
--

Multics Technical Bulletin MTB-300

Date: 10/15/76

From: Cec Erickson

Subject: Documentation Format Changes

This MTB shows the new format for command and subroutine
descriptions that will be used in Multics documents beginning
with MR5.0. The "Usage'' portion of the descriptions is being
changed.

COMMANDS

The usage line will now have braces ({}) around any optional
argument rather than hyphens. For example, the usage line for
delete_acl will change from:

delete_acl -path- -User_ids- -control_args-

to:

delete_acl {path} {User_ids} {-control_args}

In addition, the indenting used in the list of argument
descriptions following the usage line will no longer vary
according to the longest argument. This method not only added a
lot of unnecessary white space but also was a big headache for
the document tion group. In the new format, the description of
each argument will begin on the line immediately beneath the
argument itself at character position 13 (i.e., use .in 12). lhe
runoff control words used in this list will be rigidly
controlled; that is, although several different combinations of
runoff control words can produce the same runout, one sequence of
runoff control words has been chosen as the standard. By having
a "standard'' we will know how the runoff segment is structured
and be able to use various macros to locate and possibly change
things.

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page c:. MTB-300

The basic rules for the "standard" are:

--keep the arguments in the same (runout) positions they had
in the old format; only the descriptions of the arguments
are changing position

--control the positioning of items by changing the undents,
i.e., no leading spaces are allowed

The following pages show
delete_acl command in 5.0 format
runoff).

the "Usage" portion of
(first the runout, then

the
the

hTB-300 Page 3

usage

delete_acl {path} {user_ids} {-control_args}

where:

1. path
is the pathname of a segment, multisegment file, or
directory. If it is -wd, -working_directory, or
omitted, the working directory is assumed. lf path
is omitted, no User_id can be specified. The star
convention can be used.

2. User _ids
are access control names that must be of the form
Person_id.Project_id.tag. All ACL entries with
matching names are deleted. (For a description of
the matching strategy, refer to the set acl command.)
If no User_id is given, the user's Person_id and
current Project_id are assumed.

3. control_args
can be chosen from the following:

-all, -a
causes the entire ACL to be deleted with the
exception of an entry for *.SysDaemon.*.

-directory, -dr
specifies that
default is
directories.

-segment, -sm

only directories are affected.
segments, multisegment files,

The
and

specifies that only segments and multisegment files
are affected.

-brief, -bf
suppresses the message "User name not on ACL."

Page 4

.if 12h "Usage"
delete_acl {path} {User_ids} {-control_args}

• sp 2
where:
.sp 1
.in 12
.un 12
1. path
.br

MTB-300

is the pathname of a segment, multisegment file, or directory.
lf it is -wd, -working_directory, or omitted, the working
directory is assumed. If path is omitted, no User_id can be
specified. The star convention can be used •
• sp 1
• un 12
2. User_ids
.br
are access control names that must be of the form
Person_id.Project_id.tag. All ACL entries with matching na~es
are deleted. (For a description of the matching strategy, refer
to the set_acl command.) If no User_id is given, the user's
rerson_id and current Project_id are assumed •
• sp 1
• un 12
3. control_args
.br
can be chosen from the following:
.sp
.un 5
-all, -a
.br
causes the entire ACL to be deleted with the exception of an
entry for •.sysDaemon.* •
• sp
.un 5
-directory, -dr
.br
specifies that only directories are affected.
The default is segments, multisegment files, and directories •
• sp
.un 5
-segment, -sm
.br
specifies that only segments and multisegment files are affected •
• sp
.un 5
-brief, -bf
.br
suppresses the message "User name not on ACL."
.in O

MTB-300 Page S

SUBROUTINES

Although the MPM Subroutines will not be revised until after
5.0, new formatting rules have been established, which can be
used in other manuals immediately. This new format is similar to
the new format being used for commands. That is, the
descriptions of items in the "Usage" portion of the subroutine
will be beneath the item they describe and begin at character
position 13 (i.e., use .in 12). No leading spaces are allowE:;
control the positioning of text by changing the undents.

Also, the declare and call lines should be done in no adjust
(.na) and a translate character should be used between things
like "fixed" and "bin" so they will not appear in diff'erent lines
in the runout.

The following pages show the
set_lock_$lock in the new format (first
runoff).

"Usage" portion of
the runout, then the

~age G MTB-300

usage

declare set_lock_$lock entry (bit(36) aligned, fixed bin,
fixed bin);

call set_lock_$lock (lock_word, wait_time, code);

where:

1. lock_word
is the word to be locked. (Input)

2. wait_time

3. code

0

indicates the length of real time, in seconds, that
the set_lock_$lock entry point should wait for a
validly locked lock word to be unlocked before
returning unsuccessfully. A value of -1 indicates no
time limit. (Input)

is a standard status code. (Output) It may be one
of the following:

indicates that the lock word was successfully locked
because the lock word was previously unlocked

error_table_$invalid_lock_reset
indicates that the lock word was successfully
but the lock word previously contained an
lock identifier that was overwritten

locked,
invalid

error_table_$locked_by_this_process
indicates that the lock word already
lock identifier of the calling process
modified

contained the
and was not

error_table_$lock_wait_time_exceeded
indicates that the lock word contained a valid lock
identifier of another process and could not be locked
in the given time limit

..
MTB-300

.if 12h "Usage"
• in 10
.na
.un 5

Page 7

declare set_lock_$lock entry (bit(3b)!aligned, fixed!bin, fixed!bin);
.sp
.un 5
call set_lock_$lock (lock_word, wait_time, code);
.ad
.in O
.sp 2
where:
.sp
.in 12
.un
1. lock_word
.br
is the word to be locked. (Input)
.sp
.un
2. wait_time
.br
indicates the length of real time, in seconds, that the
set_lock_$lock entry point should wait for
a validly locked lock word
to be unlocked before returning unsuccessfully.
A value of -1 indicates no time limit. (Input)
.sp
.un
3. code
.br
is a standard status code. (Output) It may be one
of the following:
.sp
.un 5
0
.br
indicates that the lock word was successfully locked because
the lock word was previously unlocked
.sp
.un 5
error_table_$invalid_lock_reset
.br
indicates that the lock word was successfully locked, but
the lock word previously contained an invalid lock identifier
that was overwritten
• sp
.un 5
error_table_$locked_by_this_process
.br
indicates that the lock word already contained the
lock identifier of the calling process and was
not modified

Page 8

.sp

.un 5
error_table_$lock_wait_time_exceeded
.br
indicates that the lock word contained a valid
lock identifier of another process and could not
be locked in the given time limit

MTB-300

