Multics Technical Bulletin MTB=-311

To: Nistribution
From: Steve Webber
Subject: New data types within Multics

Date: 10/26/76

Introdyction

This MTB describes nroposed changes to various areas of thea
system necesary to support several new data typves. The need for
the new data types arises from several fronts including new
customners (DCC) And potential customers (IRS). The need for
formally defining other data tvpes also arises from COBOL which
already partially supports some of these (overpunched sign)
because they are required of a standard COBOL implementation. It
is also desired that the system pot surmport an arbitrarv number
nf different data types and that PL/I and COB0OL have common data
types to the degree possible.

Ihe Issues
The following problems/questions have been brought up:

1. Should the data types supportaed by Multics be only those --
and all those -— sunported by our hardware?

2. Should the data types supported by Multics also include data
tyoes supported by other important computers even thounh our
hardware does not easily metch it?

3. Should the data types supnorted be supported by the PL/1
compiler? Or Jjust the system, i.e., the debuocers, stu_,
any_to_any_, etc? '

Some interestina conseguences arise with answers tn each of
the aquestions. In particular, it would seem quite reasonable, on
first analysis, that we should sunnort all and only the data
types that our hardware does. This has the interestina pnroblem of
leaving out some important data tynes that we don’t sunnort today
but that we oprobably should. One such date tvpe is the ANSI
standard default data type for CHROL!

Mnltics Project internal workine documentation. Mot to he
reproduced or distributed nutside the Yultics Project.




Parme 2

Lhe _Hardware

The hardware suoports the followina

fixed
fixed
fixed
fixed
fixed
fixed
float
float
fixed
fixed
float

flort

“he hardware works equally well on digit-aliagned data as well
or double-word-aligned data.

ovta-,

NOYr d— *

PL./1 could use all of these data types and in addition a
In particular,

versinn of

some

deacimal
decimal
decimal
decimal
decimal
deciaml
decimal
decimal

MTB=-311

12 basic data types?

leading sian 9-bit
leadina sign 4-bit

trailina
trailina
unsigned
unsigned
(leadinn
(leadinn

binary short
binary lonna
binary short
binary long

of them.

understand the followinnmt: -

sion 9-bit

sin 4-bit

O-bit

4-bhit

sign, trailing exponent) 9-bit

trailinn exponent) 4-bit

singn,

as

COMPILEX
PL/1 would reasonably



MIB=-311 Pane 3

TOTAL OLD NEW

real fixed decimal 1leadinag sign 9BIT 3] 2 6
complex trailinag siagn. 4BIT
real fixed decimal unsigred 9BIT 2 - 2
ABIT
real float decimal eBIT 4 2 2
complex 4B1T
real fixed binary short siaoned 4 ? 2
long unsianed
complex fixed binary short sianed 2 2 -
long
real float binary short signed 4 4 -
complax long
24 12 12

This leads to 24 arithmetic data types of which PL/I and the
system currently support 2.
COBOL. Requirements

The ANSI standard default data type (DISPLAY Aat=a) for
COBOL-74 is

real fixed decimal leadirna sinn ORIT 2 - 2
trailing sian

26 12 14

3UT with the sian Yoverpimnched¥ with the first or last diait.
Clearly this works onlyv with ORIT data and has its history from
the (still active) world of CARRS. However, it should probably



he considered, COBOL, for example, must sunport this (at
sianificant extra cost in execution sneed of compiled prograwrs
since onur hardware has no sunport of it) and hence, probably so
shoiild the system,

COMPAZT Atfribute

Since PL/I confuses the packinag of data and the alignment
(by forcing Aall specification with only the (un)alioned
attribute) it is Adifficult to introduce packed decimal data into
PI./T in Aan arbitrary way. It is proposed that a new Aattribute
(Yeyword in PL/I) be added to PL/I to aid in the declaration of
variahles. The new attribute might be packed" but because nf an
already existent use of this word in various descriptions I woulAd
pronose "compnact!., This would indicate for decimal data that
4-Hit instead of 9-bit dinits are used. The alignment attribute
would then mean either worrd-aligned, digit-alianed, or
byte—-aliagned -- 1o be determined.

Note that I would Aalso pronose using the compact attribute
for pointer data with the followinna defaults: '

alinaned => not compact
imnaliaoned => compact

This would allow for compatibility with current proarams and also
nrovide for "alimaned compact" data. (It would not be pnssible to
specify Yunalianed and not compact',)

Alignnent

The prime question with 4-bit data is whether it is Alianed
on a byte boundary or on A digit boundary. The NDCC (Burroughs)
data type must be diait alianed because they have programs (that
can’t be channed) that '"redefine! unsigned data. For example (in
COBOL terms):

0l data pic 99 comp-R,

01 datal redefines data.
N2 first pic 9 comn-8.
D2 second pic 9 comp-8,

Clearly there is no room for A sian and "second" must appear on a
dinit boundary (comp=-8 data is packed decimal with or without
sign).

The (illegal, but useful) PL/I equivalent of this might be:
decl 1 data fixed decimal (2,0) unsianed compacts

dcl | datal basad (addr (data)l),
2 first fixed decimal (1,0) unsigned compact,



MTB=-311 Page 5

2 second fixed decimal (1,0) unsianed compacts

The problem with diait-aligned vs byte—-aligned data is twofold.
First, it 1is harder to chanae the compiler because there is no
concept of a unit of storace of size 4.5 bits. Second, the
runtime (stu_, debug, etc.) has a similar problem. In fact, the
runtime symbol node (of the sumbol table generated by -table) has
two 2-bit unit size fields allowinn sizes of 36, 1, 9, =and 18
pits. It is rproposed to use a currently unused »Hit in the
runtine symbol node to extend thase 2=bit fields to 3-bhit fielrs
thereby allowina specifications of a unit size of | diait. In
narticular, the mappings would ba:

OFESET New bit 01d bits

word 0 n
bit 0] N
byte 0 10
halfword 0 11
undefined 1 nn
unde finad | 01
undefined ] 10
1

digit 11

any_to_any

A large task to be performed if we are to add new arithmetic
data types to the system is the changing of any_to_any_ to handle
them (any_to_any_ currently performs all legal conversions
petween arithmetic and/or strinn data accordina to the PL/I
conversion rules). If we chanae the number of arithmetic d=sta
tvoes from 12 to 26 this would mean chanaina the numher of
conversions from 14 (includina 2 strina types) to 28 or handlinn
23%27=756 instead of 14%x13=182 conversion. Althouch this is
notentially a big problem, it 1is made somewhat easier due to
certain consistencies of the 62/80 decimal unit’s handling of
data of different types.

Proposal

It is proposed that the following actions be taken (in time
frames to be determined later):

1. Change any_to_any_ to support those data types used by COBOL
for MR5.N. This includes COMP-H” (byte-alianed,

right=-justified, optional trailing sian, packed decimal =--—
the IBM format) and COMP-8 (dinit-alianed, ontional trailing

sian, packed decimal -- the Burroughs format).,



™

. Thanae any_to_any_. to support conversions bewteen all
arithmetic data types standardized in the system,

3. ~hanae debug to understand COMP-5 and COMP-8 data for
displayina purposes.

4, Thange debua to understand all data types standardized in
the system,

5. Add the unsigned attribute to the Multics PL/I lanauane (for
real fixed data).

5. tdd the compact attribute to the Multics PL/I language (for
decimal and pnointer data).

Note that the proposed PIL/I packed decimal data would be
compatible with the COBOL COMP-8 data and be aligned as follows:

alignead comnact new resultant alignement
yes no no word
yes yes yes word
no no no byte
no yes yes digit

The debug chanaes in step 3 should be made available with
MR5.0. The any_to_any_ chanaes in step | should also be made
available with MR5.0, but this is not as critical. It would allow
probe to work with these data types.

The unsigned attribute, proposed by the MSPL committee for
real fixed binary data, would be extended to apply to real fixed
decimAal data as well,

DEBUG Changes

There are 2 major changes to debug that are necessary if it
is to be helpful in debugging programs with the various new data
types. These are, |) displaying arbitrary data as if it were of =
niven type, and 2) assioning to arbitrary data a constant of A
aiven data type. In order to do these it seems necessary that we
establish a method of talking about the various data types, i.e.
namina them, The pnroposed method for output is an extension of
the current (signle-letter) outout mode character convention to
include many new (multiple-letter) output mode sequences. The
proposed method for input 1is an extension of the current
character and bit string conventions.

For output, the followina new modes are proposed:



MTB=-311

DERBUG
TYPE MODE
] lss
2 1sl
3 fls
4 fll
5 clss
6 clsl
7 cfls
g cfll
9 159
10 19
[ cls9
12 cfl?9
29 1590
30 ts%90
31 MAP cls%o
32 NA?P cts%o
33 nss
34 nsl
35 us9
36 HP ts9
37 NAP cts9
38 us4
39 NP ts4
40 NAP cts4
41 1s4
42 fl4
43 cls4
44 cfléa
45 np

Page 7

NESCRIPTION

real fixed binary short

real fixed binary long

real float binary short

real float binary long

complex fixed binary short

complex fixed binary long

complex float binary short

complex float binary long

real fixed decimal leading sign 9-bit

real float decimal 9-bit

complex fixed decimal leading sian 9-bit
complex float decimal 9-bijt

real fixed decimal leading sian overpunched
real fixed decimal trailina siaon overpunched
complex fixed decimal leading sign onvernunched
complex fixed decimal trailino sign overnunched
real fixed binary short unsigned

real fixed bhinary lona unsioned

real fixed decimal unsigned 9-hit

real fixed decimal trailing sign 9-bit
complex fixed decimal trailing sign 9-bit
real fixed decimal unsigned 4-bit ‘
real fixed decimal trailino sign 4-bit
complex fixed decimal trailing sign 4-bit
real fixed decimal leadinag sign 4-bit

real float decimal 4-bit

complex fixed decimal leading sign 4-bit
complex float decimal 4-bit

packed pointer

These are derived from the possible combinations of attributes
described by the following diagram:

[14

r

fl

et

p—
n
n

b)

O

ns

J-N

ts



Page 9 . MTB=-311

wherat

c => complex

fl => floatina point

1s => leading sian (or 2-s complement sign)
ns => unsianed

ts => trailing sion

1 => long binary

s => short binary

9 => non-=-packed decinal
4 => packed decimal

o => overpunched sign

The cndes NP and NAP indicate that it is proposed there be no
siipnort  for this data type in PL/I or in PL/I and any_to_any_,
resne tiv lvy.
c e

Tnere Aare some inconsistent comhinations that are not included
such as unsigned complex and unsianed overntinched sian. (The
overpunch can only occur with non-nacked, leading sign or
trailina sion, fixed decimal, real or complex.)

For inpu?, thes? mgdes could be immediatgly anpenrled 0 A
character strinn to indicate a value of the given mode:
"-32111s4
wnuld indicate a 4 digit compact decimal number. Similarly:
Wi2.,3e=-4"£10Q
would indicate a real float decimal non-packed number. The value:
"12.32=4Y154

would surnosedly be illeqgal,

Chapqges_tao_the Svymbol Table

The runtime symbol table would be changed (auamented) in the
following way?

l. The size field associated with decimal data would include A
count of the number of digits in the datum, not includinn
any sian that might be present.

2. The data tyce number would be one of those given Aabove in
the debuy modes table.

3. The unit fields would be extended as mentioned above.

I



