays to be sent with a
backspace

vt_ff_delays
the number of delays to be sent with a verti-
cal tab or formfeed

Negative values for vert_nl_delays and backspace_delays
have the same meanings as those described 1in the de-
scription of the set_delays order to the tty_ I/0 mod-
ule in the MPM Subsystem Writer's Guide. Values of 0
are assumed at all baud rates for any delay type not
specified.

Example of bauds and delay statements

bauds: 110 150 300 1200 other:;

vert_nl_delays: 2 3 6 24 30,

_15-

MULTICS TECHNICAL BULLETIN MTB-332

horz_ni_delays: .l .3 .5 2 Ss

const_tab_delays: 0 1 2 7 10
var_tab_delays: .2 3 .5 2 57
backspace_delays: 0 0 1 3 67
vt_ff_delays: 0 0 0 0 a9z

The first column gives the complete set of delay values
to be used at 110 baud; the second column gives the
values to be used at 150 baud, etc.

line_types: <line_type namel>y<line_type namel>,

® see <line_type nameqp>,
The Line_types statement is coptional. It specifies the
names of the line types on which a terminal of the cur-
rent type can be run., If it is omitted, the current
terminal type can run on any Lline type,

erase: <character>,
The erase statement is optional. It specifies the erase
character for the terminal type. If it is omitted, the
character is used.

kKitle <character>;
The kill statement is optional, It specifies the kill
character for the terminal type. If it is omitted, the
@ character is used.

keypoard_addressings: yes/no,
The keyboard_addressing statement is optional., It indi-
cates whether or not to do keyboard locking and unlock-
ing for a terminal on a communications <channel whose
line type is "ASCII"., If it is not provided, a value
of "no" is assumed. This attriobute is ignored for chan-
nels of any other line type.

print_preaccess_message: yes/no;
The print _preacCcess_message Statement is optional. It
indicates whether or not the answering service should
print a meSSage advising the user to enter a preaccess
request if the user entered an unrecognized login word.
It is wuseful in cases where the terminal's character
code may be cifferent from what was expected. At pres-

-16~

MULTICS TECHNICAL BULLETIN MT2-332

ent, only one possible preaccess message is defined,
suitable for use with E£EBCDIC and C(Correspondence-code
2741 terminals; this mechanism may be generalized
later. If the print_preaccess._message Statement is
omitted, a value of "no" is assumed.

ccnecitional_printer_off., yes/no.,

The conditional_printer_off statement is optional. It
ingicates whether or not t he terminal's answerbiack
identification should be used to determine whether the
terminal 1is equipped with the printer-off feature. 1f
"yes" 1s specifieds, a terminal of this type is asSSumecq
not to have printer-off unless it has an answerback ID
beginning with a digit (0 to 9)7 otherwise the exis-
tence of the printer-off feature is deduced from the
presence or absence of a printer-off segquence in the
special characters table (see below), This attribute
provides compatibility with the present implementation,
in which the answering service checks the ID for 2741
terminals. If the conditional_printer_off statement is
omitteds, a value of "no" is assumed.

ingut_conversion: <table name>,

The input_Conversion statement is optional. It Speci-
fies the name of a conversion table (defined by & con-
version table entry) to be wused 1in convertina input
from the terminal. If i1t is omitted, or the tatle name
is a null string or the word "none", no input conver-
sion table i1s used.

output_conversion: <table name>;

special;

The output_conversion statement s optional. It speci=
fies the name of a conversion tablte (defined by 3
conversion_table entry) to be usSed in converting output
sent to the terminal. If it is omitteds or the table
name is a null string or the word "none'", no cutput
conversion table i1s used.

<table name>;

The special statement is opticnal. It specifies a table
(defined by a special table entry) to be used as a spe-
cial characters table when converting inbut and output
(see the description of the special characters table
entry, below). If it is omitted, or the table name s
a null string or the word "none", no special c¢characters
table is used. If an output conversion table whose en-
tries are not alt U is specifieds, a special characters
table must also be specified in order for th2 terminal

-17-

MULTICS TECHNICAL BULLETIN MTHB-332

to function correctly.

input_translation: <table name>;
The input_translation statement is optional., It speci-
ties a table (defined by a translation table entry)
used to translate input from the terminal's code to
ASCII. If it is omitted, or the table name 1i1s a null
string or the word "none'", input is not translated.

output_translation: <table name>,;
The output_translation statement is optional, It speci-
fies the name of a table (defined by a translation ta-
ole entry) used to translate output from ASCII to the
terminal's code. If it is omitted, or the table name is
a null string or the word '"ncne'", output is not
translated,

additional_info: <string>;

The additional_info statement is optional, If proviced,
it specifies additional information which may be needed
to run the terminal. This information 1is not 1inter-
preted Ly the standard terminal software, and is not
passed to ring 07 it may be used by a special 1/0 mod-
ule used to run terminals of the currert type. The
format and contents of the string depend on the partic-
ular application: it may even bhe the pathname ot a
segment containing additional information,

old_type: <number>;
The old_type statement is optional. It may be used for
compatibility purposes to specify the nNnumeric value of
the terminal type formerly predefined by MCS that most
closely corresponds to the terminal type described by
this terminal type entry.

glopal_statements

A global statement specifies a default value for an attri-
bute of a terminal type. It has the same form as the terminal
type entry statement describing the attribute except that the
statement keyword begins with a capital letter. A global state-
ment may not appear within a terminal type entry. Global state-
ments may be used for any statements included 1in a terminal type
entry except for terminal_type, Llike, tab_strings, tab_clear,
tab_stops, and the delay statements. (A global Bauds statement is

_‘]8-

MULTICS TECHNICAL BULLETIN MTB-332

allowed.)

Copyersion_Table tntry

A conversion table entry <consists of two statements: one
specifying the name of the table and one specifyina its contents.
A conversion table entry is described below.

conversion_table: <table name>’

<value(0> <valuel1> ... <valuel127>;
The table name is a string of up to 32 characters. The
values are octal numbers of one to three digitss each
value is the indicator corresponcding to the character
whose ASCII value is the index of the indicator in the
table. See the descriptions of the set_input_conversion
and set_output_conversion orders to tty_ I/0 module 1in
the MPM Subsytem Writer's Guide for a deScription of
conversion tables and the indicators they contain,

Translaticn_Table Eotry

A translation table entry consists of a statement specifying
the name of the table and a statement specifying its contents, as
described below.

translation_table: <table name>,

<valuel> <valuel1> ... <valuel127>;
The table name is a string of up to 32 characters. The
values are octal numbers of one to three digits. Each
value is the result of translation of the <character
whose bit representation is the index into the table of
that value (i.e., <valueO> is the result of translating
a character represented as 000, <value8> corresponds to
a character represented as 010, etc.>).

snecial _Characters_Table_Entry

A special characters table entry consists of a special_table
statement and a set of statements specifying the contents of a
special characters table, These statements are described below.
Wherever the expression <sequence> appears, it means from 0 to

-1 ()..

MULTICS TECHNICAL bLULLETIN MTH-332

three octal numbers of up to three Jigits eache separated by
white spuce, representing a seguence of characters to be output
to fulfill the specified function., All statements are required
unless otherwise stated. ALl seyuences are in ASCII code except
for the printer_on and printer_oft sequences. For those se-
gquences that are used when specific indicators are encountered in
the output conversion table, the relevant indicator is given. See
the description of the various tables in the discussion of orders
to the tty_ I1/0 module in the MPM Subsystem Writer's Guide for
more detailed information.

special_table: <table name>;
The special_table statement specifies the name of the
table., It is a string of up to 32 characters.

new_Lline: <seqguence>;
The new_line statement specifies the sequence to be
output for a newline character (output Conversion indi-
cator 1).

carriage_return: <sequence>,
The carriage_return statement specifies the sequence to
be output for a carriag€ return character (output con-

version indicator 2). It the seqguence is null,
backspaces are used to move the carriage to the left
margin,

backspace: <seguence>;
The backspace statement specifies the sequence tg be
output for a backspace character (ogutput conversion in-
dicator 4). I1f the sequence is nulls, a8 carriage return
and spaces are used to reach the <correct column. The
carriage return and backspace sequences should not Loth
be null.

tab: <seguence>,
The tao statement specifies the sequenNce to te output
for a horizontal tab character. If the sequence s
null, an appropriate number of spaces 1S uSed to reach
the next tab staop.

vertical_tab: <seguence>;
The vertical_tab statement specifies the sequence to be
output for a vertical tab character (output conversion
indicator 5) 1f the terminal is in vertsp moOde.

_20..

MULTICS TECHNICAL BULLETIN MTB8-332

’F‘ form_feed: <sequence>;
The form_feed statement specifies the seguence to be
output for a formfeed character (output conversion in-
dicator 6) if the terminal is in vertsp mode.

printer_on: <sequence>;
The printer_on statement is optional. It specifies the
sequence to be cutput to fulfill a "printer_on" order,.
The seguénce is specified in the terminal's character
code. If this statement is omitted, a null seguence is
assumed, implying that the printer_on feature s not
supported.

printer_off: <sequence>.,
The printer_cff statement is optional, It specifies the
sequence to be output to fulfill a "printer_off" order.
The sequence i1s specified in the terminal®s <character
code. If this statement is omittedsr a null seqguence is
assumed, implying that the printer_off feature is not
supported.

red_shift: <sequence>,
The red _shifg statemMent specifies the sequence to be
"‘ output tor a red-ribbon-shift character {(outout conver-
sion indicator 10 (octal)),

black_shift: <seguence>;
The black_shift statement specifies the sequence to be
output for a black-ribpbon-shift character (output con-
version inaicator 11 (octal)).

end_of_page: <seyuence>,;
The end_of_page statement is optional. It specifies the
sequence to be output when output is suspended because
the terminal's page length has been reached. If it is
omitted, the character sequence "ECP" is aSsumed.

output_escapes: <indicator1> <sequencel>,
<indicatord> <sequencel>s ... <indicatorN> <sequenceiN>;

The output_escapes statement specifies the eScape se-
quences to be output for characters whose output con-
version indicators are 21 (octal) or greater when the
terminal is in “edited mode. The indicators specified
in the statement are the same as the corresponding in-
dicators 1n the output conversion table.

_21-

MULTICS TECHNICAL BULLETIN MTB-332

edited_output_escapes: <indicator1> <sequencel>,
<indicator?> <seqguencedld>, ... <indicatorN> <sequenceN>;
The edited_output._cscapes statement specifies sequences
like those specified by the output_escapes statement,
but they are used when the terminal is in edited mode,

input_escapes: <valuel> <resultl1>, <value?l> <resulti>.,
eeo SvalueN> <resultN>;

The input_escapes Statement is optional. It specifies
those input characters that are to be interpreted as
escape sequences when preceded by an escape character,
and the result characters that replace those sequences,
(An escape character in this context §is a <character
defined by software t0 initiate an escape sequencev
i.e.r one with an indicator of 2 in the input conver-
sion table.) Each "value'" is an octal number reore-
senting the ASCII value of a character that is used in
an escape Seguence, the corresponding "result” is an
octal number representing the single character that re-
places the escape sequence in the input stream.,

Pefavit_TIyces

Exactly one aefault_types statement must appear in the TTF,
It specifies default terminal types on the basis of baud rate and
line type. This information is used by the answering service when
a terminal dials up to assign its type if no detault terminal
type is specified in the (DT entry for the channel. The
default_types statement is described telow.

default_types: <paudl> <line_typel> <terminal_typel>,
<baud2> <line_type2> <terminal_type2>,
<baudN> <line_typeN> <terminal_typeN>’

Each baudN is a number representing a baud rate, or the

word "any"; each line_typeN is the name of a valid Line
typesr, or the word "any'"; each terminal_typeN is the de-
fault terminal type for the specified combinatison of
baud rate and line type. The table thus ctonstructez 15
searched in the order in which the baud rate-line type-
terminal type triplets are specifieds, and the first en-
try that matches the particular channel is used to de-
termine the initial terminal type,.

-22~

MULTICS TECHNICAL BULLETIN MTg=-332

Answerback_Iable

The answerback table consists of entries specifying how to
determine a terminal's type and identification on the basis of
its answerback. The answerback sent by the terminal is scanned
under control of each answerback table entry, starting with the
first one specified in the answerback table; if the scan succaeds
(as described below)s and the terminal's Line type is one that 1is
valig for the terminal type specified in the answerback table en-
trys, the terminal type and ID are derived from that entry; otner-
wise the answerback is rescanned uSing the next entrys, and so on.
An answerback table entry <consists of two statements: an
answerback statement and a type Statement.

answerback: <keywordl valuel>, <keyword? valueZ>,
ee. Skeywordh> <valueN>;
The ansSwerback statement describes how the scan of the
answerback is to be performed. The '"scan pointer,"”
indicating the current character position 1in the
answerback of the scans starts at the beginning of the
answerback string and is adjusted acccrding to the con-
trols specified by the answerback statement, The possi-
ble keyword-value pairs are described below,

match <expression>

<expression> is either the word "digit", the
word "letter”, or a string enclosed in
quotes, If it is digit or letter, the scan
fails unless the character address2a by the
scan pointer is a digit (C to 9) or a letter
(A to 2 or a to 2z)s respectively. [f 1t is a
gqucted string, the scan fails unless the scan
pointer points to the beginning of a matching
string., If the match succeeds, the scan
pointer is advanced over the matching string
or characters, and the scan is continued using
the next keyword-value pair.

search <expression>
works Like match, except that the scan suc-
ceeds if the matching character or string 1is
found anywhere to the right of the scan
pointer.

skip N
causes the scan pointer to be moved N charac-
ters to the right. N may be negative, in
which case the pointer 1is actuadally moved to
the Left. The scan fails if there are fewer

-2 3=

MULTICS TECHNICAL BULLETIN MTB-332

than N <characters between the scan pointer
and the end (or beginning) of the answerback

string.

id N
The N characters starting at the scan pointer
form the terminal's ID. N must be in the
range 1 <= N <= 4, 1t there are fewer than N
characters to the right of the scan pointer,
the scan faits.

id rest

As many characters (up to 4) as remain to the
right of the scan pointer constitute the
terminal's ID (not including <control anc
carriage-motion characters).

type: <type name>; The type statement specifies the name of the
terminal type tO be assigned to a termiral whose
answerback satisfies the specification in the
answerback statement, If the type name is "none", the
answerback 1S to be used to set the ID only, and the
terminal type is not changed.

..2[._

MULTICS TECHNICAL BULLETIN

EXANPLES

Sample_Iecminal_Iype_Entry

terminal _type: ThN30G,

modes:

tab_clear: "\Q332"; /* ESC 2
tab_stop: "\0331 "

bauds: 116 150
vert_nl_delays: 0 2
backspace_delays: -2 -3
vt_ff_delays: 19 29

/* No delays for (R
erase: Ha

kill: a7
xeycoard_addressing: no-
olc_type: 4,
input_conversion:
output_conversion:

special: terminet _special’,

input_translation: -

output_translation: nones

*/

/ *

300

59

or

/* old value for TermiNet

] *

/* this too

-25-

HT

this

MTB-332

tabsscansescrerkl,"crechor, " Lfechorshndlquit,lt118;

ESC 1 + 10 blanks */
12007
-337
~27;
230,

*/

*/

standard_input_conversion;

ASCII _output_conversion;

could have been omitted =/

* /

MULTICS TECHNICAL BULLETIN ‘ MTB-332

sample_uUse_of _Like_Keyword

terminal _type: TINB80 like TN300; /% same as 300 but LL = 80 =/

modes: tabs,cansescrerkl,"crecho,"lfechor,hndlquit,LL80;

2ample _Conversion_Table

conversion_table: ebcdic_output_conversion;

g7 G7 07 07 07 07 07 07
04 03 01 Q7 07 G2 10 M1
o7 0? €7 O7 Q07 07 07 07
¢z 07 07 07 07 07 07 07
oG 00 00 OGO 00 00 gou oC
6 o0 0o 00 00 00 00 O0OC
go 00 00 00 0C Q0 w00 Qo0
guo 00 w00 €0 00 00 Q0 oCcC
J0 0 00 00 00 00 00 0O
0c 00 6O OO0 00 00 00 oc
GG 00 00 €O 00 00 00 oOC
o0 00 0G 217 00 22 00 QC
23 00 (g0 00 00 0C (GO0 o0C
00 00 00 00 00 00 00 oC
g0 C0 00 ©O 00 OC o900 oc
00 00 00 24 00 25 26 14;

Sameple_Special_Charactecs_Table

special_tavle: ebcdic_specials

new_L1ine: G112+
carriage_return:
backspace: U10;
tav: 011,
vertical_tabs: 7
form_feed:

printer_on: 015, /* this i1s EBCDIC =/
printer_off: 016, /* so is this */

26

MULTICS TECHNICAL BULLETIN MTB-332

’F- red_shift: 033 141; /% ESC a x/
black_shift: 033 142, /* ESC b */
ena_of_page: 7 /* don't print EOQOP */

ocutput_escapes:

21 134 074, /x [=> \< x/
22 134 076, /x 1 => \> %/
23 134 047, /* ° => \' x/
24 134 050, /% { => \(%/
25 134 051, /*x 3 => \) */

25 134 1647 /* T => \t x/

edited_output_escapes:

21 050 0106 Qr7s., /*x £ x/

22 051 010 075, /* 3 x/

23 047, /* ' x/

24 0S50 010 055, /* € x/

25 051 010 0s5, /* 2 =~/

26 047 010 1362 /*x Y «/

input_escapes:

074 133, /* \< => [*/

076 135, /% \> =>] /

047 140, /* \' => 7 x/

0s0 173, I NC => { =/
"\ 051 175, /* \) => 3} =/

164 176, /* \t => 7 »/

124 1767 /* \T => 7 «/

samcle_Default_ _Type_Statement

default_types: 110 ASCII TTY33,
any ASCII ASCII.,
133 1050 1050,
133 2741 2741,
12C0 ARDS ARDS»
1200 202eTx TH300,
any any G115;

Samule_Aonswerbagk Table_ Entries

answerback: search " E", id 3;
' & tyce: TN3UO;

P 7 -

MULTICS TECHNICAL BULLETIN

answerback: match "0", id 3.
type: 2741,

answerback: search "XxX", skip 3, match letter,
match digit, skip =2, id 4./
type: our_own,

28

578—332

MULTICS TECHNICAL BULLETIN MTH-332

~ ABRENRIX

This appendix contains declarations of info structures associated
with the followingy new orders: set_terminal_types, terminal_info,
set_tabss and set_terminal_data.

; 1. set_terminal_type

‘ gcl 1 terminal_type_info.,

2 version fixed bin init(1).,

: 2 name char(16),

! 2 flags aligned,

set_tabs bit(1) unales
set_modes bit(1) unal.,
ignore_Lline_type bit(1) unal,
mbz bit(33) unal’

W W W W

2. terminal_info

dct 1 terminal_info.,

version fixed bin 1nit(1),
term_type char(16),
lLine_type fixed bin,
baud_rate fixed bings

id char(4),

pad(4) fixed bin:

NN DN N

3. set_tabs
del 1 tab_info.,

2 version fixed bin init(1),
2 tab_string char(512) varying’,

29

MULTICS TECHNICAL BULLETIN » MTB=-332

4, set_terminal_data

decl 1 terminal_type_datar
version fixed bin init(1),
old_type fixed bin,
name char(16).,
delay_ptr ptr,
input_translation_ptr ptr.,
output_translation_ptr ptr,
input_conversion_ptr ptr,
output_conversion_ptr ptr,
special _ptr ptr»
editing_chars aligned,
3 erase char(1) unales
3 kill char(1) unal,
3 mbz fixed bin(17) unal,
2 flags aligned,
3 keyboard_addressing bit(1) unal.,
3 mbz bit(35) unal;

NN PN NN N Y O

-3~

