Multlcs Technical Bulletin MTB~325

Tot? Dlstributlon
Fromit Rlchard Bratt
Sublect? A New Access Authorlzatior Mechanlism

Datet January 27, 1977

Perhaps the most difficult declslon to be made when
designing a protectlon and authorizatlon mechanlsm ls decldlng

how changes In access authorlzatlon are to be authorijized. In
making this cruclal declsion two approaches are posslible. Flrst,
one may deslign a very generals, and possibly comoplex,

authorization control mechanism capable of supportlng a dlverse
set of authorlzatlon control pollicles. Second, one may chose an
aoproprliate ana sufflclent authorlzatlon controt poticy and then
design minimal eftficient mechanisms to support the chosen
policy. The problem with the latter approach, whlch was taken [n
the design of Multicsy ls that as the needs of the user communlity
changey new authorlzation control policles become both deslirable
and aporoprlate. Unfortunately, It |Is often a formidable task to
retroflt mechanlsms supporting new or dlfferent authorizatlon
control policles Into a system. This document discusses an
authorization control pollicy which has been ldentlfled as being a
deslrabte adiunct to Multics and descrlibes a simple mectanlism
which allows graceful and natural Integration of this new policy
with the existlng Multics authorlzatlon controt pollcles and
mechanlsms.

Multicsy, 1f analyzed by Ffreudy would orobabty be
accused of sufferling from acute hlerarchy flxatlon. Our storage
system s bhlerarchically structured. Qur secondary storage
resource control system (s hlerarchlcally organlized. 0Our global
user name space s bhlerarchlically structured. Our authorlzatlon
control policies are hjerarchlcals As a further complicatlion,
these loglcally Indeperdent hlerarchles have been mapoed, In the
Multlics desligny Into a single physlical hlerarchy. Thls unratural
coercion has many deleterious effects upon the structure and
function of the system., This document wlll ccncern |tselft
orimarily wlth the effects of the uniflcation of the storage
system hierarchy and the authorization control nlerarchy on
Multlcs authorlzation control. Before Investlgating the
mlsinteractlons betweer the exlistent Multlics access authorization
mechanism and storage mechanlsm I wilil brlefly review the sallent
features of the Multlcs access authorizatlon mechanlsm.

Access aguthorlzation In Multlcs Is specifled by

Multlcs Project I[nternsal worklng documentatjon. Not +to be
reproduced or distributed outside the Multlcs Prolect.

Page 2 MTYB=-325

assoclating an access <control llst with each object In the
storage system. An access controi llst specifles the access
rights of any glven orincipal to the assoclated oblect., The
current Multlics deslgn authorizes authorlzatlon changes by
treating the access control Ilst assoclated with an object as an
attribute of the objecty, stored In the dlrectory cataloglrg the
object and thus sublect to modification by those princloals who
have modity permission to the contalning dlrectory, Multics
authorization control! ls thus based upon a hlerarchlcal model,.

Hierarchlical authorization control has many advantages.
It seems to support quite naturally many deslred authorjizatlion
schemes. (1) It Is easy to Implement. It s easy to understand.
As a resulty, the Multics access control mechanism has been qulte
successful. Unfortunately our Implementation of the hlerarchical
access control model Is flawed. We have mapped the access
control hierarchy orto the storage system hlerarchy and thus onto
the secondary storage control hierarchy with a consequent strong
coupling of access and storage confrol,

Coupling authorizatlion and resource control is
disadvantageous because a common class of deslirable real world
policles which may be modelled assuming dlis}olnt hierarchlcal
access control and storage system resource control cannot be
coerced Into a unlfled hierarchical model that assures authority
to control resources [mplles authority to control access ard vice
versas As a classlc example, conslder the case of adminlstration
of a computing utjllty, Clearly, the system admlnlstrator must
have the power to authorize a customer to consume secondary
storage resources. Slimllarly, he must have the authorlity to
reclaim the secondary storage resources used by a customer 1In
default of his contract with the computing utiiity., 0On the other
hand, it ls entirely unreasonable to assume that the system
administrator should have the authorlty to read and/or modify the
Information stored and processed In the computing utiltity by |its
customers, Thls rotlcy ls unreallzable In the current Multics
system, To control secondary storage resources the system
administrator must be glven modlfy permlssion on the dlrectorles
of hlis customers which allows him to Inspect and damage hls
customer®'s Informatlon.

There exlst many schemes for adding the capablility of
dealing with the "system administrator® problem to Multics. This
paper presents an extremely simple modlficatlon to the Multics
access control mechanism which I belleve provides the deslred
capablllty In a natural, easy to understand way. The scheme I

(1) As the reader ls doubtless aware, many useful, real {ite
authorlzation nopollcles are urreallzable wlthln the framework of
simple hlerarchlcal access control. For exampie, no analogue ot
the potlcyy ™"lt takes two keys to open the vault,® can be
speclfled with the mechanism described.

MTB=-325% Page 3

will present nas a very minimal lmpact upon the system,

I propose that a facllilty exlist for subdlviding the
access control rierarchy Into multiple, disjoint access control
hierarchles. To wit, I suggest that an attrlbute be added to
each node of the Multlcs storage system hlerarchy which speclfles
whether the glven node belongs to ¢the same access control
hlerarchy as lts father or lIs the root node of a new access
control hlerarchy. In thls way the structure of the system 1ls
oreserved. The access control llst of an object stlll Is an
attribute of the oblJect and contalned in lts parent dlrectorv.
However, the ablllty to modlfy the access control st of an
oblect Is only granted 1f tre process requestling the moclficatlon
has modify permission to the parent dlrectory and the object ls
not the root of a new access control! hlerarchy. The abliilty to
destroy and to move quota Into and out of the storage system
subhlerarchy defined by an access control hlerarchy Is stitl
controlled by modlfy permlsslion on the parent of the access
control hlerarchy.

As descrlbed so far, thls scheme tacks two lImportant
mechanlsms., Flrsty thls scheme does not provide a mechanism for
authorlzatlon modlfication on the root node of an access control
hlerarchy. Second, thls scteme does not provide ary control over
the ablllty to deflne a new access controi{ hlerarchy. (1)

One sotution to the problem of authorlzing changes to
the root node of an access control hlerarchy ls to appeal to the
mechanism used In contemporary Multics to authorize changes to
I1ts single access control hlerarchy root node. Thls scheme would
authorize onty the system Itseif to modify the attributes of the
root node of an access control hlerarchy, andi hence 1its access
control 1ist. Unfortunately, though slmple, such a mecranlism
directly contradlcts the Multics policy of dlstributed control,
A more approprlate sotution, which flts nicely Into the current
access control mechanlsm, Is to Introduce the concent of self
controly Il.e. allow the access control 1lst of the root node of
an access control hierarchy to somehow speclfy who may modify the
access control hlerarchy root node. A mechanlsm to provlide Just
thls type of control has already been proposed by Van Vieck.
This mechanlsm defines a new access control I1ist mode o',
standing for ™"™owner™, Thls permlsslon confers upon a princloal
the right to operate upon the gjlyen object as |f the oprinclpal
had modlfy permlsslior t0 the parent of the oblect. (2)

(1) The operatlon of defining a new access control hlerarchy may
be thought ot as *"rercoting®™ an access control hilerarchy slrce It
removes a subhlerarchy frcom an exlstlng access control hlerarchy
and plants the root node.

(2) Note that the "awner® permilssion mechanlsm Is completely
orthogonal to the mechanlism being proposed. This "owner™

Page 4 MTB=-325

Before Introduclng a mechanism +to authorlze the
creatlon of new access control hlerarchies, 1t Is Instructive to
Investigate what It means +to <create a new access control
hlerarchy and what controls mlght be deslirable., As envisoned,
creating 3 new access control hlerarchy 1Is done by glvirng an
object (ot elther gender) the ROOT attrlbute. There seems to be
no reason to constraler this differentlation to occur at the time
the noce s created nor does there seem to be any reason to
disallow the removal of the ROOCT attrlbute at some polnt In the
futurey, lndependent of the destructlion of the objlect. Therefore,
the storage system hierarchy 1Is covered by a family of access
control hlerarchles whi¢ch may vary from Instant to Instant. (1)
It should be obvious that some authority 1s necessary to root an
access control hlerarchy since the act of rooting a new access
control hlerarchy rotentlially dernies access to the subtree to
orinclipals bhaving moclfy permlssion on the parent dlrectory.

A natural solution to the oroblem of authorizirng the
rootlng (and wuprootling) of an access control hlerarchy Ils to
require modlfy permlisslon (2) to the oblect. Thils solution, wlith
a2 slngle exceptlons appears to exhibit the deslred behavlor. The
exceptlon deals with the desire on the part of a contractor to
audlt the actlvlities of his bhired agents. It a bulldling
contractor was not altowed to oversee hls empolyees actlivitles,
then he would have no way of assurling himseif that he was not
belng robbed btind. Ar analogous sltuation arises In a computing
utliity. A programmlng project manager mlght requlire the abltilty
to Inspect the storage used by hls empolyees to dlscourage
unauthorized used of the computer resources he iIs paylng for. 1If
hls employees could root a new access control hlerarchy, then
they could hide information from his view,.

for this reason authorlzation to root a new access
control hilerarchy sbhould be delegated much as authorjizatlon to
consume secondary storage resources 1s delegated, A new objlect
attribute, ROOTABLE, can be iInvented to contro! thls delegatlon.
The ROOTABLE attrlbute specifles that the objlect may serve as the
root node of a new access control hlerarchy. Delegatlion of the

permission mechanlsn s only bejng used as a solution to the
problem of authorlzirg modiflcatlons to the root node of an
access control hlerarchy. Note also that the "owner"™ permisslon
mechanism could be used to take the access control policy on the
storage system hlerarchy rocot node *out of the closet™.

(1) The reader shculd convince tilmself that the dynamlcs of the
sltuation do not introduce access revocation problems.

{(2) Modlify permlsslion may be vested In a process by virtue of
having modify permlssion on the contalning the objlect or beling
an "owner™ of the object.

MTB-325 Page 5

author]lty to make a node ROOTABLE follows three simple rules.
Oney, the root node of the storage system hlerarchy is de facto
ROOTABLE. Twoy, a process may mark an object as ROQTARLE [|f its
parent s ROOTABLE arnd the process has modlfy permission to the
object. Threeys once delegated the ROOTABLE attrlbute may not be
removed. (1)

In summary, I propose the addition of three oprimltlves
to the system! hcs_3delegate_ach_rootablilty, hcs_groot_ach, and
hcs_gsuproot_ach. (2) The hcs_%$delegate_ach_rootablllty marks a
deslgnated node as rootable 1f the process has modlfy permisslion
to the node and the Immediate superlor of the glven node 1is
rootable. The nhcs_sroot_ach primitive marks a noce as tre root
of a newy, Independent access control hlerarchy 1f the node 1Is
marked as rootable ard the process has modlfy permlssion to the
nodes The hcs_Suproot_ach primltive causes a designatea ncde to
be marked as a normals non access control hlerarchy root node If
the process has modlfy permission to the node.

Access to mocify the attributes of a normal hlerarchy
node Is controlled by both the access control 1ist on the
contalning directory and the access control list on the glven
node ("owner®™ mode). Access to modify the attributes of an
access control hlerarchy root node [ls controlled primarily by
“owner®™ access to the node. (3) The posession of modify
permisslon on the parent of an access control hlerarcry only
permits a process to perform resource control operatlons, e.Ge.
delete the whole subtree or move quota In and out of the subtree,

e sane o —

(1) Excepty Oof coursey, by deleting the whole subtree, This
restriction 1ls stronger than necessary and may be weakened |
experlence suggests that dolng so would be advantageous.

(2) I hope better names wl!ll suggest themselves [f ¢this scheme
comes to fruiltion.

(3) To prevent "“lost™ ltems the access controf Ilst orlmitlves
should probably refuse to create an access control hlerarchy with
no "“owner'™ permisslon on ts root node. Thisy of course, ls
Insutticient and the system will have to supply a hlghly
prlvileged locksmlithing primitive to deal wlth unaccesslible
nodese. To discourage misuse, thls facltity must record an
incelible audit trail of its actlvitlies.

