
MULTICS TECHNICAL BULLETIN MTB-332

To: D i s t r i bu t i on

Fram: Robert S. Coren & Jerry Stern

Date: 03122177

Subject: Multics Terminal Types

li:iIBQJHJ~IlQti

This document describes a proposal to reimplement the
hanaling of terminal types by MCS i~ such a way as to allow each
site to define its own set of terminal types. The principal rea­
son for doing this i,s that, with the wide <and increasing> vari­
ety of terminals available, the rather limited set defined by the
present ~ultics softwdre is becomin~ increasingly inadequate. To
expand the list of statically-defined types, and their associated
ring 0 tables, to include all known and conceivable termi~als
would be a waste of space even if it were possible. Users can, of
course, reaefine their own terminals on an individual basis by
substituting the appropriate tables {as described in MTB 290),
but it is unreasonable to require a Large community of users, all
using a particular terminal that does not happen tote precisely
described oy any of the system-supplied definitions, to take this
special action in order to get their terminals to run properly.
~Y means of a replaceable table, generated from an 4SCII file
that can oe edited by a system administrator, a site can descrioe
with whatever precision it desires the terminals it expects to be
most commonly connected to its system.

In order to explain how this can be done, it seems advisable
f i rs t to de f i n e wh a t i s m ea n t by a "t e rm i n a l type" from t he poi n t
of view of MCS <something that has never been done before), and
to aescrioe the presently-implemented method of determining ana
acting on a given terminal's type.

The concept of "terminal type" is used to distinquish among
terminals on the basis of their physical characteristics and be­
havior. In particular, the following attributes are components of

Multics Project working documentation. Not to be
distributed outside the Multics Project.

-1-

reproducerl or

MULTICS TECHNICAL HULLETIN MTB-332

a terminal's type:

character set

character codes <e.g., EBCDIC, ASCII, etc.)

oehavior in response to "carriage movement"
<linefeed, carriage return, etc.>

characters

behavior in response to other control sequences

time required for
lays")

carriage lllovement

software control of horizontal tabs

line length and page length

functions ("de-

A terminal type is to be distinguished from a "line type,"
which defines the communications protocol used to control a ter­
minal or related device. In Mes, the terminal type associated
with a communications channel is used by the ring 0 software,
whereas the line type is primarily of interest to the FNP.

From the point of view of the ring 0 software, a terminal
type is sµecified by a set of tables (used by tty_read and
tty_write when processing input and output respectively) and a
few other attributes. These items are summarized below. The ta­
bles are described in MTB 290; their use is described in more de­
tail in MTBs 234 and 262. Most of the tables and attributes can
be changed by a user on an individual basis: the terminal type is
a way of specifying a complete set of consistent attributes.

Input and output translation tables are used to translate
between ASCII and the terminal's character code. These tables may
be absent for an ASCII terminal.

-2-

MULTICS TECHNICAL BULLETIN MTB-332

The input conversion table is used to identify certain spe­
cial characters on input, such as escape characters.

The output conversion table is used in conjunction with the
special characters table <see below> to identify carriage control
characters and characters that are to be replaced by control se­
quences or escape sequences <escape sequences are used to fill
yaps in the terminal's character set).

The
carriage
of local
contains

special characters table specifies control sequences for
movement, ribbon shift, and the disabling and enabling

copy ("printer off" and "printer on"); in addition, it
output escape sequences and defines the results of input

escape sequences.

A delay table specifies the number of "delay" (NUL> charac­
ters required to allow the terminal to perform various kinds of
carriage motion. Clearly these numbers depend on the speed of the
terminal; accordingly, several different delay tables may be
associated with a single terminal type, one for each of several
speeds.

INITIAL MODES

A string suitable for passing to iox_imodes is provided to
specify the minimal set of modes suitable to the terminal. Page
length (if any) and line length are included here: some other
modes related to physical characteristics of a terminal are

-3-

MULTICS TECHNICAL BULLETIN MTB-332

lfecho, crecho, tabecho, tabs, and vertsp.

HORIZONTAL TA8 SETTING

For some terminals, horizontal tab stops are settable by
software, by sending a control sequen~e to the terminal. For
such terminals, a string is supplied that may be used to set tab
stops at the Multics standard tab positions <columns 1, 11, 21,
etc.>.

EDITING CHA~ACTERS

The editing characters are those recognized by tty_read as
"erase" and "kill" characters. The selection of these characters
is actually a software consideration rather than an attribute of
the terminal <except in the case of a terminal that lacks either
of the standard editing characters>: however, an initial specifi­
cation of these characters is included for convenience as part of
the specification of a terminal type.

KEYBOARD LOCKING AND UNLOCKING

Some terminals lock and unlock their keyboards in response
to certain control sequences. These control sequences are defined
on the basis of line type in the FNP software. If the terminal's
J.. ia ~ t y p e i s "AS CI I " < norm a l AS C I I as y n ch r on o us pro to co l > · the use
of this feature is controlled by the terminal type; for example,
the TeletYPe Model 37 has this feature, whilP the TermiNet 300
d o e s n o t • F o r I BM l i n e t y p e s C 2 7 4 1 a n d 1 0 5 0 } t h e l o c k i n g a n d u n -
locking of the keyboard is essential, anJ cannot be disabled; for
other line types the feature is not supported.

Ten terminal types are recognized by MCS at present, and
several programs contain assumptions about possible types: the
addition of other types is therefore difficult without major
restructuring such as is proposed in this MTB. Most of the infor­
mation needed to specify the terminal types iS kept in a ring 0
segment named tty_tables, which is generated from a mexp source Allll\

-4-

MULTICS TECHNICAL BULLETIN MTB-332

segment. These types are kno~n in ring 0 by numbers; an include
file used in the user ring associates names with these numbers.
The terminal type number is an index into an array of structures
at the base of tty_tables that contain the offsets of the tables
used by the various types. In particular, each structure in the
array contains the offsets uf the input and output translation
tables, the input and output conversion tables, the special char­
acters taoLe, and delay tables to be used at 10, 15, 30, and 120
characters per second. A 0 offset means that the corresponding
taole does not exist for the particular terminal type. WhPn a
terminal's type is determined initially when the terminal dials
up, or is changed by means of a "set_type" order, pointers to
these tables are derived from the offsets described above and
stored in the terminal's ring 0 control block. These pointers may
oe replaced individually with pointers supplied by the user of
the terminal; since, however, these are pointers in the user's
address sµace, the pointers to the jefault tables in tty_tables
must be restored whenever the terminal is assigned to another
process.

The initial modes and the tab-setting strings for each ter­
minal type are kept in a user-ring data base called the initial
modes table, ~hi ch is indexed (like ·tty_tables> by terminal tYPe
number. A modes call using the string supplied in the initial
modes table is made whenever the terminal type is set.

Editing ch1aracters default for all terminal types to "ti" and
"@"for erase and kill respectively. They may be replaced by in­
dividual users.

The keyboard-Locking feature is enabled for terminal typ~ 3
<TTY37) and disabled for all other ASCII terminal types.

The initial terminal type is assigned on the basis of an
"exi:.;eriment" conducted by the dnsweriny service, using the baud
rate, answerback, line type, and information stored in the CDT.

In order to permit the definition of terminal types on~ per
installation basis, a new administrative data base will be
created. The system administrator will maintain an ASCII source
file for tnis data base called the Terminal Type File CTTFj. The
TTF wi LL be converted to a binary data base called the Terminal
Type Table (TTT) by a reduction-compiler translator. All termi­
nal type information will reside in the TTT, a rinq 4 segment ac-

-'.>-

MULTICS TECHNICAL BULLETIN

cessible to the answering service and users alike.
type will be identified by an ASCII name.

MTB-332

Each terminal

~henever a terminal type is set for a specified terminal,
all of the needed terminal type data will be copied into ring O.
Normally, such data will be extracted from the TTT. However,
this is not strictly necessary. The TTT merely represents a user
ring convention for associating a name wi.th a collection of ter­
minal type data. This convention will be observed by the user
ring tty_ I/O module. However, it will be possible for a user to
bypass this convention, if desired. Thus, a user can manufacture
his own terminal type data and present it to ring O. Ring 0 re­
quires only that the data be self-consistent. As an aid to the
user ring, ring 0 will remember the terminal type name, but will
not depend on it in any manner.

The ring 0 data bases related to terminal management will be
reorganized to accommodate the new methCd of defining terminal
types (and also to make certain general improvements>.
Currently, the segment called tty_tables is used to hold static
terminal type data. Under the new scheme, tty_tables will be
used to store terminal type data received from the user ring.
Since it is expected that at any given site many users will share
the same terminal types, space usage in tty_ tables can be
minimized bY sharing various items of terminal type data. The
wired seyment called ttY_buf is currently used to stare terminal
l/O ouffers as well as two different data structures for each
terminal. Since these data structures will have to be enlarged,
it is sensible to separate information that needs to be wired
<tor reference at interrupt time) from information that need not
be hired. Therefore, a new unwired segment called tty_data will
be created to stare unwired terminal data. Wired terminal data
will continue to be stared in tty_buf.

One of the principal motivations for providing
installation-defined terminal types is so that the answering ser­
vice can correctly determine terminal characteristics at dialup
time. Therefore, the answering service will be modified to com­
pute a terminal type at dialup based on factors such as the ter­
minal baud rate, the line type, the answerback Cif any), and an
optional default terminal type specified in the CDT. The way in
~hich these factors are combined to select a terminal type is
controlled by the system administrator.

User ring changes required to support installation-defined
terminal types include the addition of new orders to tty_, the

-6-

MULTICS TECHNICAL BULLETIN MT8-332

handling of obsolete orders by tty_, and modifications to the
set_tty command. Also, the user_info_ suoroutine and the user
active function must be changed.

The new orders for tty_ include set_terminal_type,
terminal_info, and set_tabs. The set_terminal_type order re-
places the current set_type order. Given a terminal type name,
it will extract the relevant data from the TTT and pass this ~ata

into ring o. The caller specifies whether tabs and/or modes are
to be set according to the default values for the ter~inal type.
Normally, the terminal type for a ~iven terminal is requirea to
be compatible witn the line type. However, the set_terminal_type
order allows this restriction to be overridden. The
terminal_info order is similar to the current info order. Hc~ev­

er1 terminal_info returns a terminal type name (rather tha~ a
number) ano will dlso indicate the line type. The set_tabs orjer
transmits a tab-setting string to a given terminal. If no info
structure is supplied, then the default tab string for the termi­
nal type <if any> is gotten from the TTT. Otherwise, a
tab-setting string is described by the info structure. Declara­
tions for the info structures used by the three new orders are
given in the Appendix.

The new scheme for defining terminal types by name will ob­
solete the terminal type numbers now used. This will affect the
set_type and info orders to tty_. Compatibility considerat1ons
require that these two orders continue to work, at least for a
moderate period of time. Therefore, the preparer of the TTF will
specify an "old" terminal type number for each terminal type.
This will permit tty_ to map a set_type order into a
set_terminal_type order. Furthermore, set_terminal_tyPe will
pass the old type number into ring 0 along with the other termi­
nal type data. This will permit ring Q, and hence tty_, to co~­
tinue to support the info order. Of course, new terminal types
will undoubtedly be defined for which no old counterpart exists.
In this case, the TTT will specify an old type number of -1. us­
er programs that call the info order will not recognize the -1,
just as they would not recognize any new terminal type number.

I

The set_tty command must be changed to take advantage of the
three new orders to tty_. This should actually simplify set_tty
considerably. It is proposed that the interpretation of the
-reset control argument be modified. Currently, -reset turns off
all modes that are not turned on in the default mode string for
the terminal type. (The default mode string normally specifies
only positive modes.) This has the undesirable effect of turning
off modes that are irrelevant to the terminal type. For example,
the presence or absence of replay mode is of no consequence to
most terminal types. Therefore, the default mode string for a
terminal type should specify all required modes, both positive
and negative. Then, "set_tty -reset" will simply set the default
modes and leave other modes unchanged.

-7-

MULTICS TECHNICAL BULLETIN MTB-332

The tty_data entry point to the user_info_ subroutine re­
turns a terminal type number and therefore will become obsolete.
A new entry point called terminal_data will be provided as a re­
placement and will return a terminal type name. Of course, the
old entry point must be retained for compatibility. Hence,
user_info_$tty_data will return the "old" terminal type number
from the TTT. Since user_info_ obtains its information from the
PIT, both the terminal type name and the old terminal type nuffiber
must be stored in the PIT by the answering service. This re­
quires adding a new field, the terminal type name, to the PIT.
The user active function must be changed to call
user_info_$terminal_data rather than user_info_$tty_data to han­
dle the "term_type" keyword.

As mentioned earlier, it is possible for a user program to
create its own terminal type data and to pass this data to ring
O. In general, however, this would require at least a moderate
amount of programming effort. To reduce this effort, it is in­
tended that a user be able to employ the TTF translator to pro­
duce his own private TTT. This provides a relatively simple
means for the knowledgeable user to create the necessary termir.al
type data. This still requires, however, that the user deal di­
rectly with the ring 0 interface. This inconvenience could be
eliminated by the addition of another order to tty_ called
set_terminal_type_table. As the name implies, this order would
instruct tty_ to reference the user's TTT rather .than the system .,
TTT. Thus, setting a non-standard terminal type becomes as easy
as setting a standard terminal type. Although such a feature
c o u l d o e re ad i l y s up p l i e d , i t i s not kn own to be wort h w hi le. I t
is expected that, in general, a site will supply a TTT that can
accommodate all of its users. Therefore, the
set_terminal_type_table order may not be implemented initially.

Changes to riny 0 for installation-defined terminal types
include the addition of new orders to ring 0 Mes, the handling of
obsolete orders, and the management of terminal type data sup­
plied by the user ring. Also, per-channel data structures will
be reorganized to separate wired and unwired data.

Two new orders for ring 0 MCS are called set_terminal_,::ata
and terminal_info. The set_terminal_data order accepts an info
structure (see Apµendix for declaration) that defines the various
items of terminal type data. Also included is the old terminal
type number. The user ring tty_ 1/0 module calls the
set_terminal_data order when it receives a set_terminal_tYpe or­
der. The terminal_info order, as implemented by ring Q, is
equivalent to the user ring terminal_info order.

-8-

MULTICS TECHNICAL BULLETIN MTH-332

The set_type and info orders now supported by ring 0 MCS
will become obsolete. As described earlier, ring 0 can continue
to SuPPort the info order because the set_terminal_data order ob­
tains the old terminal type number. However, the set_type order
can no longer be supported at the rin9 0 interface. Any user
programs that call ring U directly must be changed to use
set_terminal_data rather than set_type.

Tne tty_tables segment will become a dynamic data base used
to store translation tables, conversion tables, special character
tables, and delay tables. These tables are set collectively by
the set_terminal_data order and individually by several other ex­
isting orders. Since orders for setting individual tables allow
the caller to specify that the default table for the terminal
type be used, rin~ 0 MCS will always remember the default tables
for a terminal type Cas supplied by a set_terminal_data order)
even after an individual table has been replaced. Currently, the
use of a non-stanaard table re~uires that the user provide perma­
nent storage for the table in the user ring. This will no longer
be necessary.

A ne~ program wi LL be provided to manage tty_tables. This
program will be responsible for the allocation and deallocation
of table storage s~ace. Each time a new table is about to be
added, a search will be made to discover if an identical table is
alreaay present in tty_tables. If so, the new table need not be
added. However, a reference count must be maintained in order to
properly interpret subsequent requests for table deletion.

Two data structures called the FCTL and the CTL are now
maintained for each terminal channel. These structures must be
expanded to contain new pieces of terminal type information.
aoth CTLs and FCTLs are stored in tty_buf, a wired segment.
Since much of the information in the CTL need not be wired, this
information will be moved to an unwired segment called tty_data.
To facilitate the reorganization, CTLs and FCTLs will be replaced
oy new data structures called TCBs (terminal control blocks> and
WTCBs (wired terminal control blocks>.

Answering service changes required for installation-defined
terminal types include a new method for determininJ terminal
types at dialup time, use of a new order to set terminal types,
and a TTT installation mechanism. Also of interest is the dispo­
s i t i on o f t e r m i na l t y p e s f o l l o w i n g a " n e w _ p r o c " o r " l o go u t
-hold".

The determination of a terminal type at dialup time will de­
pend upon a combination of factors. As is presently the case,
the dnswerback from a terminal, if any, can be used to dScertain

-9-

MULTICS TECHNICAL BULLETIN MTB-332

the terminal type. However, before the answerback c~n be read,
an initial terminal type must he set. Currently, each CDT entry
contains an optional default terminal type number. This number
must be reµlaced DY an ASCII name. If a default terminal typ~ is
specified in the CDT entry for a terminal, then that type is used
for the initial terminal type. If no default type is specified
in the COT, then the answering service will examine a new data
oase contained in the TTT. This data base consists of an ordered
list of triples, each containing a baud rate, line type, and ter­
m i n d l type • A s pe c i a l s y m b o l i s used t o i n d i cat e a "w i l d c a rd"
bauo rate or line type. The list is scanned until a match is
found for the baud rate and line type of the given terminal. The
associated terminal type becomes the initial terminal type.

Having set the initial terminal type, the answering service
then checks a new flag in the CDT entry for the terminal
indicating whether an attempt Should he made to read the
answerback. If so, the answerback is read ar.d decoded according
to another new data base contained in the TTT. This data base
describes how to recognize answerbacks that indicate specific
terminal types and also how to separate the terminal ID. If the
answerback indicates a different type from the initial type, ther
the new terminal type is set.

In order to set terminal types, the answering service must
make use of a new order. The answeriny service does not use
tty_, but rather uses ring 0 MCS directly. Therefore, the an­
swering service must use the set_terminal_data order. The an­
swering service will also set tabs and modes whenever it sets a
terminal type. For tab setting, it will share a com~on

subroutine with tty_.

A mechanism for installing a new TTT must be ajded to the
answering service. This will be handled in a manner similar to
that of other tables. A new TTT must be checked to ensure that
all default terminal types mentioned in the CDT are defined in
the TTT. Conversely, a new CDT must satisfy the same check.

One aspect of installing a new TTT is different from that of
most other administrative tables. The TTT is not only an answer­
ing service data base, but also a user data base. The deletion
of an old TTT could adversely affect user processes. Therefore,
wnen a new TTT is installed, the old copy will be rena'Tled and not
deleted until the next answering service initialization.

Tnere is some question as to what effect a "new_proc" or
"Logout -hold" should have on terminal attributes. The current
implementation is peculiar in that certain terminal characteris­
tics, e.9$ modes, are retained whereas other characteristics,
e.y. translation tables, are reset to the default for the current
terminal type. The terminal type itself is not changed. This
odd behavior is clearly undesirable and no longer made necessary

-10-

MULTICS TECHNICAL BULLETIN MTB-332

by implementation considerations.

In the case of a new_proc, it is proposed that all terminal
characteristics be retained since this is most often the desired
result. Occasionally, a user may get into trouble by improperly
adjusting certain terminal attributes and would like new_proc to
rescue him. It will not.

The case ot logout -hold is some~hat Less clear-cut. This
operation may be used by a person who is simply changing projects
and ~ishes to retain the same terminal characteristics. On the
other hand, the terminal may be passing from one user to another.
The second user may or may not wish to retain the first user's
terminal characteristics. As a matter of clarity (and perhaps
security), it seems sensible that each new login should produce a
preoictable result unaffected by the actions of orevious users.
Furthermore, the new terminal type scheme should increase the
likelihood that the terminal type selected by the answering ser­
vice is the one the user wants. Hence, there seems Little redson
to retain terminal characteristics following a logout -hold.

The system administrator wi l L have the respons ioi lity of
maintaining the TTF. A standard fTF wi LL be distributed with
each system release and will define all commonly used terminal
types. Although the system administrator will have the freedom
to change terminal type names in the standard TTF, to do so would
probably cause compatibility problems. User programs already de­
pend on recognizing certain standard terminal type names. Th~re­

fore, these names should be retained.

As described µreviously, installation-time checks will be
made to ensure the mutual consistency of the CDT and the TTT.
From the administrator's point of view, however, it is some~hat
inconvenient to discover an error at installation time. It ~Jould

oe more convenient if such errors could be detected at compila­
tion time. Therefore, cv_cmf, the CMF to CDT translator, will be
made to cneck that each terminal tYPe specified in the CMF is ac­
tually defined in the installed TTT. This is the only way to
verify a terminal type name. A warning will be issued if an un­
known terminal type is found. Having the TTF to TTT translator
perform the reverse check seems unnecessary.

The new terminal type scheme requires a combination of
haracore, answering service, and system library changes. Fortu­
nately, however, it is possible to accomplish the necessary
changes without requiring combined hardcore and online installa-

-11 -

MULTICS TECHNICAL HULLETIN MT9-332

tions.
low.

An installation plan specifying major steps is given be-

1. Add interim versions of the new set_terminal_data and
terminal_ info orders to ring 0 MCS. The interim
set_terminal_data will ignore all information except the old ter­
minal type number and will behave exactly like the set_tyPe or­
der. The interim terminal_ info will convert a terminal type num­
ber to a terminal type name.

2. Create a TTF containing information equivalent to that of the
current tty_tables. Compile this to obtain a TTT and install it.

3. Use the new cv_cmf to compile the current CMF into a new CDT.
The new CDT will contain new fields (terminal_type_name and
read_answerback_fla~>.

4. In a special session, install the new
Then use the new answering service to install

S. Install the new ring 0 MCS.

6. Install online changes.

-12-

answering service.
the new CDT.

MULTICS TcCHNICAL BULLETIN MTB-332

The following is draft documentation for the System
Administrator's Manual describing the syntax of the terminal type
file. Several references are made to the description of some or­
ders to the' tty_ I/O module in the MPM Subsystem WritPr's Guide;
this version of the SWG has not been published, but the same in­
formation is presented in MTB 29u.

The TTF consists of a series of entries describing terminal
types, tables, and answerback interpretations. Each entry con­
sists of a series of statements that begin with a keyword and end
with a semicolon. White space and PL/I-style comments ~nclosed by
I• and•/ may appear between any tokens in the TTF. The last en­
try in the TTF must be the end statement. Global statements spec­
ifying defaults may appear anywhere before the end statement: the
defaults they specify are in effect for all subsequent t~rminal
ty~e entries, until they are overridden by subsequent global
statements. Except for the end statement, all state~ents consist
of the statement keyword, a colon, the variable field of the
statement, and a semicolon.

The entry for each terminal type consists of a terminal_type
statement naming the terminal type, followed by statem~nts

describing the attributes of the terminal type. Attributes not
specified for a terminal type are set from the defaults estab­
lished by global statements or supplied by th~ cv_ttf command.

A description of each statement found in a terminal type en­
try is given below.

terminal_type: <type name> [like <type name>];
The terminal_type statement is required. It specifies
the name of the terminal type described by the state­
ments following it. The type name has a maximum length
of 1 6 ch a 'r act er s. A l l lowercase l et t'e rs in the type
name are translated to uppercase before bein~ stored in
the TTT. lf the optional like keyword is supplied, it
indicates that the attributes of the current terminal
type are to ce copied from the entry for the type whose
name fol lows the Like keYword, except for those that
are overridden by subsequent statements in the current

-13-

MULTICS TECHNICAL BULLETIN MTB-332

modes:

entry. The like keyword must refer to a
previously-defined terminal type.

<mode1>, <mode2>, ••• <modeN>;
The modes statement is required. It specifies the modes
to be set when the terminal's type is assigned. A mode
name may be preceded by a • character to indicate that
the specified mode is off for the terminal type. The
line-lenyth specification <llo> must be included in the
moaes statement.

tab_string: "<string>";

oauds:

The tab_string statement is optional. If present, it
specifies a string, enclosed in quotes, to be sent to
the terminal in raw mode in order to set all its hori­
zontal tabs.

<baud1> <oaud2> ••• <baudN>;
The bauds statement is required if any delay statements
<see below) are provided, and it must precede all delay
statements. It specifies the baud rates to which the
values supplied in the delay statements apply. A speci­
f i cat ion of "o the r" i n the baud s statement means that
the corresponding values in the delay statPments apply
to all haud rates not specified in the bauds statement.
If "other" is not specified, then delay values of 0 are
assumed for all baud rates not specified in the bauds
statement. The following is a list of the baud rates
that may be specified:

1 HJ
1 35
1 so
30u
600
1200
1800
240 0
480U
7 2U 0
96U 0

Delay Statements

Each delay statement is of the form:

<de lay keyword>: <value1> <value2> <valueN>;

-1 4-

r -

MULTICS TECHNICAL BULLETIN MTA-332

The same number of values must be supplied as baud
rates in the bauds statement. Each value specifies the
numoer of delays to be used for the character described
by the aelay keyword Csee below> at the baud rate spec­
ified in the corresponding position in the bauds state­
ment (see example below>. The possible delay keywords
a re:

vert_nl_delays
the number of delays
linefeed

to be sent a

horz_nl_delays
the number of delays to be sent for each col­
umn position traversed by a carriage return

const_tab_delays
the minimum number of delays to be sent with
a horizontal tab

var_tab_delays
the number of additional delays to be sent
for each column position traversed by a hori­
zontal tab

backspace_delays
the number of delays to be sent with a
backspace

vt_ff_delays
the number of delays to be sent with a verti­
cal tab or formfeed

Negative values for vert_nl_delays and backsoace_delays
have the same mea~ings as those described i~ the de­
scription of the set_delays order to the tty_ 1/0 mod­
ule in the MPM Subsystem Writer's Guide. Values of 0
are assumed at all baud rates for any delay type not
specified.

Example of bauds and delay statements

bauds: 1 1 0 1 s () 300 1200 other:

vert_nl_delays: 2 3 6 24 30;

-1s-

MULTICS TECHNICAL bULLETIN MT8-33~

horz_nl_delays: .2 • 3 • 5 2 5;

const_tab_delays: 0 2 7 1 0;

var_tab_delays: • 2 • 3 • 5 2 5;

backspace_delays: u 0 1 3 6;

v t - ff _de l a y s : 0 0 0 0 !) ;

The first column gives the complete set of delay values
to be used at 110 baud; the second column gives the
values to be used at 150 baud, etc.

line_types: <line_type name1>,<Line_type naMe2>,
~ <Line_type nameo>;

erase:

k i L l :

The Line_types statement is optional. It specifies the
names of the line types on which a terminal of the cur­
rent type can be run. If it is omitted, the current
terminal type can run on any Line type.

<character>;
The erase statement is optional. It specifies the erase
character for the terminal type. If it is omitted, the
character is used.

<character>;
The kill statement is optional. It specifies the kill
character for the terminal type. If it is omitted, the
w character is used.

keyooard_addressin9: yes/no;
The keyboard_addressing statement is optional. It indi­
cates whether or not to do keyboard Locking and unlock­
ing for a terminal on a communications channel whose
line type is "ASCII". If it is not provided, a value
of "no" is assumed. This attrioute is ignored for chan­
nels of any other Line tyPe.

µrint_preaccess_message: yes/no;
The print_preaccess_message statement is optional. It
indicates whether or not the answering service should
print a message advising the user to enter a preaccess
request if the user entered an unrecognized login word.
rt is useful in cases where the terminal's character
code may be different from what was expected. At pres-

-16-

MULTICS TECHNICAL BULLETIN MT8-33'?

ent, only one possible preaccess message is defined,
suitable for use with EBCDIC and correspondence-code
2741 terminals; thiS mechanism may be generalized
later. If the print_preaccess_message statement is
omitted, a value of "no" is assumed.

conoitional_printer_off; yes/no;
The conditional_µrinter_off statement is optional. It
indicates whether or not the terminal's answerLack
identification should be used to deter~ine whether the
terminal is equipped with the printer-off feature. If
"yes" is specified, a terminJl of this type is assu~ea
not to have printer-off unless it has an answerback ID
beginning with a digit CO to 9); otherwise the exis­
tence of the printer-off feature is deduced from the
presence or absence of a printer-off sequence in the
special characters table <see below). This attribute
provides compatibility with the present implementation,
in which the answering service checks the ID for 2741
terminals. If the conditional_printer_off statement is
omitted, a value of "no" is assumed.

input_conversion: <table name>;
The input_conversion statement is optional. It speci­
fies the name of a conversion table Cdefinej by a con­
version table entry) to be used in convertinq inPut
fro~ the terminal. If it is omitted, or the table na~e
is a null string or the word "none", no input conver­
sion table is used.

output_conversion: <table name>i

special:

The output_conversion statement is optional. It speci­
fies tne name of a conversion table (defined by a
conversion_table entry) to be used in converting output
sent to the terminal. If it is omitted, or the table
name is a null string or the word "none", no output
conversion table is used.

<table name>;
The special statement is optional. It specifies a table
<defined by a special table entry) to be used as a spe­
cial characters table when converting inPut and output
Csee the description of the special characters table
entry, below>. If it is omitted, or the table name is
a null string or the word "none", no soecial cnaracters
table is used. If an output conversion table whose en­
tries are not all 0 is specified, a special characters
table must also be specified in order for the terminal

-17-

MULTICS TECHNICAL 8ULLETIN MT!J-33?

to function correctly.

input_translation: <table name>;
The input_translation statement is optional. It speci­
fies a table (defined by a translation table entry)
used to translate input from thP terminal's codP to
ASCII. If it is omitted, or the table name is a null
string or the word "none", input i!> not translated.

output_translation: <table name>;
The output_translation statement is optional. It speci­
fies the name of a table (defined by a translation ta­
ole entry) used to translate output from ASCII to the
terminal's code. If it is omitted, or the table name is
a null string or the word "ncne", output is not
translated.

additional_info: <string>;
The additional_info statement is optional. If provided,
it specifies additional information which may be needed
to run the terminal. This information is not inter­
preted by the standard terminal software, and is not
passed to ring O; it may be used by a special I/O IT'Od- ~
ule used to run terminals of the current type. The
format and contents of the string depend on the partic-
ular application; it may even be the pathname of a
segment containing additional information.

old_type: <number>;
The old_type statement is optional. It may be used for
compatibility purposes to specify the numeric value of
the terminal type formerly predefined by MCS that most
closely corresponds to the terminal type described by
this terminal type entry.

A global statement specifies a default value for an attri­
bute of a terminal type. It has the same form as the terminal
type entry statement describing the attribute exceot that the
statement keyword begins with a capital letter. A global state­
ment may not appear within a terminal type entry. Global state­
ments may oe used for any statements included in a terminal typP.
entry except for terminal_type, like, tab_string, tab_clear,
tab_stop, and the delay statements. CA global Bauds statement is

-18-

MULTICS TECHNICAL BULLETIN MTB-332

allowed.>

A conver~ion table entry consists of two statements: one
s~ecifyjni the name of the table and one specifying its contents.
A conversion table entry is described below.

conversion_table: <table name>;
<valueO> <value1> ••• <value127>;

The table name is a string Of up to 32 characters. The
values are octal numbers of one to three digits: each
value is the indicator corresponding to the character
whose ASCII value is the index of the indicator in the
table. See the descriptions of the set_input_conversion
and set_output_conversion orders to tty_ I/O module in
the MPM Subsytem Writer's Guide for a description of
conversion tables and the indicators they contain.

A translation table entry consists of a statement specifying
the name of the table and a statement specifying its contents, as
described below.

translation_table: <table name>;
<valueO> <value1> ••• <value127>;

The table name is a strin~ of up to 32 characters. T~e

values are octal numbers of one to three digits. Each
value is the result of translation of the character
whose bit representation is the index into the table of
that value Ci.e., <valueO> is the result of translating
a character represented as OQQ, <value8> corresponds to
a character represented as 010, etc.).

A special characters table entry consists of a special_table
statement and a set of statements specifying the contents of a
special characters table. These statements are described below.
Wherever the expression <sequence> appears, it means from 0 to

-19-

MULTICS T~CHNlCAL bULLETIN MTH-33?

three octal numbers of up to three di\Jits each, sepJrated by
white spJce, reµresenting a sequence of characters to be outPut
t o f u l f i l l t he s pc c i f i e d fun c t i on • A l l s ta t ~men t s ii r e re q u i red
unless otherwise stated. All se4uenc~s are in ASCII code except
for the printer_on and printer_oft sequences. For those se­
quences that are used when specific indicators are encountered in
the output conversion table, the relevant indicator is given. See
the description of the various tables in the discussion of orders
to the tty_ 110 module in the MPM Subsystem Writer's Guide for
more detailed information.

special_table: <table name>;
The special_table statement speci:fies the name of the
table. It is a striny of up to 32 characters.

new_line: <sequence>:
The new_line statement specifies the sequence to be
output for a newline character <output conversion indi­
cator 1>.

carriage_return: <sequence>:
The carriage_return statement specifies the sequence to
be output for a carriage return character <output con­
version indicator 2>. If the sequence is null,
backspaces are used to move the carriage to the left
margin.

backspace: <sequence>;
The backspace statement specifies the sequence to b~

output for a backspace tharacter (output conversion in­
dicator 4). If the sequence is null, a carriage return
and spaces are used to reach the correct column. The
carriage return and ba-ckspace sequences should not both
be null.

tab: <sequence>:
The tab statement specifies the sequence tote output
for a horizontal tab character. If the sequence is
null, dn appropriate number of spaces is used to reach
the next tab stop.

vertical_tab: <sequence>:
The vertical_tab statement specifies the sequence to be
output for a vertical tab character <output conversion
indicator 5) if the terminal is in vertsp mOde.

-20-

MULTICS TtCHNICAL BULLETIN MTl3-332

form_feed: <seQuence>;
The form_feed statement specifies the sequence to be
output for a formfeed character (output conversion in­
di cdtor 6) if the terminal is in vertsp mode.

printer_on: <sequence>;
The printer_on statement is optional. It specifies the
sequence to be output to fulfill a "printer_on" order.
The se~uence is specified in the terminal's character
code. If this statement is omitted, a null sequence is
assumed, implying that the printer_on feature is not
supported.

printer_off: <sequence>;
The printer_off statement is optional. It specifies the
sequence to be output to fulfill a "printer_off" order.
The sequence is specified in the terminal's character
code. If this statement is omitted, a null sequence is
assumed, implyin~ thdt the printer_off feature is not
supported~

red_shift: <sequence>;
The red_shift statement specifies the sequence to be
output for a red-ribbon-shift character Coutout conver­
sion indicator 10 (octal)).

black_snift: <sequence>;
The black_shift statement specifies the sequence to be
output for a black-ribbon-shift character <output con­
version indicator 11 (octal».

end_of_page: <se4uence>;
The end_of_page statement is optional. It specifies the
sequence to be output when output is suspended because
the terminal's page length has been reachei. If it is
omitted, the character sequence "EOP" is assumed.

output_escapes: <indicator1> <sequence1>,
<indicator2> <sequence2>, ••• <indicatorN> <sequenceN>;

The output_escapes statement specifies the escape se­
quences to be output for characters whose output con­
version indicators are 21 <octal) or greater when the
termindl is in ·edited mode. The indicators specified
in the statement are the same as the corresponding in­
dicators in the output conversion table.

-21-

MULTICS TECHNICAL BULLETIN rn B - 3 3 2

edited_output_escapes: <indicator1> <sequence1>,
<indicator2> <sequence2>, ••• <indicatorN> <sequenceN>;

The edited_output_escopes statement specifies sequences
Like those specified by the output_escapes statement,
but they are used when the terminal is in edited mode.

input_escapes: <value1> <result1>, <value2> <result2>,
<value~> <resultN>;

The input_escapes statement is optional. It specifies
those input characters that are to be interpreted as
escape sequences when preceded by an escape character,
and the result characters that replace those seauences.
(An escape character in this context is a character
defined by software to initiate an escape sequence,
i.e., one with an indicator of 2 in the input co~ver­

sion table.) Each "value" is an octal number re::::ire­
senting the ASCII value of a character that is used in
an escaµe sequence; the correspondin·) "result" is an
octal number representing the single character that re­
places the escape sequence in the input stream.

Exactly one aefault_types statement must appear in the TTF.
It specifies default terminal types on the basis of baud rate and
Line tYpe. This information is used by the answering service when
a terminal dials up to assign its type if no default terminal
type is specified in the CDT entry for the channel. The
default_types statement is described below.

default_ types: <baud1> <line_type1> <terminal_type1>,
<baud2> <line_type2> <terminal_tyPe2>,

<baudN> <line_typeN> <terminal_typeN>;
Each baudN is a number representing a baud rate, or the
word "any"; each line_typeN is the name of a valid Line
type, or the word "any"; each terminal_typeN is thP de­
fault terminal type for the specified co~binatio~ of
baud rate and Line type. The t1ble thus constructej is
searched in the order in which the baud rate-Line tyoe­
terminal type triplets are specified, ~nd the first en­
try that matches the particular channel is used to de­
termine the initial terminal type.

-22-

MULTICS TECH~ICAL BULLETIN MTt;-.532

The answerback table consists of entries specifying how to
determine a terminal's type and identification on the basis of
its answerback. The answerback sent by the terminal is scanned
under control of each answerback table entry, starting with the
first one specified in the answerback table; if the scan succeeds
<as oescribed below), and the terminal's line type is one that is
valid for the terminal type specified in the answerback t~ble en­
try, the terminal type and ID are derived from that entry; otner­
wise the answeroack is rescanned using the next entry, and so on.
An answerback table entry consists of two statements: an
answerback statement and a type Stdtement.

ans~erback: <keyword1 value1>, <keyword2 value2>,
••• <keywordN> <valueN>;

The answerback statement describes how the scan of the
answer bd c k i s t o be p e r formed. The "s c <Jn poi n t e r, "
indicating the current character position in the
answerback of the scan, starts at the beginning of the
answerback string and is adjusted acccrdin~ to the con­
trols specified by the answerback statement. The possi­
ble keyword-value pairs are described below.

match <expression>
<expression> is either the word "digit", the
word "letter", or a string enclosed in
quotes. If it is digit or letter, the scan
fails unless the character address~d by the
scan Pointer is a diyit CO to 9) ~r a letter
CA to Z or a to z), respectively. If it is a
quoted string, the scan fails unless the scan
pointer points to the beginning of a ~atching

string. If the match succeeds, the scan
pointer is advanced over the matching string
or character, and the scan is continued using
the next keyword-value pair.

sedrch <expression>
works like match, except that
ceeds if the matching character
found anywhere to the right
pointer.

skip N

the scan suc­
or string is
of the scan

causes the scan pointer to be move~ N charac­
ters to the right. N may be negative, in
which case the pointer is actually movej to
the left. The scan fails if there are few~r

-23-

MULTICS TECHNICAL 8ULLETIN MTB-332

id N

than N characters between the scan pointer
and the end (or beginning) of the answerback
string.

The N characters starting at the scan pointer
form the terminal's ID. N must be in the
rahge 1 <= N <= 4. If there are fewer than N
characters to the right of the scan pointer,
the scan fails.

id rest
AS many characters <up to 4) as remain to the
right of the sea n pointer constitute the
terminal's ID Cno t including control and
carriage-motion characters>.

type: <type name>; The type statement specifies the name of the
terminal type to be assigned to a termir.al whose
answerback satisfies the specification in the
answerback statement. If the type name is "none", the
answerback is to be used to set the ID only, and the
terminal type is not changed.

-24-

MULTICS TECHNICAL BULLETIN MTB-332

terminal_type: TrdQO;

modes:

tab_clear: .. \ 0 3 32"; I• ESC 2 •I

tab_stop: "\0331 ... /* ESC 1 + 1 0 blanks *I ,

bauds: 11 0 150 300 1200;

vert_nl_delays: 0 2 6 -38;

backspace_delays: -2 -3 -6 -2?;

vt_ ff _delays: 1 9 29 59 230:

I• No delays for CR or HT */

erase: fl:

kill: ai;

~eyboard_addressing: no;

old_type: I• old value for TermiNet •/

input_conversion: standard_input_conversion:

output_conversion: ASCII_output_conversion;

special: terminet_special:

input_translation: . , I• this could have been omitted •/

output_translation: none: I• this too •/

-2 5-

MULTICS TECHNICAL ~ULLETIN MTB-332

terminal_type: TN8U like TN300; /• same as 300 but ll = 80 •/

conversion_ table: ebcdic_output_conversion;

07 07 07 07 07 07
04 03 01 07 07 02
07 07 07 07 07 07
07 07 07 07 07 07
00 00 00 00 00 00
00 00 00 00 00 DO
00 00 00 oo 00 00
OU 00 uo 00 00 00
00 co 00 00 00 00
00 00 00 oo 00 00
OG 00 00 co 00 00
00 00 00 21 00 22
23 00 00 00 00 00
00 00 00 00 00 00
uo 00 00 00 00 00
00 00 OU 24 00 25

special_table: ebcdic_special;

new_line: 012i
carriage_ret~rn: ;
back.Space: 010;
tab: 011;
vertical_tab: i
form_ feed: i

07 07
10 1 1
07 07
07 07
OU oc
00 00
00 00
00 QC
00 00
00 OC
00 oc
00 00
00 oc
00 QC
00 oc
26 1 4;

printer_on: 015; /* this is EBCDIC */
printer_off: 016; /* so is this •/

-26-

MULTICS TECHNICAL BULLETIN MTB-.332

,,... red_shift: 033 14 1 ; /* E SC a *'
black_shift: 033 142; '* ESC b *I

enc_of _page: ; /* don't print EOP •I

,, output_escapes:
21 1 .3 4 074, /* [-> \< */
22 1 .5 4 076, /*] -> \> */
23 134 047, /*

. -> \ I •I
24 134 oso, I• { -> \ (•I
25 134 051, I• } -> \) *I
26 134 164; I* - -> \ t */

edited_output_escapes:
21 050 010 075, I• ~ *'
22 0)1 010 07 5, I* ~ •/
23 lJ4 7, I* I *I
24 050 010 OS~,, /* t */
25 051 010 05 5, I• t •I
26 047 010 136; I• • •I

i nput_escapes:
074 133, I* \< -> [*/
076 135, I• \> -> J */
047 140, /* \I -> ...

*I ,... a so 173, I• \ (-> { •I
a 51 175, I• \) -> } •I
1 64 176, I• \t -> - •I
124 176; I• \T -> - •I

defaul t_types: 11 a ASCII TTY33,
any ASCII ASCII,
1:S3 1050 1050,
1 33 2 7 41 2741,

12 co ARDS ARDS,
1200 202ETX HJ300,

any any G 11 5;

answerback: search " E", id 3;
,... type: TN3UO;

-27-

MULTICS TECHNICAL HULLETIN

ans.,,erback: match "Q", id 3;
type: 2741;

answerback: search "Xx", skip 3, match letter,
match digit, skip -2, id 4;

type: our_own;

-28-

MTf'l-332

MULTICS TECHNICAL BULLETIN MTB-332

This appendix contains declarations of info structures associated
with the followinJ new orders: set_terminal_type, ter~inal_info,
set_tabs, and set_terminal_data.

1. set_termina l_t ype

dcl 1 terminal_type_info,
2 version fixed bin init(1),
2 name char(16),
2 flags aligned,

3 set_tabs bit(1) unal,
3 set_modes bit(1) unal,
3 ignore_line_type bit(1) unal,
3 mbz bit(33) unal;

2. terminal_info

dcl 1 terminal_info,

3. set_ tabs

2 version fixed bin init(1),
2 term_type charC16),
2 line_type fixed bin,
2 baud_rate fixed bin,
2 ia char(4),
2 pad(4) fixed bin;

dcl 1 tab_info,
2 version fixed bin initC1),
2 tab_string charC512> varying;

-29-

MULTICS TECHNICAL BULLETIN

4. set_terminal_data

dcl 1 terminal_type_data,
2 version fixed bin ini t(1),
2 old_type fixed bin,
2 name charC16),
2 delay_ptr ptr,
2 input_translation_ptr ptr,
2 output_translat1on_ptr ptr,
2 input_conversion_ptr ptr,
2 output_conversion_ptr ptr,
2 Special_ptr ptr,
2 editing_chars aligned,

3 erase char(1) unal,
3 kill char(1) unal,
3 mbz fixed binC17) un~l,

2 flags aligned,
3 keyboard_addressing bit(1) unal,
3 mbz bitC35) unal;

-30-

MT8-~32

