
t·:ultics Technical bulletin r·:'i'D-31&

To: Distribution

f'roi;1: l .. i. Asherman

iJa t e: 12/15/76

.:;ubject: hew File 1ype Luilt from Ar0as

Introduct.1Q.!1

A ne~ file type is proposed whose appearance is identical to
that of blocked files, except f'or the absence of a characteristic
~aximum record length (besides the seg~ent size limit). Such
files, terried "variable," can be implerr.entcd efficiently witr,ir1
vfile_ using system area management routines.

Qg_§_of .variable files

The primary motivation is to support APL l/G intcrchanreably
with other forms of sequential languare 1/0 and structured t'ilc~.

Another reason for having these files is that they provice a
standard interface for extensible perQanent areas. This would be
of use in indexed files, for example, as a replacement for tne
dynamic file space management loric.

l.!ll.Ql i cat ions for indexed .files

besides improving performance and centralization of code,
the use of extensible permanent areas can lead to so~e functional
cn~ancements of indexed files.

host notably, users could tarp;et independently synchronized
allocations and frees at the msf component level, without locking
the file as a whole.

The implementation of single sefment indexed files would
also be greatly facilitated by the use of a sinfle, general space
mana~ement routine. This feature will probably require a new
allocation entry and/or area header bit which forces page
alifnment (for index modes).

Multics Project internal working documentation. ~ot to be
reproduced or distributed outside the Multics Project.

!-'age 2 MTG-316

Permonent areas

Jin in.itial implementation of' vari:iblc files is !)Ossible idth
rninimnl chan~es to area routines. ~ltimately, however, it may be
desirable to i~troduce area-level synchronization/recovery logic
for permanent areas (as distinguished by a bit in the
area-header)~ Once this has been done, a similar consistency
mechanisrr can be incorporated into variable files at the vfile_
level. Such permanent areas would be a useful extension in
themselves, independent Of their relation to vfile_, because they
can permit efficient sharing among processes. Furthermore, the
user could rely upon automatic recovery from internal area
inconsistencies in the event of interrupted allocate or free
operations.

Distinctive features of variable files

As reauired by APL, the first and last non-zero record
positions would be maintained, and made available through the
"file-status" control order, et.al. Iiecords are located via an
array of descriptors, each consisting of an msf component number
c:ind word offset.

The delete operation, which is currently not supported on
blocked files, could be implemented in both variable and blocke~
files with a modified specification of the operation for these
cases. Specifically, if the file is blocked or variable, a
delete operation does not cause the current record position to
disapoear, unless the cuFrent record is the last in the file.
Otherwise, the record is just replaced with one of zero length.

MP~ documentation

Revised t'lPl·J documentation is attached describing the chan~es
~~cposed for a i·irst implementation of variable files. It has
~ot yet been decided whether any recovery logic will be initially
incorporated.

Gescriptions of prooosed extensions to system area routines,
and a revise~ set file_lock control order will be provided in a
future tlTB.

I

Table 5-l. Opening Modes and Allowed Input/Output Operations
get_line

I
I
I
I
I
I
I
I

get_chars
I
I
I
I
I
I
I
I
I
I

put_chars
I
I

i read_record
I
I
I
I

I
I

:rewrite record
I I -
I I

: : delete_record
I I
I I
I I
I
I
I
I
I
I
I

read_length

position
I
I

seek_key

I
I
I
I ,.

I

read_key

close
I
I I

I
I
I
I

lwrite_record

0'2~!l1!lS: Modi;:
I
I

~o. 'Nam

~tream _input x x

,:: stream _output

. strea::i _i:-iput_output x x _,

4 sequential_input

5 sequential_output

6 sequential_input_output

7 sequential_update

8 keyed_sequential_input

9 keyed_sequential_outptit

10 keyed_sequential_update

1 1 direct _input

12 direct _output

13 direct _update

1. Depends on the attachment.

Al lowed if attached to a file in

x

x

x x

x x

x x x x

x x

x x x x

x x

x x x x

the storage system.

2

2

x

x

x

x x

x

x x

x

x

x

I
I
I
I
I
I

x

x

x

x

x

x

x

x x

x x

x x x

x

x x

x x

Allowed for il.e&lililQ aAd &e'!:tieneiai files ::n tne storage system.

L t"•f' ... 1 tide-x:e~

7176 5-6

ccntrol

~'.!lodes

AG91A

.. JJ

:~terrupted Input/Output Operations

It may happen that an I/O operat1on being performed on a particular I/O
switch, switch_1, is interrupted, e.g., by a quit signal or an access violation
signal. In genPral, until Lhe interrupted operation is completed, or until
switch_1 is closed, it is ~n errur (with unpredictable consequences) to perform
any I/O operation except clo.se on :::;witcl!_1. H.owever, some I/O modules (tty_ in
particular) allow other operations on switch_1 in this situation. (See the
module descriptions in Section 111 of the MPM Subroutines for details.\ If the
switch switch_1 is closed while the operation is interrupt~d, control ~ust n0t
be returned to the interrupted operation.

PROGRAMMING LANGUAGE INPUT/OUTPUT FACILITIES

It is possible to perform I/O through a particular switch using both the
facilities of a programming langua~e and the facilities of the I/O system
(invoked directly). The following statements about this sort of sharing of
switches apply in most cases:

1. The I/O system may be used to attach a switch or to attach and open
it. The language I/O routines are prepared for this, and they cl~se
(detach) a switch only if they opened (attached) it.

2. A switch opened for stream_input may be used both directly and thr:ug~
language I/O if care is exercised. In general, the languages reaj a
line at a time. Thus the order of input may get confused if a dire::
call is made to the I/O system while the language routines are
processing a line. Trouble is most likely to arise after issuing a
quit signal (pressing the appropriate key on the terminal, e.g., ATTN,
BRK, etc.).

3. A switch opened for stream_output .may be used both directly and
through language I/O if formatting by column number, line number, page
number, etc. is not important. Some shuffling of output may be
expected, especially if a direct call to the I/O system (e.g., by the
issuing of a quit signal) is made while the language I/O routines are
processing an I/O statement.

4. If a switch is opened for record I/O (sequential_, keyed_sequential_,
and direct_·modes), using it both directly and through language I/O is
not recommended.

A direct call to the I/O system has no effect on control blocks and buffers
maintained by the language I/O routines and is likely to cause garbled input or
output. The close_file command (described in the MPM Commands) closes PL/I and
FORTRAN ctintrol blocks used by the language I/O routines. For details on the
facilities of a particular language and for a discussion of the usage of related
Multics com~ands, see the reference manual and/or user's guide for that
language.

FILE INPUT/OUTPUT (-Fi~
The I/O system distinguishes ~ types of files: unstructured, I

sequential, blocked, and indexed. These types pertain to the logical structure
of a file, not to he file's representation i~ storage, on magnetic tape, etc.
For example, in the storage system a file may be stored as a single segment or
as a multisegmen file; but this does not affect the meaning of I/O operations
on the file.

7176 5-9 AG91A

Blocked Files

A bloc.ked file contains a sequence of records. Each record is a string of
9-bit bytes. The length of a record may range from zero to a preset maximum
value associated with the file.

The following I/O operations apply to blocked files:

read_record

read_l~ngth

write_record

rewrite_record

reads the next record

obtains the length of the next record

adds a record to the file or replaces a record

replaces a record

positions to the beginning or end of the file, skips
forward or backward over a specified number of records.
Also, given its ordinal position, (0, 1, 2, ••.)
positions directly to a specified record

Indexed F-i-1-es------.<e:~::::.--.____-- (p ~t~ \ OA

An indexed file contains a sequence of records and an index.
is a string of 9-bit bytes. A record may be zero length.

Each record

The index associates each record with a key. A key is a string of fro~ ~
to 256 ASCII characters containing no trailing blanks. No two records :n t~e
file have the same key. The order of records in the sequence is key crd~r:
record x precedes record y if and only if the key of x is less than the key :f y
according to the Multics PL/I rules for string comparision (lexicographic ar~er
using the ASCII collating sequence).

All the I/O operations applicable
files as well, however, write_record only
following two operations manipulate keys:

to sequential files apply to indexed
adds records. In addition, the

file.

read_key

seek_key

obtains the key and length of the next record

positions to the record with a given key or defines the key
to be associated with a record to be added (by a subsequent
write operation)

Table 5-3 shows the I/O operations that are permitted with each type of

't'tp~ce.J w-;-~ o~e

I

~.t-() ~~ ~-1& .
-~ -e. '~ff; 7(t e 1i. d a-P' -FTle
,.b"'c,l< ~ ~-~ ·f- ,+"- ·-+Ot e

+-le r-fct;> rd ~
p () ,r,"'.-l-,'o-A w 0 ves
Jie le+-e J t-tt:..otd,

2176 5-10. 1 AG91A

Variable Files

A variable file contains a sequence of records. Each record is a
string of 9-bit bytes. A record ma.y be of zero length. Deletions differ
from those in sequential files, in that a record position is logically
deleted only in the end-of-file case.

All the I/O operations applicable to blocked files apply to variable
files.

I

Table 5-3. File Types and Allowed Input/Output Operations

Type of File

unstructured
(sequence of 9-bit bytes,
usually ASCII characters)

sequential
(sequence of records)

blocked
(sequence of records)

indexed
\sequence of records
and an index)

get_line
I
I

Input/Output Operation

: get_chars
I
I

put_chars

reaJ_record
I
I

:rewrite_record

delete_record

read_length

position

seek_key

read_key

write_record

x x x

x x x x x x

x x x x x x

)(x x
x x x x x x x x

Each record is a string of bytes; a record may be of zero length. A blocked
file has a characteristic maximum record length that is initially set by the
user. For an indexed file, a key is a string of 0 to 256 ASCII characters, with
no trailing blanks.

v~,.:-~ L ~
(_ ~1 /Af "c. e

7176 5-12 AG91A

Table 5-4.
/ vQl"'i(A.hJ-e..f.

Compatible File Attachments ~

Ope?ing Mode File Type (. ~
~N~o~-~l~Nu·aum~e;o_~~~~~~~~~~~~uun~s~t~rwu~c~t~u~r~e~di::!-"'-~s~e~g~u~e~n~t~i~a~l--..1""--1b~l~o~c~k~e~d~•:-=-i~n~d~e~x~e~d ·

2

3

4

5

6

7

8

9

10

1 1

12

1 3

stream_input

stream_output

stream_input_output

sequential_input

sequential_output

sequential_input_output

sequential_update

keyed_sequential_input

keyed_sequential_output

keyed_sequential_update

direct _input

direct _output

dire.ct _update

x

x3

x3

x x x x

x3 x3)(3

x3 x3)(~

2,3 x3 X3 x I
x

X3

x3 I
x

X3

xJ I

1. The structure of the file is ignored and everything in it is treated as
data (including control words).

2. The file must be in the storage system.

3.

7176

This type of file is.created by aQ output or update opening for the I
specified mode . unless this feature is explicitly suppressed. Update
openings never replace an existing file. (See the individual I/O module
descriptions in Section III of the .MPM Subroutines to see which control
arguments are applicable.)

5-13 AG91A

\

vfile_ad just vfile_adjust

~: vfile_adjust, vfa

The vfile_adjust command is used to adj~st structured files
inconsistent state by an interrupted openin~, or unstructured
state. Fer u~structured files a control argument must specify
adjustment. Otherwise, no control arguments are allowed. A
bloc~ed file is adJusted by truncation after the last complete
indexed file is adjusted by finishing the interrupted operation.

left in ar
filP.s in any
the desirlO'd

sequential or
record. An

vfile_adjust path -control_arg-

where:

1. path

2. control_arg

-set_nl

-use_nl

-set_bc

-use_bc -n-

Notes

is the pathname of the file to be adjusted.

must be specified only for unstructured files and
is selected from the following:

if the last nonzero byte in the file is not a
newline character, a newline character is
appended. The bit count of the file's last
nonempty segment is then set to the file's las~
nonzero byte (which is now sure to be a newline
character).

the file is truncated after the last newline
character.

the bit count of the file's last nonempty segment
is set to the last nonzero byte in that segment.
Any components beyond it are deleted.

the file is truncated to the byte specified by the
bit count of ~ultisegment file component n. If n
is not given, it is taken to be the last nonempty
component.

See the description of the vfile_ I/O module (described in the MPM
Subroutines) for further details. The adjust_bit_count command used with the
character control argument is equivalent to vfile_adjust used with the -set_bc
control argument, except that the latter only operates on a file that appears to
be unstructured.

3/76 3-334.1 AG92B

I

vfile_status vfile_status

~: vfile_status, vfs

The vfile_status ommand prints th~ apparent type (unstructured.
sequential, blocked, or indexed) and length of files. For structured files,
information about the state of the file (if busy) and the file version (unless
current) is printed. The maximum record length is printed for blocked files.

indexed files, the following statistics are printed:

1. The number of records in the file, including zero length records

2. The number of nonnull records in the file, if different from the above

3, The total length of the records (bytes)

4, The number of blocks in the free space list for records

5. The height of the index tree (equal to zero· for empty files)

6. The number of nodes (each 1K words, page aligned) in the index tree

7, The total length of all keys (bytes)

8. The number of keys (if different from record count)

9. The number of duplicate keys (if nonzero)

10. The total length of duplicate keys (if any)

Usage

vfile_status path

where path is the pathname of the segment or multisegment file of interest. If
the entryname portion of the pathname denotes a directory, it is ignored. If no
files are found for the given pathname, a message to that effect is printed. If
the entry is a link, the information returned pertains to the entry to which Lhe
link points. The star convention is permitted.

Additional information may be obtained through the status command.

/~sT rAllo ~~ ~ j V~"tr~b~ .flie~) +l.e_. f'?r-st ~
po~:f-',(:M~ ~r-~ r n-~-h.} (-f:' d :-·:r-Pe r--t V\. / -t;;,'1't

cf- -to+' - I J re,,.rec+."ve/)") •

'
7176 3-334.2 AG92C

vfile_status vfile_status

Examples

Assume that the file foo is in the user's working directory. The command:

vfile_status foo

might produce the following output:

type:
bytes:

unstructured
4993

if the file is unstructured,

or

type: sequential
records: 603

if the file is sequential,

or

blocked
1200

type:
records:
max reel: 7 bytes

if the file is blocked,

or

type: indexed
records: 397
state: locked
action: write
record bytes:
free blocks:
index height:
nodes: 3

by this process
in progress
3970 , -
2

key bytes: 3176

or

+yfe:
~r-J.s

~~ rsf t.tl(oc :

if the file is indexed and a write operation has been interrupted in the user's
process.

3176 3-334.3 AG92B

(

vfile_status_ vfile_status_

Name: vfile_status_

The vfile status subroutine returns various items of information about a
file supported by the vfile I/0 module.

Usage

declare vfile_status entry (char(•), char(•), ptr, fixed bin(35));

call vfile_status_ (dir_name, entryname, info_ptr, code);

where:

1. dir_name is the pathname of the containing directory. (Input)

2.

3.

4.
.

File

entryname

info_ptr

code

InformatiQn

is the entryname ·of the file of interest. If the entry is a
link, the information returned pertains to the entry to
which it points. (Input)

is a pointer to the structure in which information is to be
returned. (See "File Information" below.) (Input)

is a storage system status code. (Output)

The info_ptr argument points to one of the following self-describing
structures, as determined by the type of the file (see "type" below):

dcl

where:

1 uns info
2 info_ver.sion
2 type
2 bytes
2 flags

3 ·pad 1
3 header_present
3 pad2

2 header_id

based (info_ptr),
fixed bin,
fixed bin, .
fixed bin (34) ,
aligned,,
bit(2) unal,
bit (1) unal,
bit (33) unal,
fixed bin(35);

1• structure for
unstructured files */

1. info_ version identifies the version of the
must be set to 1 by the user.

info structure;
(Input)

2. type

3. bytes

7/76

identifies the file type and the
returned:
1 unstructured
2 sequential
3 blocked
4 indexed

gives the file's length, not including the header in
bytes.

2-126.1 AG93C

vfile_status vflle_status

12.

13.

14.

15.

16.

17.

nodes

key_bytes

change_count

num_keys

dup_keys

dup_key_bytes

is the number of single page nodes in the index.

is the total length of all keys in the file in bytes.

is the number of times the file has been modified.

is the total number of index entries, each associating
a key with a record.

is the number of index entri~s with nonunique keys,
uot including the first instance of each key.

is the total length of all duplicate keys in the file,
as defined above.

The user must provide the storage space required by the above structures.
Normally, space should be allocated for the largest info structure that might be
returned, namely, the one for indexed files.

See the description of the vfile I/O module for further details.

7176 2-126.4 AG93C

)

dcl 1 vbl info based (info ptr),
/*structure-for variable files*/

2 info version fixed bin,
2 type fixed,
2 records fixed (34),
2 flags aligned,

3 lock status bit (2) unal,
3 pad bit (34) unal,

2 version fixed,
2 action fixed,
2 first nz fixed (34),
2 last nz fixed (34),
2 change_count fixed (35);

where: 1.-6. are the same as in the blk info structure above.

7. first nz is the position of the first allocated record {same as
eof if none).

8. last nz is the position of the last allocated record (-1 if none).

9. change_count is the same as in the indx info structure above.

vfile vfile

Name: vfile

This I/O module supports I/O from/to filPs in the storage system. All
logical file types are supported.

Entry points in this module are not called directly by users; rather, the
module is accessed through the I/O system. See "Multics Input/Output System"
and "File Input/Output" in Section V of the MPM Reference Guide for a general
description of the I/O system and a discussion of files, respectively.

Attach Des~ription

The attach description has the following form:

vfile_ path -control_args-

where:

1.

2.

path

control_args

-extend

is the absolute or

may be chosen from the

specifies extension of e file if it already exists.
This control argument s only meaningful with openings for
output or t; otherwise, it is ignored.

-share -wtime- allows an indexed file to be open in more than one process
at the same time, even though not all openings are for
input. (See "Multiple Openings" below.) The wtime, if I
specified, is the maximum time in seconds that this
process will wait to perform an operation on the file. A
value of -1 means the process may wait indefinitely. If

-blocked -n-

-no_trunc

-append

7176

no wtime is given, a default value of 1 is used.

specifies attachment to a blocked file. If a nonempty
file exists, .!1 is ignored and may be omitted. Otherwise,
n is used to set the maximum record size (bytes).

indicates that a put_chars operation into the middle of an
unstructured file (stream_input_output) is permitted, and
no truncation is to occur in such cases. Also prevents
the truncation of an existing file at open and in
stream_input_output openings causes the next byte position
to be initially set to beginning of file.

in input_output openings, this causes put_chars and
write_record operations to add to end of file instead of
truncating when the file position is not at end of file.
Also the position is initially set to beginning of .file,
and an existing file is not truncated at open.

3-17 AG93C

I

I

I

vfile_

-header -n-

-old

-ssf

-dup_ok

vfile

for use with unstructured files, this control argument
indicates that a header is expected in an existing file,
o.r is to be created for a new file. If a header is
specified, it contains an optional identifying number,
which effectively permits user-defined file types. If n
is given and the file exists, the file identifier must be
equal to n; a new file takes the value of n, if given, as
its identifier.. The header is maintained and becomes
invisible only with the explicit use of this control
argument.

indicates that a new file is not to be created if an
attempt is made to open a nonexisting file for output,
input_output, or update.

restricts the file to a single segment. If specified, ar.
attempt to open a multisegment file or ~o expand a file
beyond a single segment is treated as an error. The file
must not be indexed.

indicates that the creation of duplicate
permitted. The file must be indexed.
Keys" below.)

keys is to be
(See "Duplicate

The -extend, -append, and -no_trunc control arguments conflict;· only one
m~y be specified.

To form the attach description actually used in the attachment, the
pathname is expanded to obtain an absolute pathname.

Opening and Access Requirements

All opening mod~s are supported. For an existing file, the mode must be
compatible with the file type. (See "File Input/Output" in Section V of the MPM
Reference Guide.) The mode must be compatible with any control arguments given
in the attach description.

An existing file is not truncated at open if its safety switch is on and
its bit count is nonzero.

If the opening is for input onlyi only read access is required on the file.
In all other cases, rw ~ccess is required on the file.

Position Operation

An additional type of positioning is available with unstructured
blocked files that are open for input, input~output, or update. When the type
argument of the iox_$position entry point is 2, this specifies direct
position to the record or byte whose ordinal position (0, 1, 2, ••.) is
given. just beyond the file header, if a header is
present.

7176 AG93C

vfile_

Write Operation

In blocked sequential files open for update,
supported. Its effect is to append a record to the file or
record, depending on the next record position.

Rewrite Operation

vfile

this operation i~
replace the next

If the file is a sequential file, the new record must be the same length as
the replaced record. If not, the code returned is error_table_$long_record or
error_table_$short_record.

In a blocked file, no record may be rewritten with a record whose length
exceeds the maximum record length of the file. Attempting to do so causes the
code, error_table_$long_record, to be returned.

Delete Operation

If the file is a sequential file, the record is logically deleted, but the
space it occupies is not recovered.

Control Operation

The following orders are supported by the vfile_ 1/0 .module.

read_position
seek_head
set_wait_time
truncate
max_rec len

add_key
delete_key
get_key
min_tlock_size
reassign_key
record_status
set_file_lock

The five ~rders in the first column are described below. The remaining
orders, documented in the vfile_ I/O module in the MPH Subsystem Writers' Guide,
implement various features of indexed iles that require somewhat more knowledge
of internal file structure than is expe ted of most users.

~~--oJ- v~r-";Ab)'t,
7176 3-19 AG93C

. ·.
t

I l
'-

vfile_ vfile_

set_wait_time

The set_wait_time order is accepted when the I/O switch is open and
attached to an index~d file with the -share control argument. For this order
the info_ptr argument must point to a structure of the following form:

dcl new_wait_time float based(info_ptr);

This order specifies a limit on the time that the user's process will wait
to perform an order when the file is locked by another process. The
interpretation of new~wait~time is the same as that described earlier for the
wtime limit used with the -share control argument.

truncate

The truncate order is accepted when the I/O switch is attached to a
nonindexed file open for input_output or update. The operation truncates the
file at the next record (byte for unstructured files). If the next position is
undefined, the code erro~_table_$no_record is returned.

No info structure is required for this order •

max_rec_len

The max_rec_len order is accepted when the I/O switch is open and attached
to a blocked file. The operation returns the maximum record length (bytes) of
the file. A new maximum length can be set by specifying a nonzero value for the
second argument. In this case the file must empty and open for modificatio'n, or
the code error_table_-$no_operation is returned.

For this order the info_ptr argument must point to a structure of the
following form:

7176

dcl 1 info
2 old_max_recl
2 new_max_recl

based (info_ptr),
fixed(21), /*output*/
fixed(21); /*input*/

3-21 AG93C

- '

I

I

-

vf ile_ vfile

3.

4.

Blocked File.
In general, the file's bit count and record count will not be correct.
This condition is detected at a subsequent open, and either the file
is automatically adjusted or (if the opening is input only) the code
error_table_$file_busy is returned.

Indexed file.
In general, the bit counts of the file's segments will not be properly
set, and the file contents will be in a complex intermediate state
(e.g., a record, but not its key in the index, will be deleted). This
situation is detected at a subsequent open or at the beginning of the
next operation, if the file is already open with the -share control
argument. ~nless the openlng is for input only, the file is
automatically adjusted; otherwise, the code error_table_$file_busy is
returned.

When an indexed file is adjusted, the interrupted operation
(wri te_record, rewri te_record, delete_record, etc.), if any, is
completed. For rewrite_record, however, the bytes of the record may
be incorrect. (Everything else will be correct.) In this case, an
error message is printed on the terminal. The user can rewrite or
delete the record as required. The completion of an interrupted write
operation may also produce an incorrect record, in which case the
defective record and its key are automatically deleted from the file.

Any type of file may be properly adjusted with the vfile_adjust command
(~escribed in the MPM Commands), if an interrupted opening has occurred.

Inconsistent Files

The code errcr_table_$bad_file (terminal message: "File is not a structured
file or is inconsistent") may be returned by operations on structured files. It
means that an inconsistency has been detected in the file. Possible causes are:

1. The file is not a structured file of the required type;

2. A program accidentally modified some words in the file.

Obtaining File Information

The type and various statistics of any of the four vfile_ supported file
structures may be obtained with the vfile_status command or vfile_status
subroutine (described in the MPM Commands and Subroutines respectively).

7/76

V&t.;-abl--e
s~~~

3-24 AG93C

,
\

vfile_ ·1:'Ue

Name: vf.ile_

The majority of the vfil documentation is in Sectio~ -·
the HPM Subroutines. Th given here describes additio~al orcer
calls for users of indexed files. These orders allow a greater degree cf
contr61 in the areas of synchronization and separate record/index manipulatio~.
They implement various features of indexed files that require somewhat rr.cre
knowledge of internal file structure than is expected of most users.

min_block_s.ize

The min block size operation determines the minimum size for blocks of
record space that are subsequently allocated by write_record or rewrite_record
operations (documented in the iox_ subroutine). The specification remains in
effect for the duration of the current opening or until another call to this
order is issued. The 1/0 switch must be attached to an indexed file open for
output or update.

For this order, the info_ptr argument must point to a structure of the
following form:

dcl min_blksz_info based (.info_ptr),
2 min_residue fixed bin(21),
2 min_capacity fixed bin(21);

where:

1.

2.

min_residue specifies the minimum unused
(bytes); i.e., the difference
the maximum length it
N!allocation. (Input)

capacity of a record block
between the record's length and
can attain without requiring

min_capacity specifies the minimum tbtal record capacity
the maximum length that the record can
requiring reallocation. (Iriput)

(bytes); i.e.,
attain without

When the I/O switch is initially opened, both these parameters are set to zero.

The current implementation imposes the following constraints on allocated
record blocks:

7176

1. The minimum allocation is eight full words, including two header words
for the block length and record length. The minimum nonnull record
capacity is, therefore, 24 bytes.

2. The size of an allocated block is always an .integral number of full
words, i.e., a multiple of four bytes.

7-159.1 AK92A

vfile_

where:

1.

2.

3.

4.

5.

6.

1.

input_key

input_old~descrip

input_new_descrip

old_descrip

new_descrip

key_length

key_string

set_file_lock

vf L.e

indicates whether the key is given in the info
structure. (Input)
"O"b indicates that the index entry to be reassigned

has as its key the current key for insertion.
If undefined, the code error_table_$no_key is
returned.

"1"b indicates that the key_string argument defines
the key portion of the index entry to be
reassigned. If the key_string is not found in
the index, the code error_table_$r.~_key is
returned.

indicates whether the old descriptor is given in the
info structure. (Input)
"O"b indicates that the entry to be changed is

associated with the current record. If tne
current record is undefined, the code
error_table_$no_record is returned.

"1"b indicates that the old_descrip argument defines
the descriptor portion of the index entry to be
changed.

indicates whether the new descriptor is given
info structure, (Input)
"O"b indicates that the specified index entry

be reassigned to the current record.
current record is undefined, the
error_table_$no_record is returned.

"1"b indicates that the argument new_descrip
supply the new value for the descriptor
of the specified index entry.

in the

is to
If the

code

is to
portion

is used only if reassign_key_info. input_old_de~ c:· !p
equals "1"b. The entry that is reassigned is the first
whose descriptor matches this value, among these i~dex
entries with the specified key. (Input)

is used only if reassign_key_info.input_new_descrip
equals "1"b. This value replaces the old descriptor of
the specified index entry. (Input)

same as in the add_key_info structure above. (Input)

if reassign_key_info. input_key equals "1 "b, this
argument defines the key for which the index entry with
the specified descriptor is to be reassigned. (Input)

The set_file_lock order is accepted en the I/O switch is open for output or
update and attached to an indexed file with the -share control argument. For
this order, the info_ptr argument must point to a variable of the following
form:

dcl set_lock_flag bit(2) aligned based(info_ptr);

7176 7-159.9 AK92A

