Multics Technical Builetin MTR=330

Tot Distrlbutlon
Fromt Steve Hebber and Mefanjie Weaver
Sublect?! Run Units

Jate? March 2, 1377

Many languages (PL/I, C08B0Lsy and FORTRAN, for example) are
defined In terms of a <program>, whlch In Muitics terminotogy lIs
a set of external procedures wlth any assoclated {nterral and
external subroutinese. An environment for the <program> must be
created and communication among procedures withln the <grogram»>
must be well-deflned before the <program» s executed or “run.”
In Multics today, the environment used Is the Multlcs <process>.
This MTB describes a more restricted, controlled environment
called a <run unit> that [s better equlpped to run <program>s
more as the given fangjuages speclfy they should be rune. There
are stlll some unresolved lssues; the authors would appreclate
feedback.

BURPQSES OF A _<ryn._unlt>
The prime reasons for a <run unit> are lilsted below:?
1. To lsolate tre name scope of external varlables,

2e To cleanup {storage, flle openlings, etc.) atter the
<program run> whether [t was <termlnated> norrally or
abnormally,

3e To atlonw language~-defined semantics related to
<maln program>»s to be honored,

be Yo protect the <program run> froms earlier actlcns in
the «<process> that should have no bearlny on the
<program>, and

5 To guarantee newly initlall zed static storage
(includling common storage of FORTRAN).

Mul?ics Prolect internal working documentation. Not to be
reproduced or dlstributed outsjide of the Multlcs project.

Page 2 MTB=-330

MALIN_<program2s

The COBOL and FORTRAN languaces lncorporate the conrncept of a
<main program>. The semantjcs of certaln statements In these
languages changes |if the program ls the <maln program>. Some
mechanism must be provided that aliows a user to declare which
procedure jis corsidered to be the <maln program>»>., A <run unit>
easlily provides tris capablility.

IHE _<rup_unlt>

A <run unit> [s aralogous to a subset of a full Multics
<process> (on a ner-rilng basls) that can be set up, executed, and
cieaned up wlth littie lasting effect on the rest of the
<process> other than changes to permanent <fite>s, Items of
particular Interest aretl

1. The use and management of reference names,

2. The allocatlon of <varlable>s [n <free storage>,

3. The atlocation of segment numbers.,

L The opening and closlng ot <flle>s,

5. The handlling of external and Internal static storage,

e The handiing of temporary segments,

7o {Te allocatlon of ilnkage sectlons and the snapplng of
Nksy

8. The use of search rules, and

9. The effect on debugging.

Each of these is clscussed In detall after an overview of
the <run unit> structure and [ts Inltlallzatlon.

IHE <cun unlt> ORGANIZATION

In creatlng a run unlt several data structures must be
created. These Includet

1. A new LOT (linkage offset table),
2e A new ISOT (internal static offset tabie),

3. A new combined |inkage area, and

MTB-330

Page 3

L. A new RNT (reference name taple) includling search
rulese.

The <run unit> manager must create the above data

structures. The proposal Is to place att ot them |In a

{(temporary) segment organlized as follows?

{ i
! header H
1 -1
i]
H !
! RNT {
H H
1. !
{ !
! LOT !
i_ 1
! H
{ IsorT {
3_ }
H !
| !
| AREA H
H (extenslbie) {
i |
1_ _]

The initlatization of each of these reglons [s descrlbed

Delont

1.

The <run unlt> header contalns Information needed by
the <«<run unit> manager. It Includes [tems such as a
version number, pointers to the wvarlous reglons, and
times., 7

The RNT region ls a standard RNT area as managed by the
supervisor. The reglon ls polnted to by a stack header
varlable ([ts previous value lIs saved eltrer [n the
header or In the stack frame for the <run unit>
manager). The RNT iIncludes search rules that are, by
default, copled from the RNT In effect Just before the
<run unit> |s estabilshed,

The new LOT may have to be carefully set up because of
the <codlng practlces used by many system routlnese. In
particuilar, system routines that use I[Internal statlc
storage to manage per<process> data structures, such as
lox_s must be the same [n the <run unlt> as In the

Page &L MTB-330

<process>e. However, most procedures wWwill need *to wuse
t he <run unlit>'s name space and search rules and so
will need to have their links set to a virgln state at

the beglinning of the <run unlt>,

The proposed actlon taken when generating the
<run unlt>*s LOT and ISOT |s as fotllowst :

A. It a LOT stot s wused by a ™speclal"™ svstem
routines @e«Qge lox_y g£opy the LOT value and the
ISOT value dlrectiy.

B Otherwisey, [f the LOT siot Is nonzero and not
faul ted, finl In the LOT and ISOT silots wlth a
faultino packed polnter whizh ylelds the virgln
{inkage or statlc when needed.

c. If the LOT slot is nonzero and faulted, Inclcating

the segment number has been used but no | inkage
(or static) allocated,y, copy the LOT and ISOT slots
directly.

D. If the LOT siot s zeroes set the LOT ana ISOT
stfots to zero.

These schemes assume a lot_fault and lsot_fault randler
existsy although in most cases the |lnker Wwlll check to
avoid faulting. After the LOT and ISOT have been so
Initlalizedy the only stots with valld packed polnters
are those for the "speclal" system routlines,

A more adetalied discusslionr of the probiem of "speclal"
system routines 1Is glven below. Brieflyy they wlii
probably be changed to use some more global orogramming
standard rather than lust be named on a |Iist In the
<run unlt> manager.

4o The (extenslible) area at the end of the <run unlit>
segment Is merely injitlallzed as such. It Inctudes
|inkage sectlonsy statlc sectlons, controlled storage,

external varjables (common biocks and PL/T
externals--*system |lnk dataly, and hcs_3assion_Ilnkage
storage.

IHE _MANAGEMENT OF REFERENCE NAMES

When a <run unit> [s created an RNT Is establlshed. By
defaul t, the only reference names inltlated are those for the
“speclal™ system routires but two mechanisms exlist for overrliding
thlis., The first Is to gopy all reference names Initiated before
the <run unit> {s initialized Into the new RNT., The second [Is fto

MT8-330 Page 5

specity a select subset of reference names to copy. The method
used to affect this s glven under the descriotion of the use of
the ~un command.

During the tifetime of the <run unit> all reference name
activity Is In refation to the new RNT, When the <run unlt> |is
termlnated the stack header |s changed so that the old RNT once
again takes effect. Thls means that alil RNT actlvity durlng the
<run> ls torgotten wher the <run unit> Is terminated.

IHE _USE_QF <free storage>

A normal Multics process has two pointers In the stack
header used by the PL/I allocate statement, The first polnter
points to an area used by system rout ines. Thls polnter Is the
one returned by get_system_free_area_ and ls not replaced for the

<run unjt>, The sacond polirter J|s a polnter to an area Into
which controlled storage will be altocated and [nto which
allocatlons wlth no In clause wllill be performed. When the

<rur unit>» s initlallizedy thls polnter Is saved and then
replaced with a polnter to the extensible area In the [Injtial
<run unit> segment. (Usually these polnters polnt to the same
area.)

External varjlables (¥*system ilnk data) currentiy make use of
both of these (loglcally separate) areas but wlil be <changed to
use only the user area., When the <run unlt> [s Initiallzed, the
stack header varlable polnting to the control information |[s
saved and replaced by a null polnter, Hences all external
variables referenced and allocated durling the <run> are Isolated
In the <run unjit> data bases. When the <run unit> s termlnated,
the stack header varliabtes are reset to their origlinat value
thereby revertlng all external variables to thelr previous state,

IHE ALLOCAYION QF SEGMENT NUMBERS

One of the actlons taken durlng a <run> ls the [mpoliclt or
explicit inltlatlon of reference names and the maklng known of
segmentse. In most casesy any segments made known during 3 <run>
are not needed aftaer termination of the <run unit> and hence It
woula be desirable that such segments be made unkncwn when the

<crun unijit> is cleaned Ups However, today there Is no
determinlstic method of finding out why and on whose behalf a
segment (s made known. In ltight of thlis, the followlng |Is
proposeds

Use the LOT as a wuser-ring vlislibte record of which
segment numbers have been used by a process. Use any
changes In the LOT durlng a <run>» as an indlcatlon that

Page 6 MTB=330

one or more segments were made known during the <run>.

The proposed method of cleanling up segment numbers at the
end o0of a <run> [s then to make unknown any segments recorded n
the per<run unit> LOT that are not recorded In the LOT belng used
before the <run unlt> was Iniltialized, This regulres the
foltlowing proposed charge to the system!

When a segment is flrst made known, it In the LOT
entry In the approprlate ring wlth a coded, faulting
packed pointer value. {This iIs overrldder wlth a LOT
pointer it the tinker subsequently allocates storage
for a Ilnkage sectlon.)

When a <run unlit>» ls cleaned up, all segments wWith a LOT
entry In the new LOTy not In the old LOTy are ternrlnated. Thls
is caone via a call to term_$seg_ptr which causes atl Ilnks to be
Jdnsnapped=-even in the [nherlted llnkage sections of "speclal*
programs. Note trat segments known In other rings are not made
Unknown, Segments krown In the <run unlit>'s ring are made
unknown only [f the old LOT has a zero value correspondlng to the
gliven segment.

The actual changes to the system for this would be as
foliowst

1. Chanyge makaknown_ to return a status blt [ndicatling
that the usage count for the glven ring changed from 0
to 1.

2 Change makaunknown_ to return a status bit Indlcating
that the usage count for the given rinrg changed to 0.

3. Change Inltiate (ring 0 verslon) to set tre LOT siot In
the calting ring to a nonzero (faul ting packed pointer)
value when the usage count goes from 0 to 1.

La Change termlnate (ring 0 version) to zero the LOT siot
for the glver ring when the usage count goes to 0.

Note that we plan to eventually move the Initlate and terminate
routines from ring @ to the user ring and thlis Is why the
particular cholce of [Implementatlon was made. When these
routines are in the wuser ring, then only wuser ring code
manipulates the LOT for that ring. Note further that thils
corrects a problem currently In fs_search which touches each
ring®s LOT (usually 1 and &) whenever the {Inker makes a segment
known for the first time.

MTB-330 Page 7

IHE_OPENING AND CLOSING OF <tliie>s

One obvious purpose for a <run unit> (s to reset <flle>s to
thel~ state prilor ftc a <run>,. Thls means leaving a <file>
attached i{f It was attached,y, leaving It open [f [t was open,
etc., but closing and detaching when approprlate. In order to do
thls the <run unit> manager must call any approprlate <flle>
management routines when the <run> ls terminated. Fur ther, the
<fjile> management routines must be written so that trey can
remember the state of <flie>s when first referenced during a
<run>. In facty tnls Is just how the language I/0 routlnes are
currentiy deslgned.

Any programs that want to galn control at the end of a <run>
{such as <flle> management routines) must call a speclial entry In
the <run unit> manager oprogram Iindlcatlng thls deslre and
speclfying which entry to call at <run unit> termination time,
Thls is completely analogous to the method used today for the
“finish" conditlon. 1In facty, the “finlsh" condlitior wli! also be
slgnalied at the end of a «<run unit»>, (An info structure wlil be
passed wilth [t so fthat a run unlt can be dlstingulshed from
<process> terminatlion.)

The <run unlt> marager must also be prepared to handle catls
to set up such call-back requests even when a <run> [s not In
progress==-ji.e. Iin a <process> before a <run unit> [s Initiatlzed,
or after a <run unlt> s termlnated. (This is, of course, the
anly way to run thlngs todavye.) In thils casey, for compatlbliliity,

the standard system=-supplled “tinish™ handlier calls the
<run Jnjit> manager to perform the jJob of calling atl crograms
that [ndicated they were to be called, Thls preserves the

concept of a Multlics <process> being a <run unlt> [tself,

Note that any <flie> actlvity by programs not notlfled at
<run unit> terminatlion is pot cleaned up by the <run unlt>
manager. Thls means that |t a <flle> attachment [s changed by
such a program during a <run unlt>, it will remaln changed after
the <run unit> termlnates.

IHE_HANDLING OF EXTERNAL 3TATIC STORAGE

With each <run unlt> |s assoclated an RNT used In resotving
external references. This RNT can be [Initlatized In several ways
ranyglng from containing reference names for only the “speclal™
routinesy, to initially a copy of the RNT jJust prlor to the <run>,

The RNT ls used by tne tinker to resolve external references
other than *gystem | inks. *systenm tinks are resolved to 3
generatlon of storage within the <run ualit>, Hencey all *system

variables {common bloCcKS, PL/I external varlables wlth no ¢ In

Page 8 MTB-330

the name, etc.) are local to the <run unit> and therefore
relnitlalized each time a new <run unit> s established. This |s
what [s requlred for PL/I <program>s and FORTRAN <program run>s.
(Al |l COBOL working storage Is similar to PL/TI ™Internal static"™
and therefore does not fall Into the category of externale.)

IHE _HANDLING QF INTERNAL STALIC STORAGE

Internal static storage is reset to Its Initial state withln
the <run unjit> for programs In the <run unit>. There are several
system routines currently usling statlc that would not work
correctily |if thelr static sectlons were reset; they must be
either special-cased or recoded. They can be divided 1Into two
categorjiest one group Is necessary for a smoothly running
process and the other group malntalns the command environment,

The first group lrcludest

iox_

ipc_

timer_managjer_
get_temp_segments_
get_system_free_area_

The other |ist will probably iIncludes

tisten_

cu_
rest_of_cu_
10S_

print_r eady_message_
cebug

probe
progress
abbrev
abs_lio_
general _ready

This list is sublect to changey but unless most of these are

converted, absentee wilil not nwork oproperly wlth <run unlt>s,
desi~ed ready messages and abbrevliatfions wllil dlsappear should
the user get to command level within a <run unit>, It will not be

possible to release past a <run unlt> manager frame, and It wilt
Nnot be possible to debug across <run unlt> boundarjes.

There are at least three posslible alternatlves, each wlth
its advantages ana dlsadvantages. The flrst alternatjive [s for
the <run unit> manager to have a list of procedures whose statlic

MTB=-330 Page 9

ls not to bpe resety l.e. whose LOT and ISOT ertrlies are to be
copieds The advantages are that [t ls fast and does rot Involve
coding changes or updatlng the |lnker., The Jlfflculty with 1t
lies In how to specify the {ist. In order for users to be able
to modify ity Lt eltner must be an external segment or there must
be an entry In the <run unit> manager for adding ltems. It the
list contalns pathnames, there is |[ttle user flexlblllty, If¢
the 1|ist contalns refarence names, and <run unlt>s can be
recurslve, different name spaces are used, whlch defeats the
per<orocess> purpose. Also the <run unit>» manager mlight rave to
check several of the possible reference names for some routlines.

The second alternative Is to have another storage class,
irternal perprocess staticy, which would really be only a way to
tell the <run unit> manager what statlc to reset., Thils mlght be
Impiemented by a new procedure option, pberprocessy, whlch would
cause a new object map flag to be set (andZ7or the flag could be
set by a command) . The {inker, wher settlng up an active {inkage
sectlony wWould fturn on a3 new flag Iln the actlve |inkage header.,
When the <run unlt> manager [nltlalizes the new LOT, it woultd
look at ail the active |inkage headers +to determlne whilch
LOT/ISOT entrles should be copied and whlch reset, Thls would
invoive only very minor changes to the compller, assembler,
binger and {ilnker ard would be relatively etflclient, The
problems wlth thls scheme are that there would be extra paglng
#hlte touching all the ilnkage headers and that some orograms may
want both per<process> and per<program> [nterral static.

The third alternative [s to have per<process> varlables. In
PL/I, external varlables whose names begln with "$" would have a
new type of link whlch would be Implemented Ilke *system |lnks
{varlables atliocated ard found by a control structure polnted to
by a new polinter In the stack header), Thls polnter would not be
reset by the <run urlt> manager and a polnter to the area used
would be stored eithar Iin the stack header or [In the control
structure, The <run unit> marager would then have to
speclal-~case only lox_ (which has deflnltlons to static}). The
compllery, assembler, linker and binder would have to be updated,
although not extensively. Thls method would be the most flexible
put would be more costly when the links are first snapped and
there would have to be strlct namlng conventlons to prevent
confillctsy e.9. [DC'S per<process> varlables woulfd begln with
"ipc_", Both of these problems would be minimized [f each
procedure concerned nad Just one percprocess> varlable, a polnter
to a structure contalnlng the rest of the Informatlon. However,
this would I[nvolve more recodinge. This alternative ras the
additional overhead. of resettlng more static and llnkage
sections.

Page 10 MTB-330

THE _HANDLING_QF TEMPORARY SEGMENIS

The temporary segment manager, get_temp_segments_, Is
treated as a per<process> program and hance has per<grocess>
Internal statlc. Thls means that, as wlth all standard orograms,
appropriate ctean up strategles must be followed by programs that
are part of a <run unit> In order to |{insure trat temporary
segments are released at the approprlate tlime.

THE_ALLOCATION OF LINKAGE SECTIONS

A1! linkage sectlons aliocated by the {lnker durlng a <run>
are 3llocated in the per <run unlt> segment{(s) vlia the pointer 1In
the stack header. Thls polnter ls set to the (exterslible)

<run unlt> area at the Iniltlation of the <run unit> and reset to
Its previous value when the <run unlt»> ls terminated. The
analogous polnter to the Internal statlc allocatlon area Is
treated similariye.

The linker itself |[s drlven off of these stack header
pointers as well as the LOTY pointer, the ISOT polinter, the RNT
pointer, and the *system |ink polnter, all of which are changed
when- a <run unlt> s |ritlated.

IHE_USE_QF_SEARCH_RULES

As stated earlijiery a new RNT [s5 created with a <run unlt>,
The default <contents of thls RNT are the search rules In effect
Jjust prior to the <run>., However, It lIs also possible to specify
alternate search rulas to take effect durlng the <run> when the
<run unit> 1ls Inltiated. (See the descrlption of the run command
befow,)

IHE_EFFECT ON DEBUGGING

The debuyjgers' statlic sectlons wlii be speclal=-cased or
recoded so0o that they can operate acrnoss <run unlt> boundaries,
and there should be no dlfticulty in tracing ¢the entlre stack.
However, It will be more difficult to dedug programs wlth stack
frames before the <run unit> because the environment oolnters In
the stack header wlll not Dbe approprlate. This affects such
thlngs as the debug &l request, finding values of external
variables, and reprint_error. To enable debucggers to handle thls
situation, it is proposed that there be a nemw stack frame flag
indicating a <run unit> manager frame and an entry In the
<rdn unit> manager whlich wlil return the stack header environment
Informatlon for a glven stack frame. Not all debugglng tools

MT8-330 Page 11

wll! be changed to take advantage ot these features Inltlally.
One or two subroutlnes, such as get_lilnk_ptr_, wlll have
additlional entry points that take a stack frame polnter for the
beneflt ot programs such as trace stack.

Page 12 MTB-330

Name? run .
The run command Irnltlates a run unit In which to execute a

program. The effect of executing a program wlthlr the constraint
of a run unit rather than not so constralned is that the run unit
lsolates the local effects of the program run, such as |lnking to
other programss Ilrlitlating reference names, openling flles, etc.y
to the environment of the run unlt and, hence, Jypon run
completiony, the user®s process appears as lt dld before tre run,
The resources managej by the run unlt manager JIncliude reference
namesy finkage sections, flies, segment numbers, static storage
and external variables (includlng FORTRAN common blocks)e All of
these are reset to thelr prlor state when the run unlt s
terminated.

Usage

~un {control_ar3s} maln_program {command_args]

Aahera?

1. zontrocl _args
are used by the run unlt manager to control and
initialize the envlironment for the run, These must
all precede the command_name, and may be chosen from
the following?

-limit n
sets a bound of n seconds of virtual CPU time for the
run. The default value tor o 1Is lnflnlfe.A

-yse path

directs the run unlt manager to [Inltiate atl names on
the glven segments as reference names [n the {new)
RNYT to be used during the program run. If any of
these names already exlst in the new RNT, the glven
names replace the older names., Path ls elther the
name of an oblect segment or the pathname of a flle
contalning names of segments.

-search_rules path
directs the run unlt manager to use the search rules
whose ASCII rapresentation lIs in the segment ramed by
pathe. The search rules are set up exactliy In the
order glven, and the keywords accepted by the
set_search_rules command are honored.

~copy_rnt
Indicates that all reference names In the {o1d} RNT
In effect just prior to the run are to be copled into
t he (new) RNT +to be wused during the run. Any
refe~ence names J[Inltiated wvla the =-use control
argument overrlde other reference names. The

MTB-330 Page 13

default iIs for the (new) RNT to contaln only the
names [nitiated via the =-use contro! argument.,.

~common path

directs the run unlt manager to assume path [Is the
pathname of a block data subprogram that Includes the
initial values for wvarlables In FORTRAN common
storage. If no -common control argument Is
speclfledy, common blocks are [nltiallzed when first
referenced. This means tnat a block data subprogram
must be comoplled In (or bound [In} with the ftirst
program to reference the common [n the run,

2 main_program
ls the name of the maln program of the run, The maln
proaram name |s the flrst non-control arjument on the
command {lne.

3. command_ar gs
are argumerts and conftrol arguments to be passed to
the main program of the run, These must allt follow

the main program name.

Page 14 MTB=-330

Example

~un pil1l source =-map ~-table

Causes the PL/I compiier to be Invoked In a run unit, Upon
return from the run commandy no reference names, segment numbers,
etc.y generated by the pll command remaln. (Note temporary
segments used by pll are freed but still remaln In the processe.)

run ~use >udd>Pro)>Pers>alioc_ plil foo

causes a different allocatlon program to be used during the run,

Notes

A QUIT durlng a run does not cause exlt from the run, Any
activity perfcrmed wnhile the program belng run s suspended ls
forgotten when (if) the run unlt [s termlnated.

A run unit sets uo a "condltlon wall"™ so that c¢crograms
befo~e the run unit marager on the stack do not get control untll
the ~un s termincgted (posslbly because of a release).

If the specified time {imlt [s exceeded, the user [s asked
{f he wants to contlnue with the run. If the response [s "yes",
another silce of time, the same slze as beforey, |[s made
availables if the response Is "no™y, the run unlt s terminated.

When a run unlt Is terminated, the "flnish® conditlon 1Is
signatied to all programs stitll active on the stack that are part
of the run unjit.

All I/70 switches attached or opened durlng the run gdue to
Lanayage I/0 are reset to their prlor state. Any actlon taken by
the jo_call command or by expllicit lox_ calls within a run are
not reverted when the run [s terminated,

Any temporary segments used by orograms durlng the run
should be cleaned up by the same programs. The run unit manager
does not attempt to clean up temporary segments.,

MTB-330 Page 15

Name! run_unit_manager_

The run_unift_manager_ subroutine manages the environment for
a run unlt and [nvokes the maln program of the run,
Entry: run_unlt_manager_3senvironment_info

This entry enables debuggers to obtaln the saved stack
header [nformatlon used by a glven stack frame.,
Usaas

declare run_unlt_manager_$environment_Ilnfo entry (ptr, ptr,
fixed bin (35))°

call run_unlt_manager_3environment_Info (stack_frame_ptr,
info_optry code);

wWwheret

i. stack_frame_ptr
points to an active stack frame on the current stack.
{(Input)

2. info_ptr

polnts to the followlng structure to be filleag [nrs
dcl env_ptrs allgned based,
version flixed bin,

pald fixed bin (35),
lot_ptr ptr,

isot_ptr ptr,

clir_ptr ptry,
comblned_stat_ptr ptr,
user_free_ptr ptr,
sys_link_Info_ptr ptr,
rnt_ptr otrs

NNNNNNNMNNN -

wheret

1. versjion
Is the verslion number of this structure:?
currentiy It s 1.

2e pad
ls unused.

Page 16

b

5.

6e

[

9,

is

MTB=-330

fot_ptr
polnts to the Iilnkage offset table (LOT).

lsot_ptr
polnts to the internat statlc offset

table (ISOT).

cir_ptr
polnts to the area where linkage sectlons
are allocated.

combined_stat_ptr
polnts to the area where separate statlic
sactions are allocated.

user_free_ptr
paoints to the area where user storage ls
al located.,

sys_link_Info_ptr
polnts to the control structure for
externail static varlables.

rnt_ptr

polnts to the reference name table.

a standard system status code. (Output)

