
Multlcs Technlcal Bulletln MT~-330

Toi Olstrlbutlon

Froml Steve Webber and Melanie Weaver

Sub)ectl Run Unlts

Oater Mnrch 2, 1~77

Manv languages (Pl/I, COBOL, and FORT~AN, for examole) are
defl~ed ln terms of a <program>, whlch in Multics terrnlnologv ls
a set of external procedures with any associated lnterr.al an1
exte~nal subroutlnes. An environment for the <program> must be
created and communication among procedures wlthln the <proqram>
must be well-defined before the <program> ls executed or ''run."
In Multics today, the environment used ls the Multics <orocess>.
This MTB describes a more restricted, controlled environment
cal lej a <run unlt> that ls better eQulpped to run <program>s
~ore as the ~lven lan~uaqes speclfv thev should be run. There
are stlll some unresolved Issues; the authors would appreciate
feedback.

The prlme reasons for a <run unit> are llsted below:

1. To lsolate t~e name scope of external variables,

2. To cleanup (storage, file ooenings, etc.) after the
<program ru~> whether lt was <terminated> nor"ally or
abnormally,

3.

~.

5.

To allow language-defined semantics rel~ted to
<maln program>s to be honored,

To protect the <program run> fro•
the <process> that should hawe
<program>, and

earller actlcns ln
no bear1~1 on the

To guarantee newly lnltlallzed stat le storag~

(lncludlng common storage of FORTRAN).

--~-~--~--~------Multics ProJect internal working documentation. Not to be
reproduced or dlstrlbuted outside of the M~ltlcs prolect.

Page 2 MTB-330

The COBOL and FORTRAN langua£eS Incorporate the concept of a
<maln program>. The semantics of certain statements ln t~ese
languages changes lf the program ls the <main program>. Some
mechanlsm must be provided that allows a user to declare which
orocedure is corsljered to be the <main program>. A <run unit>
easllv provldes t~ls capabillty.

A <run unlt> ls analogous to a subset
<process> (on a oer-rlng basis) that can be
clea~ed uo with little lasting effect
<orocess> other than changes to permanent
particular Interest arel

of a f u I I Mu I t 1 cs

1.

2.

3.

I+ •

5.

o.

7.

8.

g.

The

The

The

The

The

The

The

set uo. e~ecuted, and
on the rest of the
<flle>s. Items of

use and management of reference names,

a I I oca t ion of <varlable>s ln <free storage>,

allocation of segment numbers•

opening anj closing of <flle>s,

handling of external and Internal stat le storaqe,

hand I lng of temporary segments,

allocation of 11 nka ge sect 1 on s and the snaoolng of
links,

The use of search rules, and

The effect or debugging.

Each of these is clscussed ln detail after an overview of
the <run unit> structure and Its lnltlallzatlon.

In creating a run unit several data structures must be
created. These lncludel

1. A new LOT (llnkage offset table} 9

2. A new ISOT <Internal statlc offset table),

3. A new combined linkage area. and

HTB-330

... A new RNT (reference name tao le)
rules.

The <run unlt> manager must create

Page 3

including search

the
structures. The proposal ls to place a 11 of

above
them

data
in a

<temporary) segment organized as follows&

I
I header I

1-----------~-----! I I
I 1
I RN T I
I I

1-----------~-----1 I I
I LOT I 1 ___________________ 1

I I
I ISQT t 1 ___________________ 1

I I
I I
I AREA I
I <extenslble) I
I I ! ___________________ !

The lnltlallzatlon of each of these regions ls described
be I ow I

1. The <r~n unlt> header contains lnformatlon needed by
the <run unlt> manager. It !~eludes ltems such as a
version number, pointers to the various regions, and
times.

2. The RNT region ls a standard RNT area as managed by the
supervlsor. The reglon ls polnted to by a stack header
variable (lts previous value ls saved elt~er ln the
header or in the stack frame for tre <run unit>
manager). The RNT Includes search rules that are, by
default, copied from the RNT ln effect Just before the
<run unlt> ls established.

3. The new LOT may have to be carefully set up because of
the coding practices used by many system routines. In
particular, system routines that use Internal static
storage to manage oer<orocess> data structures, such as
lox_, must be the same ln the <run unlt> as in the

\

Page 4 MT8-330

<process>. However, most procedures will need to use ""'\
the <~un unlt>•s name space and search rules and so
will need to have their links set to a virgln state at
the beginning of the <run unlt>.

The proposed action taken •hen generatlng the
<run u~lt>•s LOT and ISOT ls as fol lowsl

A. If a LOT slot ls used bt
rout l ne, e.g. lox_, ~'2.Q.lt
ISOT value directly.

a "speclal" svstem
the LOT value and the

B. Other~lse, lf the LOT slot ls nonzero and not
faulted, fill ln the LOT and ISOT slots wltt\ a
faulting packed pointer whl:h yields the virgin
linkage or statlc when ~eeded.

c. If the LOT slot ls nonzero and faulted, indlcatlnq
the segment number has been used but no linkage
<or static) al located, copy the LOT and ISOT slots
direct I y.

o. If the LOT slot ls zero, set the LOT and ISOT
slots to zero.

These schemes assume a lot_fa~lt and lsot_fault ~andler
exists, althou~h ln most cases the linker wll I check to
avoid faulting. After the LOT and ISOT have been so
lnltlallzed, the only slots with valid packed pointers
are those for the "special" svstem routines.

A more detailed dlscusslon of the problem of .. soeclal"
system routines ls given below. Brlefly, they wll I
probably be changed to use some more global oro~ramming

standard rather than Just be named on a I lst .in the
<run unit> manager.

The <extensible) area at the end
segment ls merely lnltlallzed
llnkage sections, static sections,
external variables (common
externals--•system link datal, and
storage.

of the <run unit>
as such. It includes
controlled storage,
blocks and PL/I
hcs_$assign_tlnkaqe

When a <run unl t> ls created an RNT ls est ab I !shed. By
defaJlt, the only reference names lnltlated are those for the
'"special'" system routlf'les but two mechanls11s exlst for overrldlnq
this. The first ls to ~Q~ al I reference names lnltlated before
the <run unit> ls initialized Into the new RNT. The second ls to

MTB-330 Page 5

speclfy a select subset of reference names to copy. The method
used to affect this ls given under the descrlotlon of the use of
the ~un command.

Ouring the llfetime of the <run unit> all reference name
actlvltv ls ln relation to the new RNT. When the <run unlt> ls
terminated the stack header is changed so that the old RNT once
agal~ takes effect. Thls means that all ~NT actlvlty durlng the
<run> ls forgotten when the <run unit> ls terminated.

A normal Multics process has two pointers ln the stack
header used by the PL/I allocate statement. The first pointer
polnts to an area used by system routines. This pointer ls the
one returned by get_svstem_free_area_ and ls o~1 replaced for the
<run unlt>. The second pol~ter ls a pointer to an area into
wnlch control led storage wll I be allocated and into which
al locations wlth no ln clause will be oerforme1. When t~e
<run unlt> ls lnltlallzed. thls pointer ls saved and then
replaced with a pointer to the extensible area ln the Initial
<run unit> segment. (Usually these pointers point to the same
area.I

External variables c•system link datat currently make use of
both of these (toglcally separate) areas but wlll be changed to
use only the user area. When the <run unit> ls lnltlallzed. the
stack header varlable pointing to the control Information ls
saved and replaced by a nut I pointer. Hence, al I external
varlables referenced and al located during the <run> are isolated
ln the <run unit> data bases. When the <run unit> ls terminated,
the stack header varl~bles are reset to their orlglnal value
thereby reverting al I external variables to thelr previous state.

One of the actions taken during a <run> ls the lmollclt or
expliclt lnltlatlon of reference names and the making known of
segments. In most cases. any segments made known durlng a <run>
are ~ot needed after termination of the <run unit> and hence It
woulJ oe desirable that such segments be made unknown when the
<run unlt> ls cleaned up. However. today there ls no
deterministic method of finding out why and on whose behalf a
segment ls made known. In light of this, the followlnq ls
proposed I

Use the LOT as a user-ring ~islble record of which
segment numbers have been used by a process. Use any
changes ln the LOT during a <~un> as an indlcatlon that

Page o MTB-330

one or more segments were made known during the <run>.

The proposed method of cleaning up segment numbers at the
end of a <run> ls then to make unknown anv segments recorded ln
the per<run un!t> LOT that are not recorded ln the LOT belng used
before the <run unlt> was lnltlallzed. Th!s reou!res the
fol lowlng proposed change to the systems

When a segment ls f lrst made kno11m, f 11 t In the LOT
entry ln the approprlate rlng wlth a coded, fauttlng
packed pointer value. (This ls overrldder wlth a LOT
pointer lf the linker subseQuently allocates storage
for a linkage section.a

When a <run unlt> ls cleaned up, alt segments with a LOT
entrv ln the new LOT, not 1n the old LOT, are terwlnated. This
ls o:>ne via a cal I t'J term_$seg_ptr which causes al I links to be
unsnapped--even ln the lnherlted linkage sections of "soeclal"
orograms. Note trat segments known in other r!ngs are not made
unknown. Segments krown in the <r~n unit>•s ring are made
unknown only lf the old LOT has a zero value corresoondlng to the
given segment.

The actual changes to the system for th!s would be as
fol lowsl

1. Change makeknown_ to return a status bit lndicatlng
that the usage count for the glwen ring changed from O
to 1.

2. Change makeunknown_ to return a status bit lndlcatlng
that the usage count for the given rlng cha~ged to o.

3. Change !nltiate <ring O version) to set t~e LOT slot ln
the cal I ln~ ring to a nonzero (faul tlng packed oolnterl
value when the usage count goes from 0 to 1.

'+• Change terminate <rlng O version• to zero the LOT slot
for the g!ve~ rlng when the usage count goes to o.

Note that we plan to eventually move the lnltlate and terminate
routines from ring 0 to the user ring and t~ls ls why the
particular cholce of implementation was made. When these
routines are ln the user ring, then only user ring code
manipulates the LOT for that ring. Note further that this
corrects a problem currently !n fs_search which touches each
ring•s LOT <usual Iv 1 and 4t w~enever the tinker makes a segment
known for the f!rst tlme.

MTB•330 Page 7

One obvious purpose for a <run unit> is to reset <flle>s to
thel~ state prlor to a <run>. Thls means leavlng a <flle>
attached lf lt was attached. leavlng lt open lf lt was open.
etc., but closing and detachlng when approprlate. In order to do
thls the <run unit> manager must cal I anv aoorooriate <flle>
management routines when the <run> ls terminated. Further. the
<file> management routines must be written so that trey can
remember the state of <flle>s when first referenced during a
<run>. In fact, tnls ls Just how the language I/O routlnes are
currently designed.

Any programs that want to gain control at the end of a <run>
(such as <flle> manage~ent routlnest must cal I a soeclal entry in
the <run unit> manager program indlcatlng this desire and
soecifylng whlch entry to call at <rJn unlt> termlnatlon tlme.
Thls ls completely analogous to the method used today for the
"flnlsh" condition. In fact, the .. flnlsh .. condltlol" wilt also be
signal led at the end of a <run unlt>. (An lnfo structure wlll be
passed with It so that a run unlt can be distinguished from
<process> termlnatlon.)

The <run unlt> ma~ager must also be preoared to handle calls
to set up such cal 1-oack reQuests even when a <run> ls not ln
progress--1.e. ln a <process> before a <run unlt> ls lnltiallzed,
or after a <run unlt> ls terminated. (Thls ls. of course, the
only way to run things today.) In thls case, for compatlblllty,
the standard system-supplied .. flnlsh• handler calls the
<run .mlt> manager to perform the Job of calling all crograms
that lnd~cated they were to be called. Thls oreserves the
conceot of a Multlcs <process> belng a <run unit> itself.

Note that anv <flle> actlvltv by programs not notlfled at
<run Jnlt> termination is nstt cleaned uo by the <run unlt>
manager. This means that lf a <flle> attachment ls cha~ged by
such a program during a <run unlt>, lt wll t remaln chanqed after
the <run unit> terminates.

With each <run unlt> ls associated an RNT used ln resolvlng
external references. This RNT can be l~ltlallzed 1~ several ways
ranying from contalnlng reference names for only the .. speclal"
routines. to lnltlal ly a copy of the RNT lust orlor to the <run>.
The R.NT ls used by tne linker to resolve external references
other than •system llnks. •system links are resolved to a
generation of storage wlthln the <run uilt>. Hence, rtl I •system
varlables (common blocKs, PL/I external varlables wlth no $ ln

Page ~ MTB-330

the r"lame, etc.> are local to the <run unit> and therefore
relnltlallzed each time a new <run unlt> ls established. Thls ls
what ls reQulred for PL/I <program>s and FORTRAN <program run>s.
<Al I COBOL working storage ls similar to PL/I .. Internal stat le ..
~nd therefore does not fal I lnto the category of external.)

I~ternal statlc storage ls reset to lts lnitlal state wlthln
the <run unlt> for programs ln the <run unit>. There are several
system routines currentlv uslng statlc that would not work
correctly lf thelr static sections were reset; they must be
either speclal-cased or recoded. They can be dlvlded into two
categorlesl one group ls necessary for a smoothly running
process and the other group maintains the command environment.

The flrst group Includes&

lox_
loc_
t l mer _manager_
get_temo_segments_
get_system_free_area_

The other llst wlll probably lncludel

I l st en_
cu_
rest_of_cu_
los_
orlnt_readv_message_
aebug
orobe
or ogress
abbrev
abs_lo_
general_ready

This llst ls subJect to change, but unless most of these are
converted, absentee wlll not work properly wlth <run unlt>s,
desl~ed ready messages and abbrevlatlons wlll disappear should
the user get to command level within a <run unlt>, lt will not be
possible to release oast a <run unlt> manager frame, and it wlll
not be possible to debug across <run unlt> bo~ndarles.

There are at least three possible alternatives, each wlth
its advantages an~ disadvantages. The flrst alternative ls for
the <run unit> manager to have a llst of procedures whose static

MTB-330 Page 9

ls not to be reset, 1.e. whose LOT and ISOT ertrles are to be
copied. The advantages are that lt ls fast a~d does rot Involve
coding changes or updating the llnker. The dlfflcultv with lt
Iles In how to soeclfv the llst. In order for users to be able
to modify lt, lt eltner must be an exte~nal segment or there must
be an entry ln the <run unlt> manager for adding ltems. If the
list contains patrnames, there ls little ~ser flexlbl lity. If
the list contains reference names, and <run unit>s can be
recursive, dlfferent name spaces are used, wh!ch defeats the
oer<orocess> purpose. Also the <run unlt> manager ~lght rave to
check several of the possible reference names for some routines.

The second alternative ls to have another storage class,
internal perorocess static, which would real Iv be only a way to
tell the <run unlt> manager what static to reset. Thls might be
implemented by a new procedure option, aerprocess, w~lch would
cause a new obtect map flag to be set (andfor the flag coyl1 be
set by a commandl. The linker, wher setting up an active linkage
section, would turn on 3 new flag ln the active tlnkage header.
When the <run unlt> manager initializes the new LOT, lt would
look at all the active linkage headers to determine wh!ch
LOT/ISOT entries should be copied and which reset. Thls would
involve only very minor changes to the complier, assembler,
blnaer and l!nker ard would be relatively efficient. The
oroblems with this scheme are that there would be extra oaglng
while touching al I the linkage headers and that some orograms may
want Doth per<process> and per<program> lnter~al static.

The third alternative ls to have per<process> variables. In
PL/I, external varlables whose names begln wlth "$" would ~ave a
new type of link which would be implemented llke •system links
<varlables allocated ard found by a control structure pointed to
by a new oointer ln the stack header). This pointer would not be
reset by the <run unit> manager and a pointer to t~e area used
would be stored either ln the stack header or ln the control
structure. The <run unit> ma~ager would then have to
speclal•case only lox_ (which has deflnitlons to static). The
complier, assembler, linker and binder wo~ld have to be updated,
although not extensively. Thls method would be the most flexible
out would be more costly when the links are first snaoped and
there would have to be strict naming conventions to prevent
conflicts, e.g. ioc•s per<orocess> varlables would begin with
"ipc_". Both of these problems would be mlnlmlzed if each
procedure concernea had tust one per<process> variable, a pointer
to a structure containing the rest of the information. However,
this would Involve more recoding. Thls alternative ~as the
additional overhea~ of resetting more static and linkage
sections.

Page 10 MTB-330

The temporary segment manager, get_temo_segments_, ls
treated as a oer<orocess> program and hence has oer<crocess>
lnte~nal static~ Thls means that, as with all standard orograms,
aoproorlate clean up strategies must be fol lowed by programs that
are oart of a <run unit> ln order to insure t~at temporary
segments are released at the appropriate tlme.

Al I linkage sections allocated by the llnker during a <run>
are al located ln the per <run unit> segment Cs> vla the pointer ln
the stack header. This pointer ls set to the (extensible>
<run ~nlt> area at the inltlatlon of the <run unit> and reset to
its prevlous value when the <run unit> ls terminated. The
analogous pointer to the internal static allocation area ls
treated slmllarty.

The linker itself ls driven off of these stack header
oolnters as wel I as the LOT pointer, the ISOT pointer, the RNT
oolnter, and the +system link pointer, all of whlch are changed
when a <run unit> ls lritlated.

As stated earlier, a
The default contents of
Just prior to the <r~n>.

alternate search rules to
<run unit> ls lnitlated.
oelow.)

new RNT ls created wlth a <run unlt>.
this RNT are the search rules In effect
However, it ls also posslble to soeclfv
take effect during the <run> when the
<See the descrlotlon of the run command

The debuJger s • st at le sec t1 ons wi ti be spec la I -cased or
recoded so that they can operate ac~oss <run unit> boundaries.
and there should be no dlfflculty in traclng the entlre stack.
However, It ~di I be more dlfflcult to de:>ug programs with staclo<
frames before the <run unlt> because the environment oolnters ln
the stack header wll 1 not be aporoorlate. This affects such
things as the debug ti request, f lndlng values of external
varlables. ana reprlnt_error. To enable 1ebusgers to tiandle thls
sltuation, It ls proposed that there be a new stack frame flag
lndlcatlng a <run unit> manager frame and an entry in the
<run unlt> manager which will return the stack header environment
information for a given stack frame. Not al I debugging tools

MT0-330

wll I be changed to take advantage
One or two subroutines, such
addltlonal entry points that take
beneflt of programs such as trace

of these features
as get_llnk_otr_,

a stack frame pointer
stack.

Page 11

ln 1 t la I Iv.
wl t I have

for the

Page 12 MTB-330

ti~m.e, 1 run
The run command lnltlates a run unlt ln which to execute a

program. The effect of executing a progra~ withln the constraint
of a run unlt rather t~an not so constrained ls that the run unit
lsolates the local effects of the program run, such as linking to
other programs, lnltlatlng reference names, opening fl les, etc.,
to the environment of the run unit and, hence, upon run
completion, the user•s process appears as lt dld before tt-e run.
The resources managej by the run unit manager include reference
names, llnkage sections, flies, segment numbers~ static storage
and external variables <including FORTRAN common blocksl. Al I of
these are reset to their prior state when the run unit ls
terminated.

r-un {control_arJsl 111aln_orogram Ccommand_argsl

"'here:
1. :ontrol_args

are used by the
initialize the
all precede the
the followings

-llmlt Q

run unit manager to control and
environment for the run. These must

command_name, and may be chosen from

sets a bound of o seconds of virtual CPU time for the
run. The default value for Q ls lnflnlte.

-use path
directs the run unit manager to lnltlate al I names on
the given segments as reference names ln the (new)
RNT to be used during the Program run. If any of
these names already exist ln the new RNT, the given
names replace the older names. Path ls either the
name of an oo)ect segment or the oat~name of a file
containing names of segments.

•search_rules path
directs the run unlt manager to use the search rules
whose ASCII representation ls in the segment named by
path. The search rules are set up exactly ln the
orde~ given, and the keywords accepted by the
set_search_rules command are honored.

-copy _rnt
Indicates that all reference names ln the Cold} RNT
ln effect Just orlor to the run are to be cooled Into
the (new) RNT to be used durlnq the run. Anv
refer-ence names lnltlated vla the -use control
argument override other reference names. The

MTS-330 Page 13

default ls for the <new) RNT to contain onlv the
names Initiated via the •use control argument.

-common path
directs the run unlt manager to assume path ls the
pathname of ~ block data subpragr~m that Includes the
inltlal values for varlables ln FORTRAN common
storage. If no ·common control argument ls
soeclfled. common blocks are lnltlallzed when first
referenced. This means that a block data subprogram
must be complied ln (or bound lnt wlth the flrst
program to reference the common ln the run.

2. maln_program
ls the name of the maln program of the run. TMe maln
orogram name ls the flrst non-control ar1ument on t~e

command line.

3. command_args
are 3rgume~ts and control argu•ents to be passed to
the main program of the run. These must al I fol low
the maln program name.

Page 14 HTB-330

run pf1 source -map -table

Causes the PL/I compiler to be invoked ln a run unlt. Upon
return from the run command, no reference names, segment numbers,
etc., generated by the oil command re•aln. (Note temporary
segments used by of1 are freed but stlll remaln ln the process.)

run -use >udd>ProJ>Pers>al loc_ 011 foo

causes a dlfferent attocatlon program to be used during the run.

A QUIT durlng a run does not cause e~lt from the run. Any
actlvlty oerfcrmed white the program being run ls susoended ls
forgotten when (lf) the run urdt ls terminated.

A run unlt St!ts uo a "condltlon wal I"' so that r::rograms
befo~e the run unlt ~ar.a]er on the st~ck do not get control until
the ~un ls termlnateJ (possibly because of a release>.

If the soeclfled time llmlt ls excee.1ed, the user ls asked
lf he wants to continue wlth the run. If the response ls "yes"',
3nother sllce of time, the same slze as before, ls made
available; lf the response ls "no'", the run unlt is terminated.

When a run unit ls terminated, the •finish" condition ls
signal led to al I oro~rams stll I active on the stack that are oart
of the run unit.

All l/O swltches attacheo or opened during the run ~~ 12
lfill~~ag~ llQ are reset to thelr prior state. Any actlon taken by
the io_cal I commanj or by exol lcit lox_ cal Is withln a run are
not reverted when the run ls terminated.

Any tempordry segments used by orograms during the run
should be cleaned uo by the same programs. The run unit manager
does not attempt to clean up temporary segments.

MTB-330 Page 15

li.a.m~: run_unlt_Tiana~er_

The run_unit_manager_ subroutine manages the environment for
a run unit and invokes the main program of the run.

Eo1c~: run_unlt_manager_ienvlronment_lnfo

This entry enables debuggers to obtain the saved stack
header Information used by a given stack frame.

declare ~un_unlt_manager_$envlronment_lnfo entry <otr, ptr,
f 1>< e .j b 1 n < 35)) ;

call run_unlt_manager_ienvlronment_lnfo
lnfo_otr, code);

<stack_frame_otr,

where I

1. stack_f rame_ptr
points to an active stack frame on the current stack.
(Input)

2. lnfo_otr
points to the follo"lng structure to be fl lled l~t

dcl 1 env_Ptrs aligned based,
2 version f lxed bln,
Z paj fixed bln (35,,
2 tot_ptr ptr.
2 lsot_ptr ptr.
2 clr_ptr ptr,
2 comblned_stat_ptr ptr,
Z user_free_ptr ptr,
2 sys_llnk_lnfo_ptr ptr,
2 rnt_ptr otr;

where I

1. version

2. pad

ls the version number of this structure;
currently lt ls 1.

ls unused.

Page 1&

3. code

HTB-330

3. lot_ptr
points to the linkaqe offset table <LOT>.

4. i sot_ptr

5. clr_otr

ooints to the il'\ter-nal static offset
table <ISOT).

points to the area where linkage sectlons
are a I I oc at ed •

6. combl~ed_stat_ptr

points to the area where separate statlc
sections are allocated.

7. user_free_ptr
polnts to the area where user storage ls
a I I ocated.

6. sys_llnk_lnfo_otr

9. r-nt_ptr

polnts to the contr-ol structure
external static var-lables.

points to the refer-ence name table.

ls a standard system status coci e. (Output)

for-

