
Multics Technical Bulletin

To: Distribution

From: Larry Johnson, Ross Klinger,
Janice Phillips, and Bill Silver

Date: August 27, 1976

Subject: Tape Interface to IOI

INTRODUCTION

MTB-301

This memorandum describes a proposed new internal tape
interface, tape_ioi_ (TAPE_IOI). An interface like TAPE_IOI was
first proposed in MTB-051, "New Tape DCM". TAPE_IOI will provide
the interface between tape I/O modules and the I/O Interfacer
(IOI).

This memorandum has been written for readers with varying
levels of interest in TAPE_IOI. Each section becomes
successively more detailed. Reading just one or two sections
should give a reader a general overview of TAPE_IOI. The
memorandum as a whole is intended to serve as a complete
functional specification of TAPE_IOI. An outline of the sections
contained in this memorandum is given below:

OVERVIEW
Implementation Plans
What TAPE_IOI Does
Why TAPE_IOI is Needed
Design Criteria

TAPE_IOI CONCEPTS
Managing the IOI Workspace
Tape I/O Operations and Primitives
Buffer States
Block Modes
Data Lengths and Special Length Processing
Error Recovery
Status Information
Interface to RCP

SUMMARY
List of Capabilities
List of Entry Points

APPENDICES
Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:

Subroutine Interface Documentation
Tape Order Commands -
TAPE_IOI Modes
Result Index Summary
Sample Scenarios

Multics Project internal working documentation. Not to be reproduced or
distributed outside the Multics Pro·ject.

Pag~ 2 MTB-301

OVERVIEW

This section discusses plans for implementing TAPE_IOI, what
TAPE_IOI does, why we need it, and how it was designed. In
general, what TAPE_IOI does is to replace the interface between
tape I/O modules and IOI that is now provided by the program
tdcm_ (TDCM). The TDCM interface should be replaced because it
has many deficiencies. TAPE_IOI was designed to correct those
deficiencies.

Implementation Plans

TAPE_IOI will play an important part in the improvement of
the Multics tape facility. ·see MTB-109 for an overall view of
the future Multics tape facility. The implementation of TAPE_IOI
is a necessary first step in the eventual implementation of a
true raw tape I/O module. Other standard Multics tape I/O
modules (tape_mult_, tape_ansi_, tape_ibm_, ntape_) will be
improved by rewriting them to call TAPE_IOI rather than TDCM.
None of the "ios_" tape dims (tape_, nstd_) will be converted to
use TAPE_IOI.

The immediate plans for TAPE_IOI are to approve the TAPE_IOI
interface design presented in this memorandum. Then
implementation design and actual implementation of TAPE_IOI will
begin. The reimplementation of tape I/O modules using TAPE_IOI
may also be done in parallel with the TAPE_IOI implementation.
One tape I/O module, probably tape_mult_, will definitely be
converted to call TAPE_IOI •

.lttli!.t. TAPE IOI ~

The primary users of TAPE_IOI will be tape I/0 modules.
(TAPE_IOI will also be used by RCP in ring 1 to process tape
labels.) In order to understand the role of TAPE IOI in the
overall scheme of tape processing, consider what happens when a
user executes a command that involves tape processing. Several
levels of I/O subsystems are involved. The command procedure
calls IOX. IOX calls the specified tape I/0 module. The tape
I/O module will call TAPE_IOI. TAPE_IOI will call IOI. IOI (and
other programs in ring 0) will perform the actual tape I/O.
Figure 1 shows the relationship of TAPE_IOI to the other I/O
sub~ystems involved in tape processing.

MTB-301

OUTER RING

TAPE COMMAND

IOX

TAPE I/0 MODULE

TAPE_IOI
I
I
I
I

'<--->I_~~~~~~~~--. I

I
I I

IOI
-----------------------~------------- I

RING 0

I I
I WORKSPACE

I<--->'
' I --~~~~~-"-IOI I

I

Figure 1: Tape Processing Subsystems

Page 3

IOI is the Multics supervisor interface for all user
peripheral I/O. It is a primitive, low level interface that
allows user programs to have complete control over physical
devices. Programs that call IOI must understand and deal with
devices at the hardware level.

Interfacing with IOI involves more than just calling IOI.
It also involves managing the IOI workspace. The IOI workspace
is a segment that contains all of the IOI status queues, channel
programs, and I/O buffers needed to perform tape I/O.

The tape processing functions described above are currently
performed by TDCM. Before IOI was developed, TDCM resided in
ring O and was the Multics supervisor interface for tape I/O.
All tape I/O modules had to interface with TDCM. When IOI became
available, TDCM was moved into the user ring and was rewritten to
interface with IOI. The interface to TDCM, however, remained
basically unchanged.

Page 4 MTB-301

jh:£ TAPE IOI 1§. Needed

An interface like TAPE_IOI is needed and is useful because
the functions it provides are common to all tape I/O modules.
The development and use of TAPE_IOI does not in any way prohibit
a user from developing some other tape interface to IOI. For
example, it is expected that all tape T&D programs will continue
to interface directly with IOI. However, in order to make tape
I/O modules interface directly with IOI, a large amount of
complex and hardware-dependent code would have to be added to
each one. It is hoped that the interface provided by TAPE_IOI
will be so complete, efficient, and useful that it will not be
necessary to bypass or replace it.

The question of whether or not we need an intermediate
interface between tape I/0 modules and IOI is really moot since
we already have such an interface in TDCH. The important
question is: "Why should TDCM be replaced?" The answer, simply,
is that a better interface can be provided. TDCM has many
deficiencies, none of which can be remedied without changing the
TDCH interface. The deficiencies of TDCH are listed below in
three groups. The first group consists of tape I/O capabilities
that cannot be performed via TDCM. The second group consists of
performance problems inherent with TDCM. The third group consist
of facilities that TDCH does not provide, but could and should
provide in order to make tape I/O modules simpler and easier to
write and understand.

FACILITIES TDCM DOES NOT PROVIDE

1 • TDCM does not allow
commands that use
special End-of-File
of device status,
TDCM.

a caller to issue tape order
data. This means that writing
records, reading and writing
etc., cannot be performed via

2. A caller of TDCM cannot obtain all of the hardware
status information that is available. The
right-hand 52 bits of !OM status is not available.
TDCM does not return special status at all.

3. The element size supported by TDCM is one word (36
bits). It should be one character (9 bits). One
problem with this word orientation is that TDCM
cannot properly write records that. have a length
that is not an integral number of words. Also,
TDCM cannot correctly return the length of a
record that is not an integral number of words.

MTB-301

4.

Page 5

A caller of TDCM cannot specify the channel
instruction field to be used in tape read
operations~ For certain models of tape drives,
this field can be used to specify that automatic
hardware error retry is to be performed.

5. TDCM cannot read or write records that are longer
than 16,384 characters (4096 words).

TDCH PERFORMANCE PROBLEMS

1. The main TDCM performance problem is that it must
copy all input and output data. All input and
output data is processed by the tape hardware in
the IOI workspace segment. All input and output
data is processed by tape I/O modules in another
work segment called a tseg (TSEG). The data copy
performed by TDCM involves moving data between the
IOI workspace segment and the TSEG.

2. TDCM cannot maintain continuous I/0 on a tape
drive. Once TDCM initiates I/0 for a set of
buffers, it must wait for the completion of I/0
for all of these buffers before it can initiate
any more I/O. This means that tape I/O must
terminate at least once for each set of buffers.
If TDCM initiates I/0 for a set consisting of more
than one buffer, it will not be able to process
the first buffer of this set until the I/O has
completed for the last buffer of the set. This
means that the caller of TDCM must wait to process
data that is already available.

3. When reading variable length records, the above
performance problem is replaced by an even more
serious performance problem. If a caller wants to
know the length of an input record (and callers do
want to know this when ~eading variable length
records) then TDCM can process only one buffer at
a time. This restriction is, in truth, forced on
TDCM by restrictions in the ring O I/O facilities.
These ring 0 restricti9ns are being removed in
conjunction with the development of TAPE_IOI.

4. The method used by TDCM to define buffers in the
TSEG results in the restriction that only one
buffer may be processed at a time if that buffer
is larger than 1040 words.

Page 6 MTB-301

FACILITIES TDCM SHOULD PROVIDE

1. Most tape I/O modules implement read-ahead and
write-behind. This allows the tape I/O module to
overlap its processing of data with the actual
hardware reading and writing of data. This common
tape I/O module function should be provided by an
interface like TDCM.

2. TDCM provides two levels of status information.
The first, and highest level, just indicates
whether or not an I/O operation has completed, and
if so, .whether it has completed successfully. The
second, and lower level, consists of raw hardware
status. Each tape I/0 module must interpret this
raw hardware sta~us. An interface like TDCM
should interpret this status and return it to its
caller in a more useful form. It should also
return all available raw hardware status.

Every tape I/O module performs its own error
recovery. An interface like TDCH should be able
to perform the simple and straightforward error
recovery procedures that are common to many tape
I/O modules.

4. An interface like TDCH should allow a caller to
decide when to block. It should also do the
blocking for a caller if the caller does not want
to do it. TDCM does not give its callers a choice
and always does the blocking. The ability of a
tape I/O module to control blocking means that
tape I/0 modules and tape application programs
could be developed that overlap the processing of
more than one tape drive.

5. Tape I/O modules should have more control over
their interface to the Resource Control Package
(RCP). TDCM interfaces directly with RCP and
effectively prohibits any tape I/0 module from
calling RCP. Interfacing with RCP should be done
only as an option for those callers that do not
want to do it themselves.

MTB-301

6.

1.

Page 1

Tape 1/0 modules should be able to perform a tape
order command (such as backspace record) several
times with one call. TDCM limits its callers to
10. This is an unnecessary and annoying
restriction.

Tape 1/0 modules are called by !OX which requires
that all string and record lengths be expressed in
characters. Tape 1/0 modules should not have to
deal with an interface like TDCM in terms of
words.

Design Criteria

The considerations that motivated the design of TAPE_IOI
involved the deficiencies of TDCM listed above. The goal of the
design was to develop an interface that is better than TDCM. It
was clear that solving all TDCM problems required a totally new
interface. The main design problem was what should this new
interface be like. Intuition and experience with TDCM and tape
1/0 modules guided the preliminary specification. However, many
technical decisions had to be made before the TAPE_IOI interface
described in this memorandum was defined. In order to make these
decisions, three design criteria, really guiding principles, were
established. These design criteria are listed below in order of
importance.

1. A caller of TAPE_IOI should be able to perform
every non-privileged 1/0 function allowed by the
tape controller. All physical status information
should be available. TAPE_IOI should not perform
any tape 1/0 operations unless told to do so.

2. TAPE_IOI should
each TAPE_IOI
possible, but
TAPE_IOI must
"critical path"

be efficient. Not only should
entry point be as efficient as
a tape 1/0 module that balls
be able to efficiently perform its
functions.

3. The TAPE_IOI interface should be as simple and as
useful as possible. Basic tape processing
functions should be easy to perform. Functions
which are common to several tape I/0 modules
should be performed by TAPE_IOI and thus not
duplicated in each.

As was the case with the design, any analysis of the
TAPE_IOI interface must be done with consideration of the above
design criteria. The task now is to evaluate the design criteria
themselves and to make sure that the proposed TAPE_IOI interface
really meets them.

Page 8 MTB-301

TAPE IOI CONCEPTS

This section discusses some of the basic concepts of
TAPE_IOI. These concepts represent the theoretical basis for the
design of the TAPE_IOI interface.

Managing ~ lQl Workspace

A major part of the task of interfacing with IOI involves
managing the IOI workspace. The IOI workspace is a segment that
is created by IOI when the tape drive is attached. Only the
attaching process has access to this segment.

In order to understand how the IOI workspace is used, it is
necessary to know what data it contains. Since the
implementation of TAPE_IOI has not yet been designed, it is not
possible to present a detailed and accurate description of the
data TAPE_IOI will keep in the IOI workspace. Such a description
would not, in general, be interesting anyway. An important
concept of TAPE_IOI is that a caller never has to know the
structure and format of the data kept in the IOI workspace. What
is interesting in terms of understanding TAPE_IOI, and what can
be described now, are the types of data kept in the IOI workspace ~
by TAPE_IOI. These types of data are listed below and are shown
in Figure 2.

Channel Programs: The channel programs that actually
perform the tape I/O must be in the IOI workspace.
TAPE_IOI builds and updates these channel programs as
needed depending upon the I/0 requests of the caller.

lQl Status Oueues: Status information detailing the
result of I/O operations is returned to TAPE_IOI in
status queues. These status queues must be in the IOI
workspace. TAPE IOI sets up and interrogates these
status queues. IOI fills them in.

TAPE IOI Information: Although this is an
implementation design consideration, it is possible and
quite probable that TAPE_IOI will keep most of its
internal information in the IOI workspace •

.lLQ Buffers: Reading and writing physical records
involves the use of buffers. These buffers are
allocated in the IOI workspace by TAPE_IOI as requested
by the caller. Each buffer may contain one and only
one physical record at a time. Each buffer is
identified by a pointer that references the beginning
of the buffer. This feature of TAPE_IOI allows a
caller to dirActly proc~~~ input and output data in the
IOI workspace.

MTB-301 Page 9

Caller Work ~: TAPE_IOI will allow a caller to
allocate a work area at the end of the IOI workspace.
This work area may be allocated only after all I/0
buffers have been allocated. The maximum size of this
work area will be the number of unused words at the end
of the last IOI workspace page containing allocated I/O
buffers. No additional IOI workspace pages will be
used for this area. This optional work area can be
used to keep important data needed by the caller, for
example, an IOX open data block. By placing this data
in the IOI workspace (which is often wired) fewer page
faults will be generated by references to this data.

CHANNEL PROGRAMS

IOI STATUS QUEUES

TAPE_IOI INFO

BUFFER 1

• • •
• • •

BUFFER N

WORK AREA

Figure 2: Possible Organization of IOI Workspace

TAPE_IOI provides entry points that allocate and deallocate
I/O buffers and the caller work area. These allocation and
deallocation entry points are simple and straightforward but not
necessarily powerful. They are perfectly suited for the standard
tape I/O modules. These I/0 modules need to allocate, just once,
a set of buffers all having the same length. Dynamic allocation
and deallocation of buffers of different lengths can be performed
by making a series of calls to these entry points.

Page 10 MTB-301

TAPE_IOI ·is responsible for maintaining the size of the IOI
yorkspace segment. As buffers are allocated, TAPE_IOI will
increase the size of the IOI workspace segment up to the maximum
size allowed by RCP. If buffers are deallocated, then TAPE IOI
will decrease the size of the IOI workspace segment accordingly.
TAPE_IOI will always make sure that the IOI workspace segment
consists of the fewest possible pages. This is important because
all of the pages of the IOI workspace segment will be wired
whenever any I/O is in progress.

~ lLQ Operations and Primitives

·oesigning the TAPE_IOI interface involved analysing all of
the basic tape I/O operations and the primitive functions that
comprise them. The three basic tape I/O operations are listed
below:

reading
writing
order commands

Each of the basic tape I/O operations can be defined as a
combination of primitive functions. These primitive functions,.
are listed below in alphabetical order. Although the ~
4escriptions below are orientated primarily toward reading and
writing, most of these primitive functions apply to order
commands as well·.

Allocate: Allocate a buffer to be used for I/O.

Check: Check to see if a buffer is ready for
processing. In order to be ready for processing, I/O
being performed on the buffer must be completed.

Deallocate: Deallocate a buffer. The buffer can no
longer be used for IIO.

Processing: Process the data in the buffer. This is
not a TAPE_IOI function, but rather a function to be
performed by the caller. For reading, this means
copying data out of the buffer. For writing, this
means copying data into the buffer.

Queue: Queue I/O for this buffer.

Figure 3 shows how each of the three basic tape 1/0
operations are comprised of the primitive functions described
above. Each example shows the primitive functions involved in
performing that· I/O operation once. ~

MTB-301

READING

ALLOCATE
QUEUE
CHECK
PROCESS
DEALLOCATE

WRITING

ALLOCATE
PROCESS
QUEUE
CHECK
DEALLOCATE

ORDERS

QUEUE
CHECK

Figure 3: Primitive I/O Functions

Page 11

Figure 3 shows the primitive functions performed in order to
read or write one physical tape record. Tape I/O modules usually
process many physical records during an attachment. Thus they
perform these primitive functions over and over. The allocate
and deallocate functions should not be part of the loop that
performs this repeated I/O. Allocated buffers can be used over
and over. The read and write loops are the critical paths of any
tape I/O module and are the paths that must be optimized for
efficiency. Figure 4 shows how the primitive I/0 functions are
performed within read and write loops.

READING

ALLOCATE

1-->QUEUE
I CHECK
l<--PROCESS

DEALLOCATE

WRITING

ALLOCATE

1-->PROCESS
I QUEUE
l<--CHECK

DEALLOCATE

Figure 4: Critical Path Loops

Analysing the primitive functions that comprise reading and
writing led to the realization of the following seemingly obvious
but subtly important principle:

"Reading and writing are different."

This principle is not so obvious given the hauntingly
similar combination of primitive functions that comprise reading
and writing. It was also not especially obvious to the designers
of the TDCM interface since they decided to have one TDCM entry
point perform both operations.

Page 12 MTB-301

The differences between reading and writing outweigh the
similarities. It is possible to play games, and rotate the order
in which the primitive functions are performed, so that the order
is the same for both operations. There is no way, however, to
avoid the reality that, when reading, I/O must be performed
before data can be processed. When writing, data must be
processed before I/O is performed. Another important difference
is the direction of data flow. When reading, data is passed from
TAPE_IOI to the caller. When writing, data is passed from the
caller to TAPE_IOI.

In accordance with the above principle, TAPE_IOI provides
entry points to perform the queue and the check primitive
functions for each of the three basic tape I/O operations. These
entry points allow a caller to perform the exact sequence of I/O
operations wanted. For example, a tape I/0 module could use
these entry points to implement its own special read-ahead or
write-behind algorithms. The fact that there are a set of entry
points for each basic tape operation means that it is more
efficient and simpler to perform any one operation.

The design criterion that states that a caller be able to do
everything that is physically possible with a tape drive is well
serv~d by the TAPE_IOI entry points described above. In order to ~
to meet the other design criteria of efficiency and simplicity
within the critical path of a tape 1/0 module, TAPE_lOI also
provides entry points that perform multiple primitive functions.
There are entry points that allow a caller to efficiently and
simply perform read-ahead, write-behind, and order commands.

Buffer States

Except when performing order commands, the primitive
functions described above operate on 1/0 buffers. Each primitive
function changes the state of a buffer. An I/O buffer is always
in one, and only one, of the following states:

Null: The buffer does not exist.

Ready: The buffer does exist and a caller has, or can
get, a pointer to the buffer. The validity of data in
the buffer is determined solely by the caller. A
caller may perform any kind of processing it wishes on
the data in the buffer.

Busy: The buffer is participating in a read or write
1/0 operation. A caller should not perform any
processing of data in the buffer.

Suspended: The buffer had been busy for writing, but
due to an error in another buffer, it was not written.

MTB-301 Page 13

Figure 5 shows how each primitive I/O function changes the
state of a buffer. It shows the state of the buffer before and
after the primitive function is performed. Primitive functions
performed on suspended buffers have the same result as if they
were performed on ready buffers.

STATES

I BEFORE I AFTER T I
I I -----------z--------%-------

F ALLOCATE I NULL READY T

u I
T

N DEALLOC I READY NULL T

c I
T

T QUEUE I READY BUSY T

I I
T

0 CHECK I BUSY READY T

N I
T

s PROCESS I READY READY T

Figure 5: Buffer State Changes

Block Modes

The check primitive function checks to see if a buffer is
ready for processing. If the I/O operation aueued for this
buffer has not completed, the buffer will still be busy. Until
the buffer is in the ready state, processing of da~a in the
buffer cannot begin. Therefore, someone has to wait until the
IIO queued for this buffer has completed.

IOI, in ring O, receives the hardware interrupt that signals
the completion of the I/O operation queued for the buffer. IOI
tells the outer ring of this event by sending a wakeup.

The block modes supported by TAPE_IOI determine who goes
blocked waiting for this wakeup from IOI. There are two choices
and therefore two block modes. They are listed below:

Simplex: In simplex block
TAPE_IOI will automatically
needed to complete the check
default block mode.

mode TAPE_IOI blocks.
wait for any I/O that is

function. This is the

Multiplex: In multiplex block mode the caller must
block. TAPE_IOI will never block. If waiting for I/O
is required in order to complete a check function,
TAPE_IOI will inform the caller that it must wait.

Page 14 MTB-301

Simplex block mode corresponds to the wait/block
capabilities currently provided by TDCM. All standard tape I/O
modules will operate in simplex mode. No additional complexity
will be added to these tape 1/0 modules since TAPE_IOI will
perform all of the blocking.

Multiplex block mode adds tape processing capabilities not
provided by TDCM. By allowing the caller to block, and to decide
when to block, .new tape 1/0 modules and tape application programs
can be developed that multiplex the processing of two or more
tape drives. One planned user of multiplex block mode is RCP.
Since RCP executes in an inner ring it cannot block. However,
RCP can still use TAPE_IOI for label checking and other tape
drive processing by operating in multiplex block mode. Multiplex
block mode allows RCP to pass on the task of blocking to its
caller in the user ring.

Data Lengths and Special Length Processing

The element size supported by TAPE_IOI is one character (9
bits). All data and buffer lengths are expressed in terms of
characters. This is especially convenient for tape 1/0 modules
since they interface with their caller, !OX, in terms of ..,....
characters. ~

Treating all tape input and output data as character strings
results in several problems. These problems are due to the way
the tape controller works, and depend upon the tape controller
data mode being used. It is beyond the scope of this memorandum
to discuss in detail how the tape controller works. The
following examples are presented in order to give the reader some
idea of the issues involved.

1. When writing a record whose length is an odd
number of words, if the tape controller is in
binary data mode, then it will append 4 zero bits
onto the output record. Normally, these bits
should be stripped off by TAPE_IOI when reading
this record.

2. When writing a record that is not an integral
number of words, the tape controller must be in
ASCII data mode. With model 500 tape controllers,
the output data must be right aligned.

There are six read/write data modes supported by Honeywell
model 500 9-track tape drives. TAPE_IOI provides a mode entry
point to set the read/write data mode to any one of the six.
Each of the read/write data modes supported by the tape drives ~
interface with the tape controller in · either binary or ASCII.
Figure 6 lists the six tape drive read/write data modes and their
associated tape controller data modes.

MTB-301

TAPE DRIVE

BINARY
BCD
ASCII
EBCDIC
TAPE 9
ASCII/EBCDIC

CONTROLLER

BINARY
BINARY
BINARY *
BINARY *
ASCII *
ASCII *

* => 9 track only

Figure 6: Tape Drive and Controller Modes

Page 15

For most callers, the standard way that TAPE_IOI deals with
record lengths is correct and sufficient. However, some callers,
for example a raw tape I/O module, need special length
processing. This special length processing involves reading and
writing records that do not end on a word boundary. The
processing of such records is rather complex and is only done
when a caller tells TAPE_IOI, via the set_mode entry point, that
special length processing is needed.

The rules enforced by TAPE_IOI for data and buffer lengths
are listed below. Some of these rules apply to all cases, others
depend upon the length processing mode, the tape I/O operation,
and the tape controller mode. The binary and ASCII modes
referred to in the following rules are tape controller modes as
described in Figure 6.

GENERAL

1. I/O buffers must be 0 mod 8 characters in length
(2 words). This is required since, when in binary
mode, the tape controller always transfers data in
units of 2 words.

2. The minimum length of an output record is 4
characters. The tape controller is incapable of
writing a record smaller than one word. Users of
TAPE_IOI are cautioned that it is unwise to write
records that are less than 64 characters in length
since there is little chance of successfully
reading back a record that is any smaller. This
is because the tape controller treats short input
records as noise.

Page 16 MTB-301

NORMAL LENGTH MODE

1. Reading - Binary: Input record lengths are always
O mod 4 characters in length (1 word). Any data
contained in a partial last word will not be
included in the record length.

2. Beading ASCII: Input record lengths will
reflect the actual number of characters read.

3. Writing: In both binary and ASCII modes, output
records must be O mod 4 characters in length (1
w~rd). Any attempt to write a record that is not
an integral number of words will be rejected by
TAPE_IOI.

SPECIAL LENGTH MODE

1. Reading Binary: Input record lengths are
returned the same way as in regular length mode.
In addition,, the bit count of the record,
including any data read into a partial last word,
will be saved. This bit count can be obtained
from status kept by TAPE_IOI for each buffer.
Reading with the controller in binary mode and
TAPE_IOI in special length mode is the only way a
caller can read the exact data in all tape
records.

2. Reading ASCII: Input record lengths are
returned the same way as in regular length mode.

,3. Writing - Binary: Record lengths that are not 0
mod 4 characters (1 word) will be allowed. If
necessary, the length of the record actually
processed by TAPE_IOI will be increased to make it
O mod 4 characters. However, no right hand
padding of the output record will be performed.

4. Writing - ASCII: Record lengths that are not 0
mod 4 characters (1 word) are allowed. TAPE_IOI
will set the initial and terminate character
position fields according to the specified record
length. The data for this record must be right or
left aligned by the caller depending upon the
setting of the TAPE_IOI align mode. Writing with
the controller in ASCII mode and TAPE_IOI in
special length mode is the only way a caller can
write a record that is not an integral number of
words.

MTB-301 Page 17

Error Recovery

Most tape I/O modules perform similar error recovery
procedures. The Multics standard tape I/0 module is a notable
exception in that it will perform its own special error recovery
procedures. If told to, TAPE_IOI will perform what are
considered to be the standard tape error recovePy procedures. By
providing this common service, the complexity of tape I/O modules
can be reduced and more development effort can be devoted to
doing a better job of error recovery within TAPE_IOI.

In order to to help callers that must do their own read
error recovery, TAPE_IOI allows them to specify the channel
instruction field to be used in tape read operations. This
allows the caller to specify the kind, if any, of hardware error
retry to be performed.

The standard error recovery procedures performed by TAPE_IOI
are listed below. These procedures will be initiated if, in the
opinion of TAPE_IOI, an 1/0 operation failed in a way that is
recoverable.

Reading: Every read operation will be initiated with
automatic hardware error retry enabled and with normal
deskew window and threshold. In the event of an error,
TAPE_IOI will backspace over the record in error and
retry the read operation. Each retry will be
performed with automatic hardware error retry enabled
and a different deskew window and threshold. TAPE IOI
will retry the read operation until all combinations
(8) of deskew windows and thresholds have be tried.

Writing: When a write operation fails, TAPE_IOI will
backspace over the record in error, erase, and try to
rewrite the record. This sequence will be attempted up
to 30 times. Performing this backspace erase sequence
more than 30 times will result in a blank spot on the
tape that cannot be read past.

Order Commands: Depending upon the error and the order
command being executed, TAPE_IOI will retry the order
command a limited number of times.

Page 18 MTB-301 ~

Status Information

TAPE_IOI returns status information in increasing levels of
detail. Much of the complexity of all tape 1/0 modules involves
the interpretation of status. An important feature of TAPE_lOl
is its interpretation of status for its caller and its ability to
return this interpreted status in a useful form. TAPE_lOI,
however, does not limit its callers to using this interpreted
status. Another important feature of TAPE IOI is that it
provides a caller with all available raw status: Interpreted and
raw status are the highest and lowest levels, respectively, in
the TAPE_IOI status hierarchy. Figure 7 shows all four levels of
the TAPE_IOI status hierarchy.

interpreted
descriptive

reformatted
raw

Figure 7: TAPE_lOl Status Hierarchy

INTERPRETED STATUS

TAPE_IOI returns interpreted status in the form of a result
index. Most callers of TAPE_lOI can perform all of their tape
pr9cessing with just the status interpretation provided by result
indexes. Result indexes are fixed binary variables that are
intended to be used in referencing PL/I label arrays. A result
index is returned by all TAPE_lOI entry points that perform a
check primitive function. The result index value is generated by
TAPE_IOl by interpreting the hardware status associated with the
tape 1/0 operation that was checked. The result index values
returned by TAPE_IOl are listed below. See Appendix D for a
complete list of the result index values returned for each tape
1/0 operation.

(-1) Block: This result index value indicates that the
1/0 operation being checked has not yet completed.
This value will be returned only when TAPE_IOl is
operating in the multiplex block mode. A wakeup
will be sent to the caller when the 1/0 operation
has completed. The caller should go blocked
waiting for this wakeup. When waked up, the
caller should call TAPE_IOl to again check the I/O
operation. Before going blocked the caller may
perform other processing.

MTB-301

(0)

(1)

(2)

Page 19

Success: The I/O operation being checked has
completed successfully. If the I/0 operation was
a read or a write, the caller may now begin
processing data in the buffer associated with this
1/0 operation.

Program Error: The caller has violated some
requirement of TAPE_IOI. The requested action was
not performed. The status code returned contains
an error_table_ value that indicates the
particular error.

Unrecoverable .lL.Q. Error: The I/O operation being
checked has failed in such a way that (almost
certainly) precludes it from ever being performed
successfully. It is also unlikely that subsequent
I/O operations will succeed. Such an error
probably indicates an event requiring manual
intervention by the operator or a hardware
malfunction. The status code returned contains an
error_table_ value that indicates the particular
error.

(3) I.LQ Error: The I/O operation being checked has
failed. However, in the opinion of TAPE_IOI,
retrying the operation may succeed. For I/0
operations that read or write, this implies that
the I/0 operation succeeded in at least moving the
tape. Such an error probably resulted either from
a defective section of tape, or a spurious
hardware error condition. This result index value
will be returned only when TAPE_IOI is not
performing error recovery. If TAPE_IOI is
performing error recovery, the occurrence of such
an error will cause TAPE_IOI to retry the I/O
operation. The check function will not be
completed until either the I/0 operation is
successful or all error recovery procedures have
been tried and have failed. If, after trying all
error recovery procedures, ' TAPE_IOI cannot
successfully complete the I/O operation, it will
return a result index value (2) that indicates an
unrecoverable I/O error. The status code returned
contains an error_table_ value that indicates the
particular error.

Page 20

(4 '

MTB-301 ~

5, 6) Special Event: The I/O operation being
checked has completed and some special event has
occurred that is normal for this I/O operation.
These result index values are operation dependent.
Examples of special events are: reading an EOF
record, writing past the end of tape reflector,
backspacing when at BOT, etc. The status code
returned contains an error table value that
indicates the particular event. -

DESCRIPTIVE STATUS

TAPE_IOI provides an entry point that will return. a
character string containing an English language description of
the hardware status resulting from the last I/O operation
checked. See the description of the hardware_status entry point
in Appendix A. Tape I/0 modules can provide an order call that
returns this status string. The caller of the tape I/O module
can then display this status string to the user.

REFORMATTED STATUS

Some callers of TAPE_IOI may need to perform their own
interpretation of the hardware status resulting from an I/O ~
operation. The hardware_status entry point also returns hardware
status in a reformatted form. The status information returned is
t,he major and substatus for the last I/O operat·ion that was
checked.

The purpose of returning reformatted major and s.ubstatus is
to make it easier for the caller to interpret this status. It
also means that the calling programs will be interpreting logical
status (as generated by TAPE_IOI). This will make them more
independent of future changes in the real hardware status.

RAW STATUS

The TAPE_IOI hardware status entry point also returns all
raw hardware status available from the last I/O operation
checked. This status information includes all 72 bits of !OM
status.

MTB-301 Page 21

Interface to ~

TAPE_IOI allows its callers to interface directly with RCP.
This is possible because TAPE_IOI itself does not have to
interface with RCP. TAPE_IOI does, however, provide entry points
that perform the common interfaces between tape I/O modules and
RCP.

These entry points will attach and detach a tape drive.
They allow the caller to specify all input information needed by
RCP. They also return all output information returned by RCP.

Page 22
MTB-301 """"

SUMMARY

This section summarizes and lists the major capabilities and
entry points provided by TAPE_IOI.

11.§.t. .Qf Capabilities

Below is a list summarizing the major capabilities of
TAPE_IOI. The reader is urged to read this list and then compare
it with the list of TDCM problems presented in the overview
section.

1. Complete management of the IOI workspace.

2. The ability to allocate the exact number and size
of I/O buffers needed, provided there is room in
the IOI workspace. Also the ability to read and
write records that are longer than 16,384
characters.

3. Allows a caller to directly process input and
output data in the IOI workspace.

4. Provides a character orientated interface that is
especially useful for IOX tape I/O modules.

5. Provides an entry point for each combination of
primitive function and basic I/0 operation.

6. Provides entry points that perform read-ahead and
write-behind. These entry points perform the
combinations of primitive functions that are found
within the critical paths of read and write loops.

1. Will modify channel programs in execution in order
to queue a buffer for reading or writing. This
feature will allow a user, who is receiving
sufficient processing time from the system, to
perform continuous 1/0.

8. Allows a caller to issue order commands that read
or write data.

9. Can read all data contained in records that are
not an integral number of words in length.

10. Can write records that are not an integral number
of words in length.

11. Performs all blocking, or optionally allows the
caller to perform all blocking.

MTB-301 Page 23

12. Performs standard error recovery procedures.

13. Allows a caller to specify the channel instruction
field to be used in any read operation.

14. Interprets hardware status for the caller and
returns it in a useful form.

15. Provides a caller with all available hardware
status.

16. Lets the caller interface directly with RCP, or
optionally will call RCP for the caller.

17. Support for 9-track and 7-track tape
Support for 400, 500, and 600 model ·tape
Provides an interface that is independent
model tape drive being used.

drives.
drives.
of the

List of Entry Points

Below is a list of the TAPE_IOI entry points. In this list
the entry points are ordered according to function. Each entry
point 'is accompanied by a brief description of what the entry
point does. See Appendix A for a complete description of these
entry points including their calling sequences.

INITIALIZATION ENTRY POINTS

attach:

activate:

deactivate:

detach:

Calls RCP to attach a tape drive.

Initiates a TAPE_IOI activation.

Terminates the TAPE_IOI activation.

Calls RCP to detach the tape drive.

WORKSPACE ALLOCATION ENTRY POINTS

allocate_buffers: Allocates the specified number of
I/O buffers, all of which must be the
same length.

allocate_work_area: Allocates. a caller work area in
the IOI workspace.

deallocate: Deallocates all I/O buffers and any
caller work area.

Page 24

SPECIAL ENTRY POINTS

set_mode:

get_mode:

Sets one of the TAPE_IOI modes.

Gets one of the TAPE_IOI modes.

MTB-301

set_buffer_ready: Puts a specified buffer in the
ready buffer state.

stop_tape:

STATUS ENTRY POINTS

Stops all I/0 operations currently in
progress. All buffers are put into the
ready buffer state.

list_buffers: Returns a list of all allocated buffers,
or all buffers that are currently in a
specified state.

buffer_status: Returns all information relevant to the
specified buffer.

hardware_status: Returns all available hardware status
obtained from the last I/O operation
that was checked.

READ ,ENTRY POINTS

queue_read:

check_read:

read:

WRITE ENTRY POINTS

queue_write:

check_write:

Queues a read operation
specified 1/0 buffer.

for the

Performs a check of the read operation
that has been queued the longest.

Queues read operations for all ready I/O
buffers. It then performs a check of
the read operation that has been queued
the longest.

Queues a write operation
specified I/0 buffer.

for the

Performs a check of the write operation
that has been queued the longest.

MTB-301

write:

Page 25

Queues a write operation for the
specified I/0 buffer, or optionally for
all I/O buffers currently in the
suspended buffer state. It also returns
a pointer to a ready buffer. If there
are no ready buffers, then it will
perform a check of the write operation
that has been queued the longest.

ORDER COMMAND ENTRY POINTS

queue_order:

check_order:

order:

Queues the specified tape order command.
No other I/O may be in progress.

Performs a check of the current order
I/O operation.

Queues the specified tape order command.
No other I/O may be in progress. It
also performs a check of this order
operation.

Page 26 HTB-301
Appendix A

tape_ioi_ tape_ioi_

Entry: tape_ioi_$activate

This entry point initiates a TAPE_IOI activation for a tape
drive. In order for the activation to succeed, the specified
tape drive must be attached to the calling process. Only one
TAPE_IOI activation is allowed at any one time for the same tape
drive.

No TAPE_IOI entry points, except tape_ioi_$attach and
tape_ioi_$detach, may be called unless TAPE_IOI is activated.
This entry point returns an ID that must be used in calls to all
other TAPE_IOI entry points, except tape_ioi_$attach and
tape_ioi_$detach.

Usage

dcl tape_ioi_$activate entry (ptr, bit(36) aligned, fixed
bin(35));

call tape_ioi_$activate (tioi_info_ptr, tioi_id, code);

where:

1 • tai_ptr

2. tioi_id

3. code

is a pointer to a structure
information needed by TAPE_IOI
activation. A description of this
is given below. (Input)

is an identifier that uniquely
this TAPE IOI activation. This
used in subsequent calls to
(Output)

containing
for this
structure

identifies
ID must be

TAPE_IOI.

is a standard Multics system status code.
(Output)

The tai_ptr pointer must point
format shown below. All fields in this
to be input by tape_ioi_$activate.

to a structure with the
structure are considered

A declaration for this
the include file: structure can be found in

tioi_activate_info.incl.pl1.

MTB-301 Page 27
Appendix A

tape_ioi_ tape_ioi_

dcl 1 ta! based(tai_ptr) aligned,
I* 1. *I
I* 2. *I
I* 3. */
I* 4. *I
I* 5. */
I* 6. */
I* 7. *I
I* 8. */
I* 9. *I
I* 10. */
I* 11. */
I* 12. */

2 version fixed bin,
2 actv name char{32),
2 drive_name char(8),
2 volume_name char{32),
2 write_flag bit(1),
2 model fixed bin,
2 tracks fixed bin,
2 density bit(36),
2 ioi_index fixed bin,
2 workspace_max fixed bin(19),
2 timeout_max fixed bin(71),
2 event_id fixed bin{71);

where:

1. version is the version number of this structure. The
current value is defined in the include file.

2. actv_name

3. drive_name

4. volume_name

5. write_flag

6. model

7. tracks

8. density

9. ioi_index

is a caller 4efined character string
identifier for this activation. All standard
tape I/O modules will set this field to be
the !OX switch name for the this tape drive
attachment.

is the name of the attached tape drive for
which this activation is being performed.

is the name of the tape reel mounted on this
attached tape drive.

is a flag specifying whether or not write
operations should be allowed. If this flag
is OFF ("O"b) then only read type operations
will be allowed. If it is ON ("1"b) then all
1/0 operations will be allowed.

is the model number of the tape drive (400,
500, or 600).

is the number of tracks (7 or 9).

specifies the density capabilities of the
attached tape drive.

is the IOI index for this attachment.

Page 28 MTB-301
Appendix A

tape_ioi_ tape_ioi_

10. workspace_max is the maximum size (in words)
workspace used for this
attachment. This value must be
equal to the value returned by

of the IOI
tape drive

less than or
RCP.

11. timeout_max is the maximum time limit (in micro-seconds)
allowed for any individual I/O operation.
This value must be less than or equal to the
value returned by RCP.

12. event_id This is the IPC event channel ID to be used
for blocking when waiting due to a check
operation.

Entry: tape_ioi_$allocate_buffers

This entry point allocates I/O buffers in the IOI workspace.
Any number of buffers may be allocated, limited only by the
buffers that are already allocated, the size of the buffers being
allocated, and the size of the IOI workspace. All buffers
allocated in any one call will be the same size. No I/0 buffers
may be allocated after a work area has been allocated. I/O
buffers may subsequently· be redefined in the IOI workspace by
calling tape_ioi_$deallocate.

Usage

dcl tape_ioi_$allocate_buffers entry (bit(36) aligned,
fixed bin(21), fixed bin, fixed bin(21), fixed bin,
dim(*) ptr, fixed bin(35));

call tape_io_$allocate_buffers (tioi_id, req_length,
req_number, act_length, act_number, buffer_ptrs, code);

where:

1 • tioi_id

2. req_length

uniquely identifies this TAPE_IOI activation.
(Input)

is the requested length (in characters) of
the buffers to be allocated. If this length
is zero, then TAPE_IOI will allocate the
requested number of buffers, each as long as
possible. (Input)

MTB-301 Page 29
Appendix A

---~-----
tape_ioi_ tape_ioi_

req_number

4. act_length

5. act_number

6. buffer_ptrs

1. code

is the requested number of I/O buffers to be
allocated. If this number is zero, then
TAPE IOI will allocate as many buffers as
possible, each with the requested length. A
program error will occur if both the
requested length and the requested number of
buffers is zero. (Input)

is the actual length of the buffers allocated
by this call. This length will always be 0
module 8 characters (2 words). (Output)

is the actual number of I/O buffers that were
allocated by this call. (Output)

is an array of pointers to the I/O buffers
that were allocated. If
hbound(buffer_ptrs,1) is less than the number
of buffers allocated, then only that number
of buffer pointers are returned. If
hbound(buffer_ptrs,1) is zero, no buffer
pointers are returned. (Output)

is a standard Multics system status code.
(Output)

Entry: tape_ioi_$allocate_work_area

This entry point allocates a work area in the IOI workspace.
The caller can use this work area to keep information needed to
process this tape. The allocation will not succeed if a work
area is already allocated. Work areas are always allocated at
the end of the last IOI workspace page containing allocated I/O
buffers. No additional IOI workspace pages will be used for this
work area.

Usage

dcl tape_ioi_$allocate_work_area entry (bit(36) aligned,
fixed bin(19), fixed bin(19), ptr, code);

call tape_ioi_$allocate_work_area (tioi_id, req_size,
act_size, work_area_ptr, code);

Page 30

tape_ioi_

where:

1 • tioi_id

2. req_size

4. act_size

3. work_area_ptr

4. code

Appendix A
MTB-301

---------tape_ioi_

uniquely identifies this TAPE_IOI activation.
(Input)

is the size (in words) of the work area to be
allocated. The allocation will fail, and a
program error will occur, if there is not
enough space left in the last page of the IOI
workspace for a work area of the specified
size. If this size is zero, then all of the
remaining space in the last page of the IOI
workspace will be allocated as a work area.
(Input)

is the actual size of the work area
allocated. (Output)

is a pointer to the work area allocated in
the IOI workspace. (Output)

is a standard Multics system status code.
(Output)

Entry: tape_ioi_$attach

This entry point calls RCP to attach a tape drive. This
entry point is provided for callers that do not want to interface
directly with RCP. It should be called before activating
TAPE_IOI for this tape drive.

This entry point allows the caller to specify all
information needed by RCP in order to select and attach a tape
drive. It also returns all information return by RCP for this
tape drive attachment.

If this entry point returns without error, the
assume that the specified tape reel has been mounted
on the specified tape drive, is positioned at BOT,
for processing.

caller can
and attached
and is ready

~

MTB-301 Page 31
Appendix A

tape_ioi_ tape_ioi_

Usage

dcl tape_ioi_$attach entry (ptr, ptr, char(*}, bit(36)
aligned, fixed bin(35));

call tape_ioi_$attach (tape_info_ptr, tai_ptr, comment,
rcp_id, code) ;

where:

1. tape_info_ptr is a pointer to a structure containing
information needed by RCP in order to select
and attach a tape drive. A description of
this structure is given below. (Input)

2. tai_ptr is a pointer to a structure containing
information needed by TAPE_IOI. This
information is returned by TAPE_IOI. All
fields in this structure, except the version
and actv_name fields, will be set by this
entry point. This allows the caller to pass
this structure directly to the
tape_ioi_$activate entry point. See the
description of the tape_ioi_$activate entry
point for a description of this structure.
(Input)

3. comment is a string that will be displayed to the
system operator after RCP has successfully
completed the attachment. No comment will be
displayed if this string is null or blank.
This comment will be tested for illegal
characters. RCP will consider a character to
be illegal if it does not belong to the 95
character subset of ASCII characters (octal
040 176) that are usually considered
printable. Any illegal characters found will
be converted to blanks. This comment will be
displayed in the form of an RCP note message.
The format of this message is given below.
(Input)

"RCP: Note (drive ~) - comment"

Page 32

tape,...ioi_

4. rcp_id

5. code

MTB-301
Appendix A

---------tape_ioi_

is RCP's unique identifier for this
attachment. This ID must be used in all
subsequent calls to RCP or tape_ioi_$detach
for this tape drive. (Output)

is a standard Multics system status code.
(Output)

The tape_info_ptr must point to a structure with the format
shown below. This structure is used to interface with RCP. All
of the fields in this structure, except the version field, are
input/output fields. The caller should set all of these fields
so that RCP can select the desired tape drive. All of this input
information will be sent to RCP. All of the output information
will be returned by RCP. Fields that are duplicated in the
tioi_activate_info structure will be set in both structures with
the same values. A declaration for this structure can be found
in the include file: rcp_tape_info.incl.pl1.

dcl 1 tape_info based(tape_info_ptr) aligned,
2 version fixed bin, I* 1 • *I
2 usage_time fixed bin, I* 2. *I
2 wait_time fixed bin, I* 3. *I
2 system_flag bit(1), I* 4. *I
2 device_name char(8), I* 5. *I
2 model fixed bin, I* 6. *I
2 tracks fixed bin, I* 1. *I
2 density bit(36), I* B. *I
2 volume_name char(32), I* 9. *I
2 write_flag bit{1), I* 10. *I
2 position_index fixed bin; I* 11. *I

where:

1. version is the version number of this structure.

2. usage_time currently must be zero.

3. wait_time currently must be zero.

~

MTB-301

tape_ioi_

4. system_flag

5. device_name

6. model

7. tracks

Page 33
Appendix A

tape_ioi_

is used to tell RCP whether or not RCP should
consider the calling process to be a system
process for this attachment. A value of "1"b
implies yes, "O"b implies no. In addition to
asking to be treated as a system process, the

. calling process must have "E" access to the
gate rcp_sys_. On output, this field will be
set to "1"b if RCP is actually treating this
process as a system process for this
attachment.

specifies whether or not a specific tape
drive is to be attached. If this field is
not blank, RCP will assume that it specifies
the name of the tape drive to be attached.
In this case, RCP will attempt to attach only
this tape drive. RCP will ignore any device
characteristics found in fields in this
structure. However, if this field is blank,
RCP will attempt to attach a tape drive based
upon these other device characteristics. On
output, this field will contain the device
name of the attached tape drive.

specifies the model number of the tape drive
that is to be attached. If the value of this
field is O, RCP will not consider the model
characteristic in its selection of a tape
drive to attach. Otherwise, RCP will select
only a tape drive that has the specified
model number. The acceptable values are:
400, 500, and 600. On output, this field
will contain the model number of the attached
tape drive.

specifies the track type of the tape drive to
be attached. If the value of this field is
O, RCP will not consider the track type
characteristic in its selection of a tape
drive to attach. Otherwise, RCP will select
only a tape drive that has the specified
track type. The acceptable values are: 7 and
9. On output, this field will contain the
track type of the attached tape drive.

Page 34

tape_ioi_

B. density

B. volume_name

10. write_flag

MTB-301
Appendix A

tape_ioi_

specifies the density capabilities of the
tape drive to be attached. On output, this
field will contain the density capabilities
of the attached tape drive. If this field
contains all zeros, RCP will not consider
density capabilities in its selection of a
tape drive to attach. Otherwise, RCP will
select only a tape drive that has the
specified density capabilities. This field
does not deal with the actual density setting
of the tape drive. It deals with the
possible density setting that the tape drive
is capable of. In this field, one bit is
used for each of the four currently supported
density settings. All unused bits in this
field must be set to zero. Counting from
left to right, and numbering from 1 to 4, the
bits in this field correspond to the
followtng density settings:

1 200 BPI
2 556 BPI
3 800 BPI
4 1600 BPI

specifies the volume name of the tape reel to
be used during this attachment. Unless a
specific tape drive is requested, RCP will
attempt to select the tape drive on which
this tape reel is already mounted.
Currently, this field is not changed on
output.

is a flag that specifies whether or not the
tape reel to be used for this attachment
should be mounted with a write ring. If this
flag is OFF ("O"b) then the tape reel will be
mounted without a write ring. If it is ON
("1"b) then the tape reel will be mounted
with a write ring. Currently, this field is
not changed on output.

11. position_index currently must be zero.

MTB-301 Page 35
Appendix A

tape_ioi_ tape_ioi_

Entry: tape_ioi_$buffer_status

This entry point returns the status of the specified l/U
buffer.

Usage

dcl tape_ioi_$buffer_status entry (bit(36) aligned, ptr,
ptr, fixed bin(35));

call tape_ioi_$buffer_status (tioi_id, buffer_ptr, tbs_ptr,
code);

where:

1 • tioi_id

2. buffer_ptr

tbs_ptr

4. code

uniquely identifies this TAPE_IOI activation.
(Input)

is a pointer to the buffer whose status is
requested. (Input)

is a pointer to a TAPE_IOI buffer status
structure. A description of this structure
is given below. (Input)

is a standard Multics system status code.
(Output)

The tbs_ptr must point to a structure .with the format shown
below. All fields in this structure, except the version number
field, are output fields whose values will be set by TAPE~IOI. A
declaration for this structure can be found in the include file:
tioi_buffer_status.incl.pl1.

dcl l tb~ based(tbs_ptr) aligned,
2 version fixed bin, I* 1 • *I
2 state fixed bin, I* 2. *I
2 buffer_len fixed bin(21), I* 3. *I
2 data_len fixed bin(21), I* 4. *I
2 bit_len fixed bin(24), I* 5. *I
2 modes aligned,

3 cif bit(6), I* 6. *I
3 data char(4), I* 1. *I

(3 align bit(1), I* 8. *I
3 length bit(l), I* 9. *I
3 recovery bit(1), I* 1 0 • *I
3 pad bit(33)) unaligned;

Page 36

tape_ioi_

where:

1. version

2. state

3. buffer_len

4. data_len

5. bit_len

6. modes.cir

1. modes.data

8. modes.align

9. modes.length

MTB-301
Appendix A

---------tape_ioi_

is the version number of this structure.

is the current state of the buffer, as
follows:

1 => ready
2 => busy
3 => suspended

is the allocated length of this buffer, in
characters.

is the length (in characters) of the actual
data in this buffer.

is the length (in bits) of the actual data in
this buffer. This field is valid only when
the buffer has been used for a read operation
while TAPE_IOI was in special length mode.

is the setting of the channel instruction
field use to process this buffer.

is the setting of the
buffer at the time
See Appendix C for a
data modes.

data mode for this
the buffer was queued.

list of the TAPE_IOI

is the setting of the align mode at the time
this buffer was queued. This field may
contain the following values:

"O"b => Left Aligned
"l"b => Right Aligned

is the setting of the length mode at the time
this buffer was queued. This field may
contain the following values:

"O"b => Normal Length Mode
"l"b => Special Length Mode

10. modes.recovery is the setting of the error recovery mode at
the time this buffer was queued. This field
may contain the following values:

"O"b => No Recovery
"l"b => Error Recovery

MTB-301 Page 37
Appendix A

tape_ioi_ tape_ioi_

Entry: tape_ioi_$check_order

This entry point performs
currently queued.

a check of the order I/0 operation
A program error
will occur if there is no order (error_table_$device_not_active)

operation queued.

For order operations that involve special interrupts
(rewind, rewind and unload, etc.) the check operation will be
completed when the order operation terminates. In order to check
the special interrupt itself, the caller must use the "ready"
order command. See Appendix B for more information about this
order command.

Usage

dcl tape_ioi_$check_order entry (bit(36) aligned, fixed
bin, fixed bin, fixed bin(35));

call tape_ioi_$check_order (tioi_id, ocount, rx, code);

where:

1 •

2.

3.

4.

tioi_id

ocount

rx

code

uniquely identifies this TAPE_IOI activation.
(Input)

is the number of times the order command was
actually p~rformed. (Output)

is the result index. generated by interpreting
the status obtained from the order operation
being checked~ (Output)

is a standard Multics system status code.
(Output)

Page 38 MTB-301
Appendix A

tape_ioi_ tape_ioi_

Entry: tape_ioi_$check_read

This entry point performs a check of the read operation that
has been queued the longest. The successful checking of a read
operation means that the buffer used in this read operation will
be placed in the ready state. The caller may begin processing
the data read into this buffer. A program error
(error_table_$device_not_active) will occur if there is no read
o~eration queued.

Usage

dcl tape_ioi_$check_read entry (bit(36) aligned, ptr, fixed
bin(21), fixed bin, fixed bin(35));

.call tape_ioi_$check_read (tioi_id, buffer_ptr, data_len,
rx, code);

where:

1 • t1oi_id

2. buffer_ptr

data_len

4. rx

5. code

uniquely identifies this TAPE_IOI activation.
(Input)

is a pointer to the buffer used in the read
operation being checked. (Output)

is the length (in characters)
actually read into the buffer.

of the data
(Output)

is the result index generated by interpreting
the status obtained from the read operation
being checked. (Output)

is a standard Multics system status code.
(Output)

Entry: tape_ioi_$check_write

This entry point performs a check of the write operation
that has been queued, the longest. The successful checking of a
write operation means that the buffer used in this write
operation will be placed in the ready state. The caller may
begin copying output data into this buffer. A program error
(error_table_$device_not_active) will occur if there is no write
operation queued.

MTB-301 Page 39
Appendix A

tape_ioi_ tape_ioi_

If other write operations are queued, and
error or special event occurs (result index value
these other write operations will be suspended
used for these write operations will be placed in
state.

any kind of 1/0
is > 1) , then
and the buffers

the suspended

Usage

dcl tape_ioi_$check_write entry (bit(36) aligned, ptr,
fixed bin, fixed bin(35));

call tape_ioi_$check_write (tioi_id, buffer_ptr, rx, code);

where:

1 • tioi_id uniquely identifies this TAPE_IOI activation.
(Input)

2. buffer_ptr is a pointer to the buffer used for the write
operation being checked. (Output)

3. rx is the result index generqted by interpreting
the status obtained from the write operation
being checked. (Output)

4. code is a standard Multics system status code.
(Output)

Entry: tape_ioi_$deactivate

This entry point will terminate the current TAPE_IOI
activation for a tape drive. As a result of deactivation, all
1/0 buffers and any work area will be deallocated.

If
drive,
known
should
point.

any I/O operations are currently queued for this tape
then a program error will occur. Therefore, if it is not
whether or not I/O operations are currently queued, a call
be made to tape_ioi_$stop_tape before calling this entry

Page 40 MTB-301 All\
Appendix A

tape_ioi_ tape_ioi_

Usage

dcl tape_ioi_$deactivate entry (bit(36) aligned, fixed
bin(35), fixed bin(35));

call tape_ioi_$deactivate (tioi_id, error_count, code);

where:

1 • tioi_id

2. error_count

code

uniquely identifies this TAPE_IOI activation.
After deactivation, this TAPE_IOI ID is no
longer valid. Any subsequent calls to
TAPE_IOI using this TAPE_IOI ID will result
in a program error. (Input)

is a count of I/0 errors detected by TAPE_IOI
during this activation. (Output)

is a standard Multics system status code.
(Output)

Entry: tape_ioi_$deallocate

This en~ry point will deallocate all I/0 buffers and any
work area. A program error occurs unless all I/O buffers are in
the ready or suspended state. The caller may allocate new I/O
buffers and a new work area by calling the TAPE_IOI allocate
entry points.

Usage

dcl tape_ioi_$deallocate entry (bit(36) aligned, fixed
bin(35));

call tape_ioi_$deallocate (tioi_id, code);

where:

1 •

2.

tioi_id

code

uniquely identifies this TAPE_IOI activation.
(Input)

is a standard Multics system status code.
(Output)

MTB-301 Page 41
Appendix A

tape_ioi_ tape_ioi_

Entrv: tape_ioi_$detach

This entry point calls RCP to detach a tape drive. This
entry point is provided for callers that do not want to interface
directly with RCP.

Detaching the tape drive may involve demounting the tape
reel mounted on this tape drive. The detachment may also involve
unassigning a tape drive. These action are performed by RCP and
depend upon the "disposition" argument and whether are not the
tape drive and tape reel were assigned and mounted by explicit
command.

Usage

dcl tape_ioi_$detach entry (bit(36) aligned, bit(*), fixed
bin(35), char(*), fixed bin(35));

call tape_ioi_$detach (rcp_id, disposition, error_count,
comment, code);

where:

1 • rcp_id

2. disposition

3. error_count

is the RCP ID that was returned by RCP when
the tape drive was attached. (Input)

specifies the action to be performed by RCP
with regard to the assignment disposition of
the tape drive being detached. The
disposition of the tape drive involves the
possible retention of the tape drive
assignment even though the tape drive is
being detached. The acceptable values which
this argument currently may have are:
(Input)

"O"b => unspecified
"1"b => retain the assignment

specifies the
caller during
a cumulative
(Input)

number of error detected by the
the attachment. RCP will keep
total of all errors reported.

Page 42

---------tape_ioi_

4. comment

5. code

Appendix A
MTB-301

tape_ioi_

is a string that will be displayed
system operator after the tape drive
detached. See the description
tape_ioi_$attach entry point for
about valid comment strings. (Input}

to the
has been
of the
details

is a standard Multics system status code.
(Output)

Entry: tape_ioi_$get_mode

This entry point will return the current value of any one of
the TAPE_IOI modes. See Appendix C for more information about
the TAPE_IOI modes.

Usage ~

dcl tape_ioi_$get_mode entry (bit(36) aligned, char(8),
ptr, fixed bin(35));

call tape_ioi_$get_mode (tioi_id, mode, data_ptr, code);

where:

1 • tioi_id

2. mode

3. data_ptr

4. code

uniquely identifies this TAPE_IOI activation.
(Input)

specifies
returned.

the name
(Input)

of the mode to be

is a pointer to a location where the current
value of the mode is to be stored. (Input)

is a standard Multics system status code.
(Output)

MTB-301 Page 43
Appendix A

tape_ioi_ tape_ioi_

Entry: tape_ioi_$hardware_status

This entry point returns all available status information
obtained from the last I/O operation for which a check has been
completed.

Usage

dcl tape_ioi_$hardware_status entry (bit(36) aligned, ptr,
fixed bin(35));

call tape_ioi_$hardware_status (tioi_id, ths_ptr, code);

where:

1. tioi_id

2. ths_ptr

3. code

uniquely identifies this TAPE_IOI activation.
(Input) ·

is a pointer to a TAPE_IOI hardware status
structure. A description of this structure
is given below. (Output)

is a standard Multics system status code.
(Output)

The ths_ptr must point to a structure with the format shown
below. All fields in this structure, except the version field,.
are output fields whose values will be set by TAPE_IOI. A
declaration for this structure can be found in the include file:
tioi_hardware_status.incl.pl1.

dcl 1 ths based(ths_ptr) aligned,
2 version fixed bin, ·
2 description char(128) varying,
2 major fixed bin,
2 substatus bit(36),
2 iom bit(72);

I* 1. *I
I* 2. *I
I* 3. *I
I* 4. */
I* 5. */

where:

1. version

2. description

is the version number of this structure.

is an English language description of this
hardware status.

Page 4~

-----~---tape_ioi_

3. major

Appendix A

is reformatted major status.
is given below.

MTB-301

---------tape_ioi_

A description

4. substatus is reformatted substatus. A description is
given below.

5. iom is the raw !OM hardware status.

The include file tioi_hardware_status.incl.pl1 also contains
constants that can be used to reference the fields of reformatted
major and substatus. The values that represent each major
status, and the names of the constants that should be used to
reference each major status value are given below:

dcl subsystem_ready fixed bin init (0) static
dcl device _busy fixed bin init (1) static
dcl device_attention fixed bin init (2) static
dcl device_data_alert fixed bin init (3) static
dcl end of file - - fixed bin init (4) static
dcl command _reject fixed bin init (5) static
dcl mpc_ device_attention fixed bin init(10) static,
dcl mpc_device_data_alert fixed bin init(11) static;
dcl mpc_command_reject fixed bin init(13) static;
dcl power_ off fixed bin init(16) static;
dcl system_ fault fixed bin init(17) static;
dcl iom_central fixed bin init(18) static;
dcl iom_channel fixed bin init(19) static;
dcl time -out fixed bin init(20) static;

Each substatus, for a given major status, is represented by
one bit in the ths.substatus field. Whenever more than one
substatus occurs at the . same time, the bits representing each
will be set. For each major status, there is a set of constants
representing the values for all substatuses possible for that
major status. As an example, listed below are the values and the
names of the constants used to represent the substatuses
associated with the subsystem_ready major status.

dcl device_ready bit(36) init (10000000"b) static;
dcl write_protected bit(36) init (01000000"b) static;
dcl at_bot bit(36) init (00100000"b) static;
dcl nine_track bit(36) init (00010000 11 b) static;
dcl two_bit_fill bit(36) init (00001000"b) static;
dcl four_bit_fill bit(36) init (00000100"b) static;
dcl six_bit_fill bit(36) init (00000010"b) static;
dcl ascii_alert bit(36) in it (00000001"b) static;

,.

MlB-301 Page 45
Appendix A

tape_ioi_ tape_ioi_

Entry: tape_ioi_$list_buffers

This entry point will return a list of pointers to buffers
in the IOI workspace. All buffers, or all buffers in a
particular state can be listed. When all buffers are listed,
they will be listed in the order in which they were allocated.
When all buffers in a particular state are listed, they will be
listed in the order in which they were put into that state.

Usage

dcl tape_ioi_$list_buffers entry (bit(36) aligned, fixed
bin, dim(*) ptr, fixed bin, fixed bin(35));

!

call tape_ioi_$list_buffers entry (tioi_id, state,
buffer_ptrs, num_buffers, code);

where:

1 • tioi_id

2. state

3. buffer_ptrs

4. num_buffers

5. code

uniquely identifies this TAPE_IOI activation.
(Input)

specifies the state of the buffers to be
returned. The, acceptable Values are listed
below: (Input)

0 => all buffers
1 => all ready buffers
2 => all busy buffers
3 => all suspended buffers

is an array of pointers to the buffers.
the number of buffer pointers that will
into this array, hbound(buffer_ptrs,1),
be returned. (Output)

is the number of buffers in the
requested. (Output~

Only
fit

will

state

is a standard Multics system status code.
(Output)

Page 46
Appendix A

MTB-301

---------tape_ioi_ tape_ioi_
--------- ---------
Entry: tape_ioi_$order

This entry point is called to queue and check an order.
Calling this entry is equivalent to calling, in succession,
tape_ioi_$queue_order and tape_ioi_$check_order.

Usage

dcl tape_ioi_$order entry (bit(36) aligned, char(4), fixed
bin, ptr, fixed bin, fixed bin, fixed bin(35));

call tape_ioi_$order (tioi_id, order, count, data_ptr,
ocount, rx, code);

where:

1 •

2.

3.

4.

5.

6.

1.

tioi_id

order

count

data_ptr

ocount

rx

code

uniquely identifies this TAPE_IOI activation.
(Input)

see tape_ioi_$queue_order. (Input)

see tape_ioi_$queue_order. (Input)

see tape_ioi_$queue_order. (Input)

see tape_ioi_$check_order. (Output)

see tape_ioi_$check_order. (Output)

is a standard Multics system status code.
(Output)

Entry: tape_ioi_$queue_order

This entry point will queue one tape order command. A
program error will occur if an order command is already queued or
if any read or write operations are queued. All non-channel
orders are supported. See Appendix B for a list of the
mnemonics, counts, and data associated with these order commands.

MTB-301 Page 47
Appendix A

tape_ioi_ tape_ioi_

dcl tape_ioi_$queue_order entry (bit(36) aligned, char(4),
fixed bin, ptr, fixed bin(35));

call tape_ioi_$queue_order (tioi_id, order, count, data_ptr,
code);

where:

1 • tioi_id

2. order

3. count

4. data_ptr

5. code

uniquely identifies this TAPE_IOI activation.
(Input)

is the mnemonic name of the order to be
queued. The reason for using these mnemonics
is to make the use of this entry point
simple, and to present a logical rather than
a physical interface wherever possible.
(Input)

is the number of times the order is
executed. For some orders this
ignored and the order command is
only once. (Input)

to be
field is
executed

is a pointer to any data required/returned by
the order command. For orders which do not
involve data, this argument is ignored.
Warning: For order commands that return data,
TAPE_IOI will remember this pointer and will
use it to return data when the order
operation is checked. ·It is the callers
responsibility to make sure that this pointer
is valid when the order operation is checked.
(Input)

is a standard Multics system · status· code •
. (Output)

Entry: tape_ioi_$queue_read

This entry point will queue a read operation for the
specified I/O buffer. A program error will occur if this I/0
buffer is already queued for reading, any order command or write
operation is queued, or any buffer is in the suspended state.

Page ij8 MTB-301
Appendix A

tape_ioi_ tape_ioi_

Usage

dcl tape_ioi_$queue_read entry (bit(36) aligned, ptr, fixed
bin(35));

call tape_ioi_$queue_read (tioi_id, buffer_ptr, code);

where:

1 •

2.

3.

tioi_id

buffer_ptr

uniquely identifies this TAPE_IOI activation.
(Input)

is a pointer to the buffer for which the read
operation is to be queued. (Input)

is a standard Multics system status code.
(Output)

Entry: tape_ioi_$queue_write

This entry point will queue a write operation for the
specified I/O buffer. A program error will occur is this I/O
buffer is already queued for writing or if any order command or
read operations are queued.

Usage

dcl tape_ioi_$queue_write entry (bit(36) aligned, ptr,
fixed bin(21), fixed bin(35));

call tape_ioi_$queue_write (tioi_id, buffer_ptr, data_len,
code);

where:

1 • tioi_id

2. buffer_ptr

uniquely identifies this TAPE_IOI activation.
(Input)

is a pointer to the buffer for
write operation is to be queued.

which
(Input)

the

MTB-301 Page 49
Appendix A

tape_ioi_ tape_ioi_

data_len

4. code

is the length (in characters) of the actual
data to be written from this buffer. (Input)

is a standard Multics system status code.
(Output)

Entry: tape_ioi_$read

This entry point will queue a read operation for every ready
buffer. It will then perform a check of the read operation that
has been queued the longest. This is equivalent to calling
tape_ioi_$queue_read for all available buffers, and then calling
tape_ioi$check_read. For normal tape reading, this is the only
read entry point that the caller ne~ds~

Usage

dcl tape_ioi_$read entry (bit(36) aligned, ptr, fixed
bin(21), fixed bin, fixed bin(35));

call tape_ioi_$read (tioi_id, buffer_ptr, data_len, rx,
code);

where:

1.

2.

3.

4.

5.

tioi_id

buffer_ptr

data_len

rx

code

uniquely identifies this TAPE_IOI activation.
(Input)

see tape_ioi_$check_read. (Output)

see tape_ioi_$check_read. (Output)

see tape_ioi_$check_read. (Output)

is a standard Multics system status code.
(Output)

Page 50
Appendix A

MTB-301 ~

tape_ioi_ tape_ioi_

Entry: tape_ioi_$set_buffer_ready

This entry point changes the state of an I/0 buffer from
suspended to ready. A program error will occur if the buffer is
not in the suspended state. If a buffer is in the busy state
(1/0 is queued for this buffer) it can be changed to the ready
state only by a check operation. Buffers can be changed to the
null state only via the tape_ioi_$deallocate entry point.

Usage

dcl tape_ioi_$set_buffer_ready entry (bit(36) aligned, ptr,
fixed bin(35));

call tape_ioi_$set_buffer_ready (tioi_id, buffer_ptr, code);

where:

1 • tioi_id uniquely identifies this TAPE_IOI activation.
(Input)

2. buffer_ptr is a pointer to the buffer to be set ready.
(Input)

3. code is a standard Multics system status code.
(Output)

Entry: tape_ioi_$set_mode

This entry point will set any one of the TAPE_IOI modes.
See Appendix C for more information about the TAPE_IOI modes.

Usage

dcl tape_ioi_$set_mode entry (bit(36) aligned, char(8),
ptr, fixed bin(35));

call tape_ioi_$set_mode (tioi_id, mode, data_ptr, code);

where:

1. tioi_id uniquely identifies this TAPE_IOI activation.
(Input)

A\

HTB-301

tape_ioi_

2. mode

data_ptr

4. code

Page 51
Appendix A

tape_ioi_

specifies the name of the mode to be set.
(Input)

is a pointer to data representing the setting
of the mode. (Input)

is a standard Multics system status code.
(Output)

Entry: tape_ioi_$stop_tape

This entry point will stop any I/0 currently in progress.
The results of any queued I/0 operations are undefined. All
buffers will be set to the ready state. This entr~ point is
intended for use within a cleanup handler or a close procedure in
order to guarantee that all queued I/O operations are stopped.
It can also be useful when positioning the tape reel.

Usage

dcl tape_ioi_$stop_tape entry (bit(36) aligned, fixed bin,
fixed bin, fixed bin{35));

call tape_ioi_$stop_tape (tioi_id, count, rx, code)

where:

tioi_id

2. count

rx

4. code

uniquely identifies this TAPE_IOI activation.
(Input)

is the number of I/O operati~ns that
completed before the tape was physically
stopped. If the tape was already stopped
this number will be zero. (Output)

is the result index of this operation. Only
values of -1 through 1 may be returned by
this entry point. (Output)

is a standard Multics system status code.
(Output)

Page 52 MTB-301
Appendix A

tape_ioi_ tape_ioi _ ___ _..: ____ _

Entry: tape_ioi_$write

This entry point is a useful combination of the
tape_ioi_$queue_write and tape_ioi_$check_write entry points
Optionally, it will queue a write operation for a specified I/O
buffer. A program error will occur if the specified I/O buffer
is already queued for writing or if any order command or read
operations are queued.

If there are any suspended buffers, then write operations
will be queued for all of these suspended buffers. Any buffer
specified in this call will be queued first. Then the suspended
buffers will be queued in the same order in which they were
suspended. The data length and other mode specifications used
for each suspended buffer will be the same as when the buffer was
originally queued.

This entry point will also return a pointer to a ready I/O ~
buffer. If the call to , this entry point is successful, the
caller may begin to copy output data into this buffer.

If there are no ready buffers, then this entry point will
obtain one by performing a check of the write operation that has
been queued the longest. If the check operation is successful,
it will result in the buffer used for that write operation
becoming ready. A pointer to this checked and newly readied
buffer will be returned.

Usage

dcl tape_ioi_$write entry {bit(36), ptr, fixed bin(21),
ptr, fixed bin, fixed bin(35));

call tape_ioi_$write (tioi_id, qbuffer_ptr, data_len,
rbuffer_ptr, rx, code);

where:

1 • tioi_id

2. qbuffer_ptr

data_len

uniquely identifies this TAPE_IOI activation.
(Input)

is a pointer to a buffer for which a write
operation is to be queued. This value may be ~
null. (Input)

see tape_ioi_$queue_write. (Input)

MTB-301

tape_ioi_

4. rbuffer_ptr

5. rx

6. code

Page 53
Appendix A

tape_ioi_

is a pointer to a ready buffer. If the
result index indicates that a write operation
was checked and an I/O error occurred, then
this will be a pointer to the buffer in
error. (Output)

see tape_ioi_$check_write. (Output)

is a standard Multics system status code.
(Output)

Page 54 MTB-301 ~
Appendix B

Tape Order Commands

TAPE ORDER COMMAND MNEMONIC COUNT COMMAND DATA

Ready rdy 1 • Set by TAPE - IOI

Backspace One File bsf * Backspace One Record bsr * Forward Space One File f sf * Forward Space One Record f sr * Write End-of-File Record eof * 2. Set by Caller
Erase ers *
Rewind rew
Rewind/Unload run
Tape Load lod

Request Status rqs 3. Set by TAPE - IOI
Res~t Status rss
Request Device Status rqd 4. Set by TAPE - IOI
Reset Device Status rsd

Set 200 bpi density den 5. Set by Caller
Set 556 bpi density den II II

Set 800 bpi density den II II

Set 1600 bpi density den II II

Set File Permit per
Set File Protect pro

Reserve Device rsv
Release Device rel

Read Control Registers rcr 6. Set by TAPE IOI
Write Control Registers wcr 6. Set by Caller

* implies that "count" may be more than 1.

1. Data returned is 36 bits of special status. If no
special system was generated by the previous I/O
operation, then this field will be zero.

A\

2. Optional, 6 bits that form a 1 character record.
3. Data returned is the TAPE_IOI hardware status ~

structure.
4. Data returned is 24 packed 8 bit bytes.
5. Data specified is a fixed binary density setting.
6. Data is 8 2-byte counters (4 words).

MTB-301

MODE NAME DECLARATION

align (1.) bit(1)

cif (2.) bit(6)

data char(4)

Appendix C
TAPE_IOI Modes

VALUES

"O"b
"1"b

* 11 010000"b
"010001"b
11 010010 b
"010011 b
11 011000 b
"011001 b
"011010 b
11 011011 b

* "bin"
11 bCd II
"tap9"
"asc"
"ebc"
"ale"

event fixed bin(71)

length

recovery

wait

*

bit(1)

bit(1)

bit (1)

* "O"b
"1"b

* "O"b
"1"b

* "O"b
"1"b

implies default setting

MEANING

Left Aligned
Hight Aligned

No retry, high
No retry, low

Page 55

No retry, high, +deskew
No retry, low, +deskew
Retry, high
Retry, low
Retry, high, +deskew
Retry, low, +deskew

Specifies actual read
or write commands used.

!PC Event Channel

Normal
Special

No Error Recovery
Error Recovery

Simpl;ex
Multiplex

1 • Default alignment depends upon the model tape drive
being used. Model 500 => right aligned, model 600 =>
left aligned.

2. This mode is ignored if error recovery is ON.

Page 56
Appendix D

Result Index Summary
Special Events

The result indexes r.eturned by TAPE_IOI
interpreting the hardwa~e status (IOM major
the I/O operation last completed. The result
summarized below:

-1 => block (multiplex block mode)
0 => success
1 => program error
2 => unrecoverable I/O error
3 => recoverable I/O error
4 => special event
5 => special event
6 => special event

MTB-301

are generated by
and substatus) for
index values are

. The special event result indexes are returned for different
statuses depending upon the I/O operation. A summary of special
events is given below:

Reads: 4 => EOF
5 => Blank Tape on Read
6 => Code Alert (Data modes asc, ebc, or a/e)

Writes: 4 => EOT
5 => recoverable error and EOT
6 => Code Alert (Data mode = tap9 or a/e)

Back Space: 4 => BOT
5 => EOF (backspace record only)

Forward Space: 4 => Blank Tape on Read
5 => EOF (forward space record only)

Request Status: Only result index values (-1, O, l) are
returned. Hardware status information returned in
data structure.

Ready: Only result index values (-1, O, 1) are returned.

All Others: No special events.

MTB-301
Appendix D

Result Index Summary
Status Classes

STATUS STATUS CLASS

Subsystem Ready
At BOT
ASCII Alert
All Others

Device Busy

AB (At Beginning)
CA (Code Alert)
OK (Result Index =

Page 57

0)

In Rewind
Device Loading
All Others

SI (Special Interrupt)

Device Attention (All)

Device Data Alert
Blank Tape on Read
Timing Alert
All Parity Errors
End of Tape
ET and any DA

End of File (All)

Command Reject

SI
UE

UE

ET
DA
DA
ET
DE

EF

Positioned at BOT AB
All Others UE

MPC Device Attention
All UE

MPC Device Data Alert
PE-Burst, NRZI CCC DA
Preamble, Postamble DA
Multi-track, Marginal DA
Code Alert CA
All Others UE

MPC Command Reject (All) UE

Power Off UE
System Fault UE

IOM Central

(Unrecoverable

(End of Tape)
(Data Alert)

(Data, End)

(End of File)

IOM -> PAS!
PSIA -> IOM
All Others

IP (IOM -> PSIA)
DA
UE

IOM Channel (All) UE

Error)

Page 58

The table

Appendix D
Result Index Summary

Table of Result Indexes

below shows the result indexes returned
unique combination of I/0 operation and status class.

OPERATION STATUS CLASSES

AB CA DA DE EF ET IP SI I
I.

rbin 2 2 3 2 4 5 3 2
rbcd 2 2 3 2 4 5 3 2
rtp9 2 2 3 2 4 5 3 2
rasc 2 I 6 3 2 I 4 5 3 2
rebc 2 6 3 2 4 5 I 3 2
ra/e 2 6 3 2 4 5 3 2 I

wbin 2 2 3 5 2 4 3 2
wbcd 2 2 3 5 2 4 3 2
wtp9 2 6 3 5 2 4 6 2
wasc 2 2 3 5 2 4 3 2
webc 2 2 3 5 2 4 3 2
wale 2 6 3 5 2 4 3 2
eof 2 2 3 5 2 4 3 2
ers 2 2 3 5 2 4 3 2

bsr 4 2 2 2 5 2 2 2
bsf 4 2 2 2 0 2 2 2
fsr 2 2 2 2 5 4 2 2
fsf 2 2 2 2 0 4 2 2

rqs 0 0 0 0 0 0 0 0
rdy 0 1 1 1 1 1 1 -1

others 2 2 2 2 2 2 2 2

MTB-301

for each

UE

2
2
2
2
2
2

2
2
2
2
2
2
2
2

2
2
2
2

0
1

2

MTB-301
Appendix E

Sample Scenarios
Activation and Reading

I* Process options to: build rcp_tape_info. *I

call tape_ioi_$attach (tape_info_ptr, tai_ptr,
comment, rcp_id, cd);

if cd -= 0 then goto ERROR;

Page 59

I* Data in tioi_activate_info may be changed or completed here. *I

tai.actv_name = "example"
call tioi_$activate (tai_ptr, tioi_id, cd);
if cd -= 0 then goto ERROR;

recovery = "1"b; /* Error recovery ON. *I
call tioi_$set_mode (tioi_id, "recovery", addr(recovery), cd);
if cd -= 0 then goto ERROR;

call tape_ioi_$allocate_buffers (tioi_id, 4096, O, act_len,
act_num, buf_ptrs, cd);

if cd -= 0 then goto ERROR;

r-' READ_LOOP:
call tape_ioi_$read (tioi_id, buf_ptr, data_len, rx, cd);
goto READX (rx); I* RX=> decision. */

READX(O): /* Read succeeded. */
call PROCESS_INPUT (buf_ptr, data_len);
goto READ_LOOP;

READX(1):
READX(2):
HEADX(3):

goto ERROR;

READX(4):
READX(5):

goto END_OF_FILE;

I* Program error. *I
I* Unrecoverable error. *I
I* Recovery ON => error. *I

I* End of File. */
I* Blank tape => EOF. */

Page 60
Appendix E

Sample Scenarios
Writing and Deactivation

I* Attach and activate, error recovery ON. */

buf_ptr =null(); I* Initialize. */
rx = O, data_len = 1;

do while ((rx = 0) & (data_len > O));

MTB-301

call tape_ioi_$write (tioi_id, buf_ptr, data_len,
next_buf_ptr, rx, cd);

buf_ptr = next_buf_ptr; /* If OK fill buffer. */
if rx = 0 then call FILL_BUF (buf_ptr, data_len);

end;

goto WRITEX (rx); I* Out of loop, rx => why. */

WRITEX(O): STOPX(O): /* No more data, flush. */
call tape_ioi_$check_write (tioi_id, bu·f_ptr, rx, cd);
goto STOPX (rx); I* Check the check. */

STOPX(1): / 1 Program error. *I
if cd ft= error_table_$device_not_active
then goto ERROR;

' I* No more buffers queued, write EOF to close file. */

call tape_ioi_$order (tioi_id, "eof", 1, null(), x, rx, cd);
if cd ft= O then goto ERROR;

call tape_ioi_$deactivate (tioi_id, error_count, cd);
call tape_ioi_$detach (rcp_id, "O"b, error_count, cd);
return;

WRITEX(1):
WRITEX(2): STOPX(2):
WRITEX(3): STOPX(3):
ERROR:

[- - - - - - - - -]

WRITEX(4): STOPX(4):
WRITEX(5): STOPX(5):
END_OF_VOLUME:

[- - - - - - - - - - - - - -]

I* Program error. *I
I* Unrecoverable error. *I
I* Recovery ON => error. *I

I* End of Tape *I
I* EOT .and error. *I

