tultics Technical Bulletin MTE=316

To: Pistribution

F'rom: e Asherman

Late: 12/15/76

Jubject: hew File Type bLuilt (rom fAreas

Iintroduction

A new 1t'ile type 1s proposed whose appearance is identical tco
that of blocked files, except for the absence of a characteristic
maxirum recerd length (besides the segrment size limit). sSuch
files, termed "variable," can be implemented efficiently witnin
viile_ using system area manacement routines,

Uses of variable files

The primary motivation is to support APL 1/0 interchangeably
with other forms of seguentizl language 1/0 and structured P'ilcs,

Another reason for having fthese files is that they crovice a
standard interface for extensible permanent areas. This would be
of use in indexed files, for example, as a replacement for the
dynamic file space manarement logic.

Implications for_ indexed files

fiesides improving performance and centralizaticn ot code,
the use of extensible permanent areas can lead to some function=al
enhancements of indexed {iles.

ltost notably, users could tarpet independently synchronized
allocations and frees at the msi component level, without locking
the file as a whole,

The implementation of single sepment indexed [iles would
also be greatly facilitated by the use of & single, general space
manarcement routine. This feature will probably require a new
allocation entry and/or area header bit which forces page
alienment (for index modes).

Yultics Project 1internal working documentation. ot "to be
reproduced or distributed outside the Multics Project.

Page 2 MTE-316

Permanent areas

An initial implementation of variable files i3 possitble with
minimal chanfes to area rcutines. Ultimately, however, it mnay be
desirable to introduce area-level synchronization/recovery logic
for permanent areas (as distinguished by a ©bit in the
area-header), Once this has been done, a similar consistency
mechanism can be incorporated into variable files at the vfiile_
level. Such permanent areas would be a wuseful extension in
themselves, independent of their relation to vfile_, because they
can permit efficient sharing among oprocesses. Furthermore, the
user could rely upon automatic recovery from internal area
inconsistencies in the event of interrupted allocate or free
operations.

Distinctive features of variable files

As reaquired by AFL, the ({irst and 1last non-zero record
rositions would be maintained, and made available through the
"file-status" control order, et.al. Records are located via an
array of descriptors, each consisting of an msf compcnenft number
and word offset.

The delete operation, which 1s currently not supported on
blocked files, could be implemented in toth variable anc blocked
files with a modit'ied specification of the operation for these
cases, Specifiically, il the file 1is blocked or variable, =
~delete operation does not cause the current record position to
disaponear, wunless fthe current record is the last in the file,
Otherwise, the record is just replaced with one of =zero length.

HMPt documentation

Fevised 1Pl documentation is attached describing the chances
crecposed for a tirst implementation of variable files. 1t has
rot vebt been decided whether any recovery logic will be initially
incorporated,

vescriptions of proposed extensions to system areza roufines,
and a reviserd set_file_lock control order will be provided in a
future HTE.

Table 5-1. Opening Modes and Allowed Input/Output Operations

get_line
f‘ et_chars ?’:
get_ 5 K
put_chars
read_record

rewrite_record

read_length

[

t

'

|

I

|

|

1

|

|

|

i

|

! (
I I
| |
I (
1 !
b I
! |
| |
i |
I !
{ |
! | |
! 1

) (

i 1

1 i

! |

I !

| |

I

t

i

1

i

t

i

i

t

|
|
{ delete_record
i |
i]
| 1
' +
1 ! |
| i { ! position
! o
| j | | | seek_key
+ | i i | | |
| | | | ! 3 !
i i i | ; ; | read_key
i | t | I } | i
i i t t |] | i
i ; i | | | i i close
t | i i ! b 4 | t
i |] i I i 1 i |
i i | |] | ; ! ! 'write_record
¢ | 1 I t I 1 3 (| '
] | ! | [1 1 | i | i
| | i | | | } | ' | ! ccntrol
Opening Mode | : j | | i i i i i : :
| ; | i i] i |] i i i imodes
No. [Name_ : A NS S S NS S S S SN N A
i
!
1 stream_iaput lX X \\\ 2 X 1 1
i
I
2 stream_ocutput | p'e X 1 1
r I
4
3 stream_1input_osutput LX X X o X ! :
|
i
4 sequential_input | X X X X '
!
1
5 sequential output | X
I
I
6 sequential_input_output | X X X X
1 .
) !
I 7 sequential_update ! X X ;z(X X be
1 .
|
§ Keyed_sequential_input | X X X X X X 1 1
i
|
3 keyed_sequential_output | X X X 1 1
i
|
10 keyed_sequential_update | X X X X X X X X X 1 1
|
i
11 direct_input i X X X X 1 1
|
[}
12 direct_output i X X X 1 1
I
|
direct_update | X X X X X X X 1 1

Depends on the attachment.
Allowed if attached to a file in the storage system.

2 o 2

fedirorpetrr eSS T i s L oo G

Allowed for ¢ iles in T"he storage system.

~ Lmof*'l/\dexeol F:f

7/76 5-6 . AGG14A

Irterrupted Input/Cutput Operatiogns

It may happen that an I/0 operation being performed on a particular 1I/9
switch, switch_t, is interrupted, e.g., by a quit signal or an access violation

signal. In general, until the intuerrupted operation 1is completed, or until
switeh_1 is closed, it is an error (with unpredictable consequences) to perform
any 1/0 operation except close on gswiteh_1. However, some I/0 modules (tty_ in
particular) allow other operations on switch_1 in this situation. (See the
module descriptions in 3ection III of the MPM Subroutines for details.) £ the

switch switeh_1 1is closed while the operation is interrupted, control must ast
be returned to the interrupted operation.

PRO MMING LANGUAGE INPUT/QUTPUT FACILITIES

It is possitle to perform I,/0 through a particular switch wusing both tha
facilities of a programming language and the faclilities of the I/0 system
(invoked directliy). The following statements about this sort of sharing of
switches apply in most cases;

1. The I/0 system may be used to attach a switch or to attach and open
it. The language 1/0 routines are prepared for this, and they close
(detach) a switch only if they opened (attached) it.

2. A switch cpened for stream_input may be used both directly and t

language 1/0 if care is exercised. 1In general, the languages r

line at a time. Thus the order of input may get confused if a e

call is made to the I/0 system while the language routines a

processing a line, Trouble is most likely to arise after issuing

° quit signal (pressing the appropriate key on the terminal, e.g., ATTN,
BRK, etc.).

3O
Wb LY

3. A switch opened for stream_output may be wused both directly and
through language 1/0 if formatting by column number, line number, page
number, etc. 1s not 1important. Some shuffling of output may be

expected, especially if a direct call to the I/0 system (e.g., by the
issuing of a quit signal)} is made while the language I/0 routines are
processing an I1/0 statement.

4. If a switch is opened for record I/0 (sequential_, keyed_sequential_,
and direct_ 'modes), using it both directly and through language I/0 is
not recommended.

A direct call to the I/0 system has no effect on control blocks and tuffers
maintained by the language 1I/0 routines and is likely to cause garbled input or
output. The close_file command (described in the MPM Commands) closes PL/I and
FORTRAN control blocks wused by the language I1/0 routines. For details on the
facilities of a particular language and for a discussion of the usage of related
Multics commands, see the reference manual and/or user's guide for that
language.

E INPUT/OUTPUT

The I/0 system distinguishes types of files: unstructured,
sequential, blocked,,and indexed. These types pertain to the logical structure I
of a file, not tofthe file's representation in storage, on magnetic tape, etec.
For example, in thefstorage system a file may be stored as a single segment or
as a multisegmentyf file; but this does not affect the meaning of I/0 operations
on the file.

T7/76 5-9 AG91A

Blocked Files

A blocked file contains a sequence of records. Each record is a string of
9-bit Dbytes. The length of a record may range from zero to a preset maximum

r value assoclated with the file.

The following I/0 operations apply to blocked files:

read_record reads the next record

read_length obtains the length of the next record
write_record adds a record to the file or replaces a record
rewrite_record replaces a record

position positions to the beginning or end of the file, skirps
forward or backward over a specified number of records.
Also, given 1its ordinal position, (0, 1, 2, ...)
positions directly to a specified record

Indexed FN—» (/w{'ka\ on Vﬂn’ALILQ ‘H@S

An indexed file contains a sequence of records and an index. Each record
is a string of 9-bit bytes. A record may be zero length.

>

3

The index associates each record with a key. A key 1is a string of fronm
to 256 ASCII characters containing no trailing blanks. No two records in tne
file have the same key. The order of reccrds in the sequence is key order:
record x precedes record y if and only if the key of x is less than the xey 7 v
according to the Multics PL/I rules for string comparision (lexicographic order
using the ASCII collating sequence).

a

|

All the 1/0 operations applicable to sequential files apply to indexed
files as well, however, write_record only adds records. In addition, the I
following two operations manipulate keys:

read_key obtains the key and lengﬁh of the next record
seek_key positions to the record with a given key or defines the key

to be assoclated with a record to be added (by a subsequent
write operation)

Table 5-3 shows the I/0 operations that are permitted with each type of

Jﬁ!e-rQ_.Y’eCOro) Tﬁf)‘&lc&j a “leord u/T}‘OA o4 @
o™ 2ero lagth . IF He rgord ¥
the gt €10 of Fle postion wops
back fo that D He deleted —cord.

Variable Files

A varisble file contains a sequence of records. Each record is a
string of 9-bit bytes. A record may be of zero length. Deletions differ
from those in sequential files, in that e record position is logically
deleted only in the end-of-file case.

All the I/O operations appliéable to blocked files apply to varisble
files.

Table 5-3. " File Types

and Allowed Input/Output Operations

Input/Cutput Operaticn

get_line
H
I
! get_chars
: |
i ! put_chars
| i j
i i ! read_record
i | | i
] I | irewrite_record
| : j i i
. j | ; i i delete_record
- i] i i ; i
— I ! | | | | read_length
_ ; : | | | i |
“ | | l ? l | i position
| i i I l i] |
| | ! | !] i 1
~ 1
= i]] i i : i i seek_key
I [} 1) i | ' 1 I
\\ I 1 | 1 1] 1 ! i
AN i i | : i 1 | i i read_key
1 |) I I ! t + 1 I
! | 1] i |] | t |
*\] i 1 | : | i ; | write_record
| 1 I] I i i 1 1 I
| | I] 1] i 3 i | |
Type of File LN

=

unstructured
(sequence of 9-bit bytes,
usually ASCII characters)

>

sequential
{sequence of records)

blocked
fsequence of records)

indexed
(sequence of records
and an index)

Each record is a string of bytes;

a record may be of zero length. A

blocked

file has a characteristic maximum record length that is initially set by Fhe
user. For an indexed file, a key is a string of 0 to 256 ASCII characters, with

no trailing blanks.

varolle
(sognence o vecords)

7/76

AG91A

Table 5-4. Compatible File Attachments

Ooﬁg;ng Mode File Type

Ng.jName Iunstructured L sequential | blocked | indexed
1 stream_input i X 1 1 \ 1
2 stream_output E X3
3 stream_input_output % x3
4 sequential_input % X X X x
5 sequential_output % x3 x3)(3)
2 seguential_input_output % x3 x3 X3
7 sequential_update g 2,3 X3 X3 x
5 kKeyed_sequential_input 3 X
g keyed_sequential_output % x3

10 keyed_sequential_update ; X3

11 direct_input % X

12 direct_output % X3

13 direct_update i X3

. Ine structure of the file is ignored and everything in it is treated as
data (including control words).

2. The file must be 'in the storage systen.

3. This type of file is . created by an output or update opening for the
specified mode wunless this feature 1is explicitly suppressed. Update
openings never replace an existing file. (See the individual I/0 module
descriptions in Section III of the MPM Subroutines to see which control
arguments are applicable.) '

T/TE

5-13 AG914

[vari o\bifl

vfile_adjus*t vfile_adjust

Name: vfile_adjust, vfa

The vfile_adjust command is used to adjust structured files left in a-

inconsistent state by an 1interrupted opening, or unstructured files in any
state. Fcr urstructured files a control argument must specify the desired
ad justment. Ctherwise, no control arguments are allowed. A seguential or
blocked file is adjusted by truncation after the last complete record. An
indexed file is adjusted bty finishing the interrupted operation.

ov \/Qr.‘al’ (Q

)
0
fo}

vfile_adjust path -control_arg-

where:
1. path is the pathname of the file to be adjusted.
2. control_arg must be specified only for unstructured files and
is selected from the following:
~-set_nl if the last nonzeroc byte in the file 1s not a
newline character, a newline character is
” appended. The bit count of the file's last
nonempty segment is then set to the file's last
nonzero byte (which is now sure to be a new.ine
character).
-use_nl the file 1is truncated after the last newline
character.
-set_bc the bit count of the file's last nonempty segment
is set to the last nonzero byte in that segment.
Any components beyond it are deleted.
-use_be -n- the file is truncated to the byte specified by the
bit count of multisegment file component n. If n
is not given, it is taken to be the last nonempty
component, :
Notes

See the description of the vfile_ I/0 module (described in the MPM
Subroutines) for further details. The adjust_bit_count command used with the
character control argument is equivalent to vfile_adjust used with the -set_bec

control argument, except that the latter only operates on a file that appears to
be unstructured.

3/76 3-334.1 AG92B

vfile_status vfile_status

Name: vfile_status, vfs

The vfile_status ommand prints the apparent type (unstructured,
sequential, blocked, “or indexed) and length of files. For structured files,
information about the state of the file (if busy) and the file version (unless
current) is printed. The maximum record length is printed for blocked files.
For indexed files, the following statistics are printed:

1. The number of records in the file, including zero length records

2. The number cf nonnull records in the file, if different frcem the above
3. The total length of the records (bytes)

4, The number of blocks in the free space list for records

5. The height of the index tree (equal to zero for empty files)

6. The number of nodes (each 1K words, page aligned) in the index tree

7. The total length of all keys (bytes)

8. The number of keys (if different from record count)

9. The number of duplicate keys (if nonzero)

10. The total length of duplicate keys (if any) . ﬂ

Usage

vfile_status path

where path is the pathname of the segment or multisegment file of interest. If
the entryname portion of the pathname denctes a directory, it is ignored. If no
files are found for the given pathname, a message to that effect is printed. If

the entry is a link, the information returned pertains to the entry to which the
link points. The star convention is permitted.

Notes

“Additional information may be obtained through the status command.

For Varabhe ﬂ\ec) Hee I‘P""‘Sr + lasT aligcated
gcord POW:'HE)AS are priated (T‘P deFocend frowm
2€70 o Yot -) r-€5t>€<-+fve/\/> . ‘\%

7776 3-334.2 AG92C

vfile_status vfile_status

Examples

Assume that the file foo is in the user's working directory. The command:
vfile_status foo

might produce the foliowing output:

type: unstructured

bytes: 4993 ov

if the file is unstructured,

‘f%og : vamable
Meords © 2639 3
First alloc: 438

T‘P W P"Q s vam‘a‘ol{

or

type: sequential
records: 603

if the file is sequential,
or

type: blocked
records: 1200
» max recl: 7 bytes

if the file is blocked,
or

type: indexed

records: 397

state: locked by this process
action: write in progress
record bytes: 3970

free blocks: 1.

index height: 2

nodes: 3

key bytes: 3176

if the file is indexed and a write operation has been interrupted in the user's
process.

3/76 3-334.3 AG92B

vfile_status_ vfile_status_

Name: vfile_status_

The vfile_status_ subroutine returns various items of information about a
file supported by the vfile_ I/0 module.

Usage

declare vfile_status_ entry (char(¥*), char(¥*), ptr, fixed bin(35));

call vfile_status_ (dir_name, entryname, info_ptr, code);

where:

1. dir_name is the pathname of the containing directory. (Input)

2. entryname is the entryname -of the file of interest. If the entry is a
link, the information returned pertains to the entry to
which it points. (Input)

3. info_ptr is a pointer to the structure in which information is to be
returned. (See "File Information" below.) (Input)

4,” code is a storage system status code. (OQutput)

File Information

The info_ptr argument points to one of the following self-describing
structures, as determined by the type of the file (see "type" below):

del 1 uns_info based (info_ptr), /* structure for
2 info_version fixed bin, unstructured files %/
2 type fixed bin, .
2 bytes fixed bin(34),
2 flags aligned,,
3 pad1 bit(2) unal,
3 header_present bit(1) unal,
: 3 pad?2 bit(33) unal,
2 header_id fixed bin(35);
where:
1. info_version identifies the version of the info structure; this
must be set to 1 by the user. (Input)
2. type identifies the file type and the info structyre
returned: —
1 unstructured . L)/
2 sequential 5 [/Qr,ﬂ e
3 blocked
4 indexed
3. bytes gives the file's length, not including the header in

bytes.

T7/76 2-126.1 AG93C

vfile_status_ vfile_status_

12. nodes is the number of single page ncdes in the index.

13. key_bytes is the total length of all keys in the file in bytes.
14. change_count is the number of times the file has been modified.

15. num_keys is the total number of index entries, each associating

a key with a record.

16. dup_keys is the number of index entries with nonunique keys,
not including the first instance of each key.

17. dup_key_btytes is the total length of all duplicate kevs in the
as defined above.

——— (ug{‘j' VH,IH% ST “{eﬁe

rY

ile,

Notes

The wuser must provide the storage space required by the above structures.
Normally, space should be allocated for the largest info structure that might be
returned, namely, the one for indexed files.

//,4 See the description of the vfiie_ I/0 module for further details.

7/76 2-126.4 AG93C

del 1
2
2
2
2
2
2
2
2
2
where:

vb;_info

info _version
type
records
flags
3 lock status
3 pad
version
action
first nz
last nz
change count

based (info ptr),
/*structure for variable files*/

fixed bin,
fixed,

fixed (3k4),
aligned,

bit (2) unal,
bit (34) unal,
fixed,

fixed,

fixed (34),
fixed (3h4),
fixed (35);

1.-6. are the same as in the blk info structure above.

7. first nz is the position of the first allocated record (same as
eof if none).

8. 1last nz is the position of the last allocated record (-1 if none).

9. change_count is the same as in the indx info structure above.

vfile_ viile_

Name: vfile_

This I/0 meodule suﬁports I1/0 from/to files 1in the storage system. All
logical file types are supported.

Entry points in this module are not called directly by users; rather, the
module is accessed through the I/0 system. See '"Multics Input/Output System"
and "File TIpput/Cutput" 1in Section V of the MPM Reference Guide for a general
description of the 1/0 system and a discussion of files, respectively.

Atvach Description

The attach description has the following form: ~ L)/
| 0T Vgriglle

vfile_ path -control_args-

where:
1. path is the absolute or relative pathngme of the file.
2. control_args may be chosen from the follo
t"’k -extend specifies extension of fMe file if it already exists.

This control argument
output or input_out

s only meaningful with openings for

t; otherwise, it is ignored.

-share -wtime- allows an indexed/file to be open in more than one process

at the same time, even though not all openings are for
input. (See "Multiple Openings" below.) The wtime, 1if
specified, 1is the maximum time in seconds that this
process will wait to perform an operation on the file. A
value of -1 means the process may wait indefinitely. If

no wtime is given, a default value of 1 is used.

-blocked -n- specifies attachment to a blocked file. If a nonempty
file exists, n is ignored and may be omitted. Otherwise,
n is used to set the maximum reccrd size (bytes).

-no_trunc indicates that a put_chars coperation into the middle of an
unstructured file (stream_input_output) is permitted, and
no truncation 1s to occur in such cases. Also prevents
the truncation of an existing file at open and in
stream_input_output openings causes the next byte position
to be initially set to beginning of file.

-append in input_output openings, this causes put_chars and
write_record operations to add to end of file instead of
truncating when the file position is not at end of file,
Also the position is initially set to beginning of file,
and an existing file is not truncated at open.

~ ‘VQrTaE}YZ)-\/QI Jepecl?('\«e\r qHZ{(‘LMQA""' +O a
- vorable ke . |

7/76 3-17 AGS93C

viile_ | veile

-header -n- for use with unstructured files, this control argument
indicates that a header is expected in an existing file,
or is to be created for a new file,. If a header is
specified, it contains an opticnal identifying number,
which effectively permits user-defined file types. iIf n
is given and the file exists, the file identifier must be
equal to n; a new file takes the value of n, if given, as

its identifier.. The header 1is maintained and becomes
invisible only with the explicit wuse of this control
argument,

-o0ld indicates that a new file is not to be created if an

attempt 1s made to open a nonexisting file for output,
input_output, or update.

-ssf restricts the file to a single segment. 1If specified, an
attempt to open a multisegment file or Lo expand a file
beyond a single segment 1s treated as an errcr. The file
must not be Iindexed.

-dup_ok indicates that the creation of duplicate keys 1is to be
: permitted. The file must be indexed., (See "Duplicate
Keys" below.)

The -extend, -append, and -no_trunc contrcl arguments -conflict; only one
may be specified.

To form the attach descripticn actually used in the attachment, the
pathname is expanded to obtain an absolute pathname.

Opening-and Access Requirements

All opening modes are supported. For an existing file, the mode must be
compatible with the file type. (See "File Input/Qutput" in Section V of the MPM
Reference Guide.) The mode must be compatible with any control arguments given
in the attach description,

An existing file 1is not truncated at open if its safety switch is on and
its bit count is nonzero,

If the opening is for input only, only read access is required on the file.
In all other cases, rw access 1is required on the file.

Position QOperation

An additional type of positioning 1s available with unstructured
blocked y files that are open for input, input-output, or update. When the type
argument| of the iox_$%position entry peint 1is 2, this specifies direct
positioning to the record or byte whose ordinal position (0, 1, 2, ...) is
given. "Ahe zero position is just beyond the file header, 1if a header 1is
present. '

7/76

AG93C

)

vfile_ vfile_

Write Operation

In blocked " and sequential files open for update, this operation is
supported., Its effect is to append a record to the file or replace the next
record, depending on the next record positicn.

Rewrite Operation

If the file is a sequential file, the new record must be the same length as
the replaced record. 1If not, the code returned is error_table_$long_record or
error_table_$short_record,.

In a bleccked file, no record may be rewritten with a record whose length
exceeds the maximum record length of the file. Attempting to do so causes the
code, arror_table_g$long_record, to be returned,

Delete Operation

> If the file is a sequential file, the record is logically deleted, but the
space 1t occupies is not recovered.

letl aréwwngt supég:gﬁqé in
azt te\ a reCO(d in; a '%Qgiijf file, the
#L«? t’\? 5 bl&ckeo) or Ve QB}Q

Modes Operation ‘HLQ Space 066“ r‘ CU))/ ‘H‘\& T"ewrd Ry

rﬂoov\é Heo record’ oU . ‘P‘u\ v
This copera iorg\ 011- no' upp%”)%,d dQ/W IA(\/ 33 -f-LL f) s
i e

‘ .

Control Qperation

The following orders are supported by the vfile_ I1I/0 medule.

read_position add_key
seek_head delete_key
set_wait_time get_key
truncate min_tlock_size
max_rec_len reassign_key

record_status
set_file_lock

Tne five orders in the first column are descrinzed below. The remaining
orders, documented in the vfile_ I/0 module in the MPM Subsystem Writers' Guide,
implement various features of indexedi files that require somewhat more knowledge
of internal file structure than is expexted of most users,.

7/76 3-19 AGY3C

vfile_ _ o Vah\agle vfile_

set_wait_time

The set_wait_time /order 1s accepted when the I/0 switeh is open and
attached to an indexed’file with the -share control argument,. For this order
the info_ptr argument must point to a structure of the following form:

del new_wait_time float based(info_ptr);

This order specifies a limit on the time that the user's process will wait
to perfcrm an order when the file is 1locked by another process. The
interpretation o¢f new_wait_time 1s the same as that described earlier for the
wtime limit used with the -share control argument,

truncate

The truncate order is accepted when the 1I/0 switeh is attached to a
nonindexed file open for input_output or update. The operation truncates the
file at the next record (byte for unstructured files). If the next position is
undefined, the code error_table_$no_record is returned.

= No info structure is reqUired for this order.

max_rec_len

The max_rec_len order is accepted when the I/0 switch is open and attached
tc a blocked file. The operation returns the maximum record length (bytes) of
the file. A new maximum length can be set by specifying a nonzero value for the
second argument, In this case the file must empty and open for modification, or
the code error_table_$no_operation is returned.

For this order the info_ptr argument must point to a structure of the
follcwing form:

del 1 info based (info_ptr),
2 old_max_recl fixed(21), /*output¥*/
2 new_max_recl fixed(21); /*input¥*/

T7/76 3-21 AG93C

)

vfile_ vfile_

3. Blocked File.
In general, the file's bit count and record count will not be correct,
This condition is detected at a subsequent open, and either the file
is automatically adjusted or (if the opening is input only) the code
error_table_$file_busy is returned.

4, Indexed file.

In general, the bit counts of the file's segments will not be properly
set, and the file contents will be in a complex intermediate state
(e.g., a record, but not its key in the index, will be deleted). This
situation 1is detected at a subsequent open or at the beginning of tne
next operation, if the file is already open with the -share control
argument, Unless the opening 1is for input only, the file i3
automatically adjusted; otherwise, the code error_table_$file_busy is
returned.

When an indexed file is adjusted, the interrupted operation
(write_record, rewrite_record, delete_record, etc.), if any, is
completed., For rewrite_record, however, the bytes of the record may
be incorrect. (Everything else will be correct.) In this case, an
error message is printed on the terminal. The wuser can rewrite or
delete the record as required., The completion of an interrupted write
operation may also produce an 1incorrect record, in which case the
defective record and its key are automatically deleted from the file.

Any type of file may be properly adjusted with the vfile_adjust command
(Blescribed in the MPM Commands), if an interrupted opening has occurred.

Inconsistent Files

The code errcr_table_¢$bad_file (terminal message: "File is not a structured
file or is inconsistent") may be returned by operations on structured files. It
means that an inconsistency has been detected in the file. Possible causes are:

1. The file is not a structured file of the required type;

2. A program accidentally modified some words in the file.

Obtaining File Information

The type and various statistics of any of the four vfile_ supported file
structures may be obtained with the vfile_status command or vfile_status_
subroutine (described in the MPM Commands and Subroutines respectively).

5. Varsable Fhe .
Sawe oz Jor wfexed Dle.

/76 3-24 AGY3C

viile__

QJ/ V&T’Jﬂb‘\e ville

Name: vfile_

The majority of the vfilg I1/0 module documentation is in Sectiocr ZIZ2
the MPM Subroutines, Th information given here describes additicral orc
calls for users of indexed files. These orders allow a greater degree
control 1in thes areas of synchronization and separate record/index manipulation.
They implement various features of indexed files that require scmewhat nmore
xnowleage of internal file structure than is expected cof most users.

[}
h "3 vy

[l

min_block_size

The min_block_size operation determines the minimum size for blocks of
record space that are subsequently allocated by write_record or rewrite_record
operations (documented in the icx_ subroutine). The specification remains in
effect for the duration of the current opening or until another call to this
order 1s issued. The I/0 switch must be attached to an indexed file cpen for
output or update.

For this order, the info_ptr argument must point to a structure of the
following form:

del 1 min_blksz_info based(info_ptr),
2 min_residue fixed bin(21),
2 min_capacity fixed bin(21);

where:

1. min_residue specifies the minimum wunused <capacity of a reccrd block
(bytes); i.e., the difference between the record's length and
the maximum length it can attain without requiring

reallocation. (Input)
2. min_capacity specifies the minimum total record capacity (bytes); 1i.e.,

the maximum length that the record can attain without
requiring reallocation. (Input)

When the I/0 switch is initially opened, both these parameters are set to zero.

The current implementation imposes the following constraints on allocated
record blocks:

1. The minimum allocation is eight full words, including two header words
for the block length and record length. The minimum nonnull record
capacity is, therefore, 24 bytes.

2. The size of an allocated block is always an integral number of full
words, i.e., a multiple of four bytes.

T7/76 7-159.1 AK924A

)

viile_ viiie

where:

1. input_key indicates whether the key 1is given 1in the info
structure. (Input)

"0"b indicates that the index entry to be reassigned
has as 1its key the current key for insertion.
If undefined, the code error_table_$nc_key 1is
returned.

"1'b indicates that the key_string argument defines
the key portion of the 1index entry tc ©be
reassigned. If the key_string is not found in
the index, the «code error_table_s$nc_key iz
returned.

2. input_old_descrip indicates whether the old descriptor is given 1in the
info structure. (Input)

"o"b indicates that the entry to be changed is
associated with the current record. If tne
current record is undefined, the code
error_table_$no_record is returned.

"1"b indicates that the old_descrip argument defines
the descriptor portion of the index entry tc be
changed.

3. input_new_descrip indicates whether the new descriptor is given in the
info structure. (Input)

"0"b indicates that the specified index entry is to
be reassigned to the current reccrd. If the
current record is undefined, the code
error_table_$no_record is returned.

"1"b indicates that the argument new_descrip 1s to
supply the new value for the descriptor portion
of the specified index entry.

4, old_descrip is used only if reassign_key_info.input_old_cescrip

' equals "1"b. The entry that is reassigned is tnhe firs:
whose descriptor matches this value, among thcse index
entries with the specified key. (Input)

5. new_descrip is wused only if reassign_key_info.input_new_descrip
equals "1"b. This value replaces the old descriptor of
the specified index entry. (Input)

6. key_length same as in the add_key_info structure above. (Input)

7. key_string if reassign_key_info.input_key equals "inp, this

argument defines the key for which the index entry with
the specified descriptor is to be reassigned. (Input)

o~ vamable

set_file_lock

The set_file_lock order 1s accepted en the I1/0 switch is open for output or
update and attached to an indexed’file with the -share control argument. For
this order, the info_ptr argument must point to a variable of the following
form:

decl set_lock_flag bit(2) aligned based(info_ptr);

T/76 7-159.9 AK92A

