MT - 298

Multics_Technigal_Bulletin

TO ¢« | D%stribution
FROM: RoWwaeFranklin
SUBJECT : conoL - MCS

DATE: July 16, 1976

This bulletin describes the prelinminary fdesign and implementation
of the iessage Control System (MCcs) for ultics coBoL. It
stresses the preliminary design aimed at the terminal user and

ends with a4 proposed interface to the COROL compiler generated

code, ' '

flultics Froject dnternal working documentaticn., Not to be
reproducen or distributed ocutside the Multics Project.

1.0 Introduction
1.1 Guerview
1.7 Design Goals
1.3 besian/Inmolementation Strateqy

2.0 Queues
.1 Gueue Concepts

2.¢ Queue Operations

.3 Gueue Description Language

b Input Queue Definition

.5 Output wueue definition

L0 AQAueue Generation
2.7 Gueue "Print_Hierarchy'" Command

™ NV

N\

~

3.0 Multics Programss Segments, and Structures
2.1 Seament "q_description”
3.2 The Queue Generation Utility
3.3 Program "command"

3.3.1 General
3.3.72 Command Processors
1. accept
2. symbolic_accept
. info
4. symbolic_info
S. history
6. receirve
7. symbolic_receive
“.osend '
Y. receive_segment
1. symbolic_receive_segment
1. print_hierarchy
1¢. disable_y
138, enable_nqg
2.4 Directory "messaage_qgueues'
3.5 Structure Definitions
3.5.7T gh_tabtle
2.5.7 Queues

4.0 €COLOL Object Proqgram Interface
4L&,1 General

4.7 Samgule Calling Senuences

4.2 StrLctures

5.0 Concurrent Access Control

-

1.0 INIRJQDUCTION

This MTB describes the (COBOL Message C(Control System
(CO30L-MCS) for Multics. For further i1nformation please
refser to the American National Standards Institute COBOL
specifications, ANSI X3,23-1974, CO30L=-1CS is defined 1in
the ANSI C030L specifications, onages XIII-1 to XIII=-23 and
pages XIV=-42 to XIv-48,

1.7 QVERVIEW

(0BOL-MCS provides a C0BOL program with the ability to
accessey processe and create messages or portions thereof,
and with the ability to communicate with Llocal _and remote

comnunication devices. coBoL-MCS is based on message
queses., Queues are defined to be holding areas for messages
(or poortions of messages), and are the "middlemen'" between

a tzrminal user and a COBJOL object program.

\\
Tewimol 1

»}
\ X L\u\\ O
hN

As shown above, the COBOL program sends messages to an
outout queue and receives messages from an input Qqueue.
These constraints are defined in the ANST (COBOL
specification., Also shown is a terminal user who can send
or receive messages to or from an input or output Queue.
ANSI COBOL leaves definition of the terminal user 1interface
to the implementor. Our philosoohy s to provide a
superset of the (C0BOL-M(CS facilities to the terminal wuser.

The COROL programmer has five verbs with which to manipulate
quelyes. These are:

ACCEPT (returns count of messages available)
DISABLE (put queue on HOLD)

ENABLF (take queue off HOLD)

RECEIVE (returns message from queue)

SEND {(put message onto queue)

The same functions are available to the terminal user,

There is also the cupability to invoke a (CBOL program when
a gueuge trcomes non-empty. A utility program is also
provi-ied to create a queue hierarchy using a queuye
descripticn tanquaye,

1.2 GESLIGH_GOALS

A Multics COBOL-MCS design goal has been to make the (O0BOL
user's program interface and the terminal wuser's interface
similar. However ., the terminal user's interface can and
should be much richer functionally. In fact, the (COBOL
program user's interface is a proper subset of the terminal
user's intertacre. By adhering strictly to this design goal.,
the terminal user's interface can be designed, implemented,
and checked out prior to any development effort on the C0BOL
user's side. This provides ease of “design, implementation,
ang maintenince. A

whatever is both transferable and desirable from the GCOS
implementation of COBOL-MCS will be used. This includes
documentations designs, and interpretation. To this end the
tueue DPescription Lanquage and the Wueue Generation Utility.
veveloped by the GCCS implementorss, will be adopted as far
as 1s practical.

Contrary to the implementation 1in GCO0S, the Multics
Cummrunicaution System (Mes) 1s unaffected by the
implementation of (COBOL-MCS.

The ANSI CO30L specifications do not Limit a system to one
gueue hierarchy in the permanent file system. A desirable
desiagn .goal 1s to allow multiple hierarchies to be defined
‘in th» same systemo Therefore, the Queue Generation Utility
masy he used to create a queue hierarchy under any directory.
The standard Multics file access protection mechanisms are
useqd., A user can specify tnhe set of gqueues he wishes to
manipulate.

The concept of one CODBOL-MCS executive controlling all
queues and lLines in the system does not map readily into the
Multics system., A better method appears to be the use of
commands that execute within a normal Multics user process.

1.3 DUSIONZIHUPLEYENTATIQN _SIRATEGY
Queyg_Hierarchy

4 desiygn strategy i1s to permit multiple queue hierarchies
wnile still retaining the structure defined by the GCOS

single queue hierarchy implementation. Placing both the
search segment and the gueues under the same directory makes
cleanup orocedures simple -- 3 single "delete-directory"

comman i eliminates the entire gueue hierarchy. Also free
access on the queues can now be niven to all desired users.

- -

“"Write'" iccess to the search segment (gh_table) is not
required after the Gueue hierarchy has been defined and is
thnerefora removed after its creation:s 1.€40 the search
sequent, "gh _table", is given R permission for its creatory:s
with ACL's otherwise preserved analoqgous to the handling of
object segmnents by Language translatars. The segment
"g_description” must exist in order for the Queue Generation
Utility to run and generate the queue hierarchy. After the
Gueue Generation Utility has run., the queue hierarchy
contains:

>...>messane_queues>gh_table
>...>messane_queues>INP_000C
>...>message_queues>TaAP_0001

/ -

>...>message_gueues>INP_000N
>...>messaqe_queues>0UT_0000

>...>message_queues>0UT_000M

Hote that seqgment "ah_table' is created under the directory
"messaqge_queues' as is a segment for each gueue defined in
"q_description” (see Accept command description in section
7.5.2 for note on naming of physical queues).

Automatic invocation of a program when a queue qoes
non-empty is provided by the following mechanism, An
aptional statement has been defined in the Queue Description
Languase. This is the COMMAND LINE s "ooL.." statement

wnere the couble quotes enclcse any desired tultics command
Line, This ¢ommand Lline is specified in the "g_description”
segrent at the level at which it 1s desired that it be
executed. l.e . if it is defined it a level which has
multiple yueues then any of those queues going non-empty
will cause that command line to be executed. E.qQ. assume
that 4 user wisnes the absin file abc to be executed when
Jqueue xyz goes non-empty. ly placing the statement COMMAND
LINE 1S "ear abc¢" in the Queue Description Language at or
above the level of qgueue xyz the command:
e4r abic —arg xyz

will ne executed when gueue xyz goes non-empty. note that
the " -arq gueue_name 1s appended to the command Line when it
1s executed, This permits passing of the queue name to the
COROL program from the absenters job and enables the invoked
program to determine which queue going non-empty caused it

to be invokod, ANST-C030L prohibits the passing of
argunents via the USING option to a called COBOIL program
with the FOR TINITIALDY THPUT phrase., However by having an

in-line calling sequence generated by the C0OB0L compiler to
request parameters we can overcome this restriction. The
ahsentee job is written to accept optional arguments (by use
ot 81 etc.) whicn are then available to the called program.

Conteonts_of_Queues

The queues are maintained in a first~in/first-out (FIFO)
fashion. There are two chains of messages 1in each queue.
One is for unprocessed messages and the other is for

processed messages. When a messaye Joes from the
unprocessed to the processed chain, . a "date-time-removed"
field is placed with it,. At any time, <commands can be

issued that return histories of the queue and its contents,
A mode can be set on a per queue basis that causes the
processed messaage chain to be removed thus freeing the space
it- previously oOccupieda.

Commands :

Commands are wused to manipulate the queues on behalf of a
terminal user, while subroutine calls to the commands are
used to manipulate the queues on behalf of a COBOL program
user. These commands execute as part of the user's process
in his current ring. The set of functions availahble to the
terminal user is lLimited only by our 1imagination and
resources.

Calling sequences from the COBOL program can be optimized
for efficiency by making use of returned information. For
example, & READ-SYMBOLIC-SEGMENT passes the symbolic queue
name to the <commands which must then resolve it to a
physical queue name, This physical queue name can .be
returned . to the caltler, and subsequent requests for
afdditiornal segments can use the READ-QUEUE command.,

~

2.0 QUEUELS

QUEUL_CONCERTS

Nfueues are tundamental to the operation of the (CO0BOL
communications facility. They provide the mechanism by
which messayes flow between a (OBOL program executing in the
central computer system and a set of communication devices,
From the CQOUd0L viewpoint, a nqueue contains one or more
messanes for or to one or more communication devices. As
such, the queues serve as communications data buffers for
tne COROL program or the terminal user.

The (CCROL program, using COBOL-MCS, is independent of the
remot e devices in the communications network., The C(COBOL
program uses symbolic names with up to four levels of
qualification to refer to message sources and destinations.
These symbolic names, which can be up to 12 alphanumeric
characters long, represent the physical queues. A Queue
Ceneration Utility creates the Queue List Structure which is
used Iin translating the COBOL symbolic 3Jueue names to
physical queue names.

Input queues are defined in COROL=-MCS in & hierarchical tree
structure containing up.to four levels. Output queues are
described 1in only onz level.

A programmer can reference a specific Iinput yueue at the
lowest level in a queue hierarchy using the higher levels of
the kierarchy as qualitiers for that queue name, 3y
referencing a higher level in the hierarchy, the programmer
retererces all queues subordinate to the level referenced.
fFor exaumple, & reference could be made to a queue name at

the 4 Llevetl (the lowest possinle level in a gueue
hierarchy) and qgueue names at levels 01-J7% would serve as
qualifiers. A reference to the 1 leve of a queue

hierarchy references all queues Jefined in the hierarchical
structure,

The Queue Generation Utility i1s an independent program, not
a part of either the COBOL compiler or the Message Control
System, It performs the following functions ftor (COBOL-M(CS:
- ¢rrocesses a language (the gueue description language)
that defines the gueue hierarchy.
- Cenerates a gqueue Llist structure and places it in a
file (gh_table) in the directory hierarchy.

A COoRQL~-l1ke language 1s used to describe the queue
structure for the Queue Generation Utility. This language
permits the aqueues to be defined using COBOL level numbers
(B1-04). The relationship between the gueue tanguage
description of 3 queue structure and the queue structure
itselt are illustrated in Figqure 2-1. Passwords can be

-7 -

specifieon
usea for

at any or-all levels of a4 queue structure and are
the enable/disable tunctions.

QUEUE_STRUCTIURE 1IN _QUECUE DESCRIPIIOU_LANGUAGE

01 INPUT-QUEUE (MASTER-QUEUE) PASSWORD IS "MASTER"
N2 SUB-QUEFUE-1 (SUBQ=-1) PASSWORD IS "sSus1"
03 SUB-QUEUE=2 (SUBQR=1A) PASSWJORD IS "suB1a"
04 SUB-QUEUE-3 (QUETA) PASSWORD IS "QUE1"
D4 SUR-QUEUE-3 (QUF1B) PASSWORD IS "QU1A"
N2 SUB-QUFUE-1 (SUB3-2) PASSWORD IS "suB2"
03 SUB-QUEUE-2 (QUE2A) PASSWORD IS "QUE2"
03 SUB-QUEUE-2 (QUE2B) PASSWORD IS "QUE3"
01 OQUTPUT-QUEUE (0Q3) PASSWORD IS "STA1"
QUEUE HIERARCHY e Le
. MRYTER -Queult O
SLRE -\ NV G Ox
\\\ oL
IVE=A TN UL \

The output structure has only the 01

QUEUE LANGUAGE DESCRIPTION

level.

- QUEUE STRUCTURE RELATIONSHIP'

EIQURE_2=1

The Queue Generation Utility uses this queue description
language as input and generates a guewue List structure that
Anscrihes the gueue hierarchy. One queue list structure is
aenerated for each execution of the utility. This structure
is bhutlt in the specified hierarchy and is placed into
segment "messane_gueues>gh_table'., This structure refers to
the actual nhysical queudes which are al so created as
segments in the same directory as '"qgh_tabte'.

Each queue description is created as a hierarchical Llist
structure which contains all information pert3ining to that
queue . As the queue language syntax 1s processed by the
Queue Generation Utility, an entry in segment gh_table is
tbuilt for each level defined in the hierarchy.

There is also a means for interpreting the hierarchy after
it has been placed on the permanent file system and for
listing 1ts contents. '

In CO30L-8CS operation, a verb in a C0OBOL program references
a source/destination by a symbolic name. Using the
wrogram's €D area as an interface., this symbolic queue
Jefinition is passed to an interpreter where the queue list
structure 1s used tc translate the symbolic name to the
actual physical aueue,

The queues can he initialized for either of two modes of
gueration, An input gueue may be initialized to
automatically cause CouOL-mMCS to 1invoke a COROL object
srojrar uhen the queue becomes non-empty. | A gueue that does
not automatically invoke a program holds the message until
it is requested by a proaram or a terminal.

On output, the COl0L program sends data to one or more
gqueues for delivery to specific destinutions, 1f the
destination device is not available, the messages are held
until the agttachment can be made.

In the CCBCL procedures, symbolic names can be used to
reference various levels of the «queue structure. These
symholic names must be moved into the (D-entry before the CD
is referencen by the the CCHCL-MCS wverbs in the program.
Jhen the COENL proyram “calls' the appropriate subroutine it
includes 4 nointer to the pertinent (D e¢ntry. The queue
List structure is then used to translate the symbolic name
to the actual physical queue name, Thus » by proper
construction of the CD-entry in the COBOL program, a
proyrammer can reference one specitic queue ore by
referencing o level 1n the queue structure with subnrdinate
level s, can reference all of the queues subordinate to the

-1 (J

referenced level.

The symbolic aueue/subqgueue names used in the COBOL program.
nust he the symbolic queue names used in the generation of
the nueue list structure, '

2.3 QUEUE_LESCRIETIION_LANGUAGE
The Gueue Description Languaye is a dialect of COBOL that
allows a wuser to define & hierarchical gqueue structure.
This structure 1s wusced by the COBOL-MCS commands to
translate the symbolic queue/subqueue names used in CO30L to
the physical gueue names, The queue hierarchy descriptions
are a combination of the syntax used to describe the (D-name
anad the level number concept from the COBOL bata Division,

In using the Queue Description Langudage, the programmer must
use the syntax as described in the following pages (see
finure 2=2), Queues are nolled 1in the order that they
appear in the queue structure, When a reference 1s made
using all the levels of qualification, only that queue s
polled, for a reference to a level in the structure with
gqueues defined at subhordinate levels, the queues are polled
in the oraer that they appear in the hierarchical structure.s
t.2. left to right (see figure 2.3).

-11-

01 INPUT-QUEUE

SAMPLL QUEUE/SUBQUEUE STRUCTURE

(MASTER-QUFE) PASSWORD IS "NASTCR"

Jz SUN-QUE UF -1 (suynrae-=1)
U3 SUGB=-0UFUL-2 (QUETA) PASSWORD IS "QUE"
CCMMAND LINE IS "ear subg-1"
4 SUR-QUEUE=-T (SuUBQR=-2)
03 SUB-QUFUE=-2 (GUEZ2) PASSWORD 1S "QuEe2"
03 SUG-QUEUE~2 (QUE3) PASSWORD IS "QUE3"
(R SUL-GUEUL -2 (QUE4) PASSWORD IS “QUES4'
e SUS-QUEUF-1 (sSUBQ-3) -
nz SUU-OUEUE—Z_(QUES) PASSWORD IS "QuUCS5"
N3 SUR-QUENE~-2 (QGUE6) PASSWORD IS "QUE6"
n3 SUR-QUEUE-2 (GUE7) PASSWORD IS "QuEe?7"
(13 SUL=-QUEUE-2 (QUEE) PASSWORD IS "QUCR™
01 QUTFUT-QUFUE (0Q3) PASSWORD IS '"STAT1"™
1 QUTPUT-QUEUE (0Q4) PASSWORD IS '"STAZ2"
99
MNOTE The Qurue Generation Utility expects a level

the end of the
99 terminates

in the gueue structure, The

the structure.

last entry
the scan of

FIGURE_2-2a._%3mele_dueue/Subgugue_Structure

-12-

of 99 at
level of

I)

r

~——

The general format of an dinput AJqueue structure is as

follows:
01 INPUT-QUEUE (QUEUE-NAME) [PASSWORD IS
literal-1]
ne SUB-QUEUE-] (SUB-QUF-NAME)D CLPASSWORD IS
Literal~21]
0z SU3I-QUEUE~-2 (SUB-QUEL-NAME)D [PASSWORD
IS literal-3] ‘
04 SUB-QUEUE~-?3 (SUR=-QUE=-NAME)
[PASSWORD 1S Lliteral=-4]
RULES:

1. . The INPUT-AUEUE clause is required.

2. The minimum queue Structure ‘that can be defined s 3
single Llevel queue. This is done by defining a N1
level and no subordinate levels. 1§ a single. Llevel
queue is specified, then the physical queue may bhe

reterenced by use of the one symbolic name.
3. The queue (GUEUE-NANME) and subqueue (SUD-QUE=NAME)
names can be up to 12 alphanumeric <characters in

”_ length. A name less than 12 characters in length will
be blank-filled on the right.
4. Octional passwords can be specified (PASSAJORD IS) at

any level in the queue hierarchy, These passwords are
optional in the general exchange of messages., however,
a password is regquired for any disabling or enmabling of
a que ue or “terminal, Disabling/enabling may be
performed at the individual symbolic guzue level or, by
referencing higher in the queue hierarchy, at a group
level (all subordinate symbolic aqueues referenced). At
the group level, only one password can ve specified for
the whole group. A password must be specified at the

level that is to he referenced in the program, A
password is . composed of up to 10 alphanumneric
characters, and 1f less than 10 characters, it will be
blank-filled on the right. :

S. When a subqueue is specified as the louwest level in the

hierarchys, all higher levels in the hierarchy must be
“defined. The suhqueue definition at the Llowest level
implies the existence of a physical queue.

b Optional command lines can be specified (CO™MAND LINE
IS ... at any level in the 1input queue hierarchy.
lfowever, once one is specified at a level, it must not
bhe redefined at a lower level (i.e. a level which 1is

encompasserd by the higher lLevel definition). When a
queue which is defined under this optional statement
’ qoes non-empty, the Multics commnand line contained in

-1

the double guotes will hFe executed with an -arg
queue _name appended to it. This gives the user the
capabitity to automatically invoke a COBOL program when
a queue goes non-empty and to pass the pertinent queue
name to the invoked program as an argument,

A level of 99 must be at the end of the last entry in
the gqueue structure, The 99 terminates the scan of the
Hueue Description Language.

- 14~

r

.The output nueue structure has only one level, the 01 level.

Thus no tevels subordinate to the 01 level can be defined
for an output queue. The format of an output queue
structure 1s as follows.

BN OUTPUT-QUENE (WUEUE-NAME) [PASSWORD IS literal-6]

RULES 3

1. The OQUTPUT-QUEUE statement 1s required.

2. The output gqueue name (QUEUE-NAME) can contain up to 12
alphanumeric characters, If the name contains fewer

than 12 characters, it is space-tilled to the right.

5. Mo levels can he specified subordinate to the (1 level
tor output queues.

4, A password must- be specified (PASSWORD IS) for an

output queue 1f the queue is to be referenced via the
EFnable/Disable verbs, '

-15--

2AMRLE _QUEUE_SIRUCTURE

To illustrate the use of the hierarchical queue structure in
referencing one or more queues, consider the structure in
Figure 2-3, Assume in this exanple that the queue Llist
structure is organized to describe this queue hierarchy
reading from left to right.

If a RECEIVE statement specifies MASTER-QUEUE, this entire
queue structure will be traversed to access each queue 1n
the structure until a Qqueue with a message indicator is
found. That detailed reference is returned to- the program
and wused to access the queue containing that message. The
quese list structure is traversed for each reference,
However a second reference to the Ssame qQueue name causes
that gueue name to be accessed directly. When wusing the
RECEIVE_SEGMENT command, if a segment is received in the
first rejquest to a queue and no chanqge is made in the gueue
structure reference (i.e., the (D entry), the remaining
segnents of the message are sent automatically in subsequent
RECEIVE_SEGMENT <calls. The elements of the gqueue hierarchy
are traversed in the order that they appear in the hierarchy
list structure.

Simitarly, a RECEIVE statement specifying SUBQ-3 would cause
queses QUES through QUE® to be polled for messages.

bEl |QuE]l (Que Que| [Gwe] [Gue| |Que
2 3N S 6 “1 R

EIQURE _¢-3._Hierargchigal_Queue_Structure

-16-

’F~ A SEND wverb (output) references a single level queue
structure (the 01 level), thus it can reference one or more
Queues directly.

2.6 QUEUE_GENERATION

To be used by the COBOL-MCS commands., the queue structure
descrihed in the Queue Description Language must be
available in the system.

The Queue Generdtion.utility is a program that operates
indepenrndently of CGBOL. It processes the Gueue Description
Languace (which is in '‘a segment and which defines the queue
hierarchy) ., and creates the search structure in segment
"gh_table”. This is placed in a "directory
("message_queues"™) in the current hierarchy (see writeuo of
the Gueue Generation Utility program).

During the execution of a (0B0L object program, the program
sends a request containing a symbolic queue name to the
CoBdL=-#CS command handlers, A search of the queue structure
15 initiated in a top-down order seeking the detailed queue

r detinition, If a definition i1s tound, it is wused by the
program in accessing the queue. If the symbolic name is not
defined in the queue structure, an error status code 1is
returned to the reguesting program.

Nased on the gueue information supplied 1n the Queue
Cescrintion Lanjuage, the Gueue Generation Utility builds a
seament containing threaded lists in a structure suitable
for traversing the hierarchies. This seament, "gh_table',

13 used to resolve all symbolic representations ot the
actual Guoeues.

2.7 Braint_udierarchy_Cowmand

A cormand 1s availlable to the terminal user to print a
formatted version ot the Jueue structure that exists in
seament "yh_table". It matches exactly the structure
defined by the Gueue Description Language. In fact the only
Jifference between the Queue Description Lanquaye and the
contents of seament "gh_table" 1s that seament "gh_table" is
in a threaded form suitable for fast searching.

-17-

Dultics Programse_Seomentse_dnd_Structures

This section describes the Multics projrams., seyments, and
structures that constitute Multics €COROL-MCS.

Seagment_Yg_description!

This is the input segment to the Queue Generation Utility.
This segmernt contains the desired 1input-output queue
hierarchy 1in a (C0BOL-like free-form structure;, 1i,e. it
utilizes the Level concept present in t he CoB0L data
division. The overall description of the language matches,
almost exactly., that which has been wused in the GCOS
CO3OL-MCS Jueue Jencration system, The reader 1s directed
to the (COS-MCS SITE Manual (DC99) or Design Memo numher 878
(revision 1) entitled '"COUOL 74 Queue Generation System"
written by C.C.Hain dated Ffebruary 5, 1975. Fither gives a
detailed descriotion of the format of the lLanguage. The
exceptions to this language description are:

a. The last line of the segment must contain a level number
ot , 99. The Queue Generation Utility program searches for
this to terminate normally.

b. The option [PROCESSOR IS literal=-51 is not accepted.

c. The phrase [STATION WNAME IS] is not acceptea.

d. The new optional phrase C[COMMAND LINE IS " ... "] is
accepted,

—
g
]
=

1IZ
C
T
lon
lav]
3
T
i}
pY
P
—
O
3

=
it
ft

f—

(B

g

<

USAGE aqqu [-~pn argl —-dr arg?]l

. araql designates the relative or absolute pathname where
segment "qg_description” 1s to bhe found. I1f -pn 1is
~missing the default is the current working directory.
2. ara? specities the relative or absolute pathname where
directory "message_queues" is to be placed. 1f =-dr is
missing the default is the current working directory.

The Queue Generation Utility programs:

a. yuarantees that seqgment "g_description” is present in the
directory hierarchy specified in - the command which
invokes the Queue Generation Utility.

b. truncates all segments under directory ‘'message_qgueues'"

s0 as to preserve any ACL'"s which may already be present.
This al so Leaves all initial ACL's on - directory
"message_nueues’ still applicable.

-13-

C. Creates the dJirectory "message_queues' in the specified
directory, if it does not already exist.

d. creates the segment "gh_table” (if it does not already
gexist) in directory "message_queues”. 1.e.s

>...>message_qqueues>gh_table

e. processes the rest of segment "g_description' building up
seaqment "gh_table" Wwith a Llinked structure based on the
free-form structure given in "g_description'.

f. whenever a lowest level 1s encountered in "g_description'
file, a segment is created (if it does not already exist)
in the directory "message_gueues’” to contain the messages
for that queue.

>iae2message_queues>INP_L... OR
>...>messdage_qgueues>0UT _....

In order to use the queue yeneration utility you must have a
permission level high enough to delete/create
dqirectories/seqments off of the specified directory. You
must also nave read permission on seqgment "g_description’,

The results of & successfully comoleted queue gensration
utility run are...

1. A directory "message_quecues” which is created off of the
specified directory.

2. M segment “"gqh_table" which is created in the
"messaze_queues'" directory. ’

5. Seaments (queues) created for each lowest level in the
"a_description' file. These segments are created in the
directory "message_queues'.

roaran_“compgna”

GELERAL

This program contains the terminal users interfaces to the
CO30L-MCS functions. 1,040 it contains the entry points

that the terminal user calls to accomplish the ANSI tefined
COROL=-¥CS functions of...

1. ACCERT
d. o bIsaviy
3. ENARLE
4, RECEILVE
5. scnn

Thne above are the ANSI defined €C0B80L-MCS functions that are
avallable to 3 conoL proagram, CoBoL-MCS provides the

-1~

capabilities itemized below to the terminal user. Many of
the functions are not applicable to the C030L program but
are desiruble from a terminal user's point of view.

3.3.2 Comrandg_Prycessers

1.

HAME accept

Cxecuting this command yields a printout of the number of
unprocessed and processed messages currently existant in
aqueue arqgl.

USAGE accept aryl

where:
arql mus t he present and 1s a Qqueue name,;, i.e.r, a hame
which has been uniguely generated by the Queue Generation
Utility. HNOTE: The methoc employed to name the queue 1s
as follows. Input gueues are named with 8 characters in
the form INP_XXXX where XXXX is a 4 digit number starting
with 00U00. e.g.., the 3rd input qQqueue would be named
INP_COO0Z. OQutput gueues are similarly named in the form
of OUT_XXXX.

NDAFE symbholic_accept

Executing this command yields a printout of the number of
processed and unprocessed messages for ALL gueues described
t.y the hierarchy given in the argument List. This may
include.one or many actual queues.

USACE symbolic_accept ary2 fargd argéd aryg5s)
where:
araq?2 a4anu the optional arguments describe the symbolic
hierarchy Jdesired starting with the highest level and
skipping no levels. :

HAME info

Fxecuting this command yields a printout of all unprocessed
messages currently residing 1n queue argl,

us

>

Gt into argl

where:
arnl is as described in command 1.

NAWME symbolic_into

Executing this command yields a printout of atl unprocessed
messajes for all queues described by the hierarchy given by
the argument list. This may include one or many actual

-20-

USAGE symbolic_info arg2 [arg3 argé4 arg5]

the arguments are as described in command 2.
NAWME history

Executing this command yields a printout of all processed
messaues residing in gueue argl, This includes the
date/time <created and the date/time processed for each
messaye.,

USAGEL history argl

argl i1s as described in command 1.
AVE receive

Executing this command yields a printout and a release of
the next available message from queue argl. The message now
cecomrs A processed message and its date/time processed
field 1s set., I1f there are no unprocessed messages in queue
argl then 3 message stating this i1s given,

HMOTE 3 If the ucue contains an - unprocessed message but
happens to be locked (see section S) then.,
a. If 1t has heen locked by this user (s ee writeup on
commands ¢ and 10) then this qgueue 1s used.
t. If 1t has been locked by another user then a temporary
lock-loop (see section 5) is entered.

USAGE receive argl

argl 1s as described in command 1.
LAME symbolic_receive

Executing this command vyields a printout and a release of
the next available messane from the given hierarchy
descrived by the argument Llist. The aqueues will be
interrogated in the hierarchical order wuntil either an
unprocessed message is found and released or until all
queues Jefined Ly the hierarchy .0of the argument UUist have
been interrogated. A printout = specifying that no
unprocessed message could be found in a particular queue 1
glven prior to interrogating the next queue in Lline. As in -
the receive command (command 6), the date/time processed 1is
set when a message 1s released.

-2~

NOTE ¢ It a queue is found which contains an unprocessed
ressange tut 1s locked, then the note on command &6 above 1is
applicable.
USAGE synmbolic_receive arg? Larg3 arg4 argsl
where:
the argquments are as described in command 2.
naldk send
Executing this command causes a request for input ‘to appear

on the users console. Multiple

Lines of input (multiple

segments) aroe accepted, Once the entire message has been
typed ins, the data input modc is terminated by typing in a
line where the first character is a "." This line itselft
is not considered part of the message. The data is then
placena ocnto queue arqgl and 1ts date/time created 1s sat,
USAGE send arqgl
where:

argl is as described in command 1.
HAME receive_seament
Executing this command yields a printout and a release
(possihly temporary) of the next available segment from the
next available messaye in gueue aral. A segment is a line
and 3 message may consist of multiple segments. This type
ot receive command releases a maximum of one segment from
the next available message of queue argl. T he queue argl
remains locked upon return to the user if there were any
reraining segments 1in the messaqge., i1.e., Nno other user can
ottain access to gueue argt once this command has been
executed until the entire message 1in queue aral has been
released, The date—-processed field is not set until the
retease of the lLast segment of the messaqe, At this time an
Ena-oft Message inuication i1s also returned to tne user,
HOTE ¢ Some wunusual results can occur when this command is
interleaved with other receive (messange) commands. It is
allowahle to do so and the results are consistent but may
not he what Was desire:, E.Qar assume that a message
consists of S seqments and the first 3 segments have been
returncd, one &t a time, via use of the "receive-segment”
command. The queue 1s locked to all other users at this
tine, Assume that the user now executes A3 “receive'
(message) commanr, We note that the qucue is locked but
since it 1s Llocked by this user we allow the command, Now
the entire messaye (all 5 segments) is released and returned
to the user and the queue is unlocked. i.e. the first 3
segnents have now been released twice.

-22-

13.

11.

12.

The only time that a gueue can remain locked upon exit from
a command 1s when a command of type 9 or 10 has been
executerd and at least one unprocessed segment still remains
in the message. If a user program terminates and any queue
remains locked by that user then that queue is unlocked and
the beginning of the current message ts reset to point to
its first seqgment. fbote also that the only commands which
will allow entry to a locked queue (and this only providing
that this user anitially Llocked the queue) are the four
receive commands.,

USAGE receive_segment arg]l

where:
aral is as described in commani 1.

wAME symbolic_receive_segment
Executing this command is the same as executing command 9

above except that the Jqueue to be used is decided by a
hierarchical search using the argument Llist as the desirec

hierarchy. A search 1s made to find the first non-empty
queue 1n the given hierarchy. This includes already Llocked
gqueuas, If a non-empty gueue is tound and i1t has already

been locked by this user then it is used. If 1t has been
alreaay locked bty someone else then a temporary lock-lLoop is
entered (see section 5).

USAGE symbolic_receive_segment argl L[arg3 args4 argS)

the arquments are as described in command 2.

HAME orint_hierarchy

Executinyg this command yields a printout of the hierarchy
present in seyment "gh_table". This hierarchy has been
created by the Queue Generation Utility program using
segment "g_uescription"” as input. h

USAGE print_hierarchy -pathname- '

where:

pathname s a relative or absolute pathname lLeading to
segment "gh_table'.

HAME

disable_q

This commani puts a physical queue 1n the "HOLD" state. [f
the queue 15 already in the HOLD state t hen a message
statinag this s given and the c¢cmmand is considered

13,

finished. 1f no t then a password 1s regquested and
validatedq, If the password 1s given incorrectly then the
command 1s aborted. If the password is correct[y given then
the queue is-put onto HOLD meaning 1t cannot accept or
release any messages until it is ENABLED via the enable
comman:. ‘

Y

E disable_qg arg?

USA:

[192)
9

where:
argl is as described in command 1.

LAME enable_q
This commana takes a physical queue off of HOLD. - 1f the
aueue 1s already off of HOLD then a message stating this is
aiven and the command is considered complete. If not then a
password is requested and validated. It the password s
given incorrectly then the command is aborted. If the
password given correctly then the gueue is taken off of
HOLD:, i.e. it is ENABLED,

USACE enable_qg arg?

where:
araql is as described in command 1.

3.4 Directory "message_queues'

3.5

When the Queue Generation Utility program runs, it uses
segment "g_dgescription'” as input and creates a3 hierarchy.
It places this hierarchy in a separate directory
(messaqe_queues) created off of the specified hierarchy. It
does this tor ease of management of the queues and the
search seqgment. In order to further protect the hierarchy.,
only READ permission 1is placed on the scarch segment
(gh_tahle) while KEW permissions are placed onto the queue

segments.

Structure Detinitions

The following structures are currently used either in the
creation of seqgment "gh_table™ (the search segment) or in
the creation of the physical message nueue segments. Both
ot these are under the directory "message_queues'. The
structures are 3iven as they currently exist but are very
much subject to clianje.

-2['...

L RTI AT T keI Y PUGISIPUSTOLENRNNEN G em—

- wp——

/ *
detl 1
2
2
l
2
/* En
decl
decl 1
P4
l
2
2
2
] l
)
A
2
r 2
2
2
2
2
?
2
?
2

/* END INCLUDE FIL:I ...

qhe_si12e tixed Din

)

BREGIN INCLUDE FILE ... ghtbl.incl.ol x/

ghtol based (aghp) aliagned,

max_size fix2d bin,

Aaum_entries fixed bin,

filler (14) 21t (26),

entry (1000),

T fillert (32) fixed bin;

tries in qhtbl are 40 octal words long and contiguous

init (32)7

qhe bssed {(chen) unal.,
(1) unal.,
(17) unal.,

(17) unal.,

used bit
tiller?2 bit
tyse fixed bin
(129

name char aligned,

nassword char (10) unal.,
flagzse
3 input bit (1)

3 tiller22 bit

unale
(17) unal,

oreceding_entry fixed bin (17) unal.,

parent fixed bin (17) unal.,

(17)
unale

preceding_stiation fixed bin unal,

next_station fixed Ein (17)

fixacd oin (17) unal.,
(17) unal:

first_station
nax_station fixed bin

fixed pin (17)
fixed bin (17)

unal.,
unal,

prev_entry_at_same_lecvel
next_entry_at_sam2_level

filler3 (5) oit (326),

(2)

e

access_entry char

ghtbloinclapll */

*

/ *
/
/] *
] *

/*

/ *
/%

/] *
] *
/*
IR
I/ *
/*
I/ *
/*
I *
] *

[*
/%
/%
] *

)

. ?0
1 y‘
-

maximum number of entries in g_hierarchy(gh
namber of active 2ntries */

16 word header */

followed by x 32 word entries */

2y b

word 0 %/

level number or 5 = station */

words 1, 2, 3 =/

words 4, S5, &5 =*/

word 7 */

entry number of
entry number of
word 10 «/
entry number of
entry numoer of
word 11 */
entry number of 1st station */

max station entry number ‘to use * /
word 12 */

last entry x/
parent */

previous station */
next station */

entry number of next same level */
words 13, 14, 15, 16 * /

for expansion */

words 2N to 27 octal +/

! * BEGIN INCLUDE FILE ... matbl.incl.nl «/
dcl mgh_header_Lleagth fixed bin init (8);
ccl 1 magh based (m3p) aligned,

nun_entries fixed bin (17) unal,
2 nun_entries_orocessed fixed bin (17) unal,

ing

‘ s'em}‘l\Q TS

2 lock bit (36) alianed, /% when set locks the seament =/
2 first_messag2 fixad bin (17) unal., , /+ rel. otr to first message in segment * /
2 next_message fixed bin (17) unal., /* rel. otr to where next message should go *y
2z flagse
3 active bit (1) unal., /* 1 = active now */
| 3 disabled bit (1) unal, /* 1 = disabled */
L) 3 filler3 bit (16) unal., /* room for expansion */
¢ fillerd fixed oin (17) unal. /* room for more flags =/
N . . .
‘ 2 fillerd2 (4) fixed bin, - [/~ header is 8 words in length =x/

2 entry (1G0D).
3 fillert (1%) fixec bin,

/* entries in queucs are variable in length */

ccl mgen ptr,

decl message_header_length fixed bin init (9);

dcl message_heager_len3ath_char fixed bin init (36);

decl 1 mhe baseo (myep) 3lijgned,

¢ num_chars fixed bin (17) unal.,
2 current_char fixed t£in (17) unal.,

2 date_time_created char (16)., /* date time message placed ontc gueue =*/

2 date_time_renoved char (16), _ /* date time message removed from gueue */

n)

“gata char (32);

/* END INCLUDE FILE ... mqgtbl.incl.pl1 */

) J J

~

4,0

€oroL _Oniect_Proaram_lnterface

4.1 GLNERAL

The (0OPOL Object Program intertaces to the command routines
via calling sequences. In ageneral, the entry point callied
specifies the particular function beiny per formed. In all
probability the COBOL obiject program calling sequences will
be generated i1n0-Lline to a run—-time subroutine (called the
Object Program Intertace - OP1).

Each of the five COBOL-MCS verbs C(ACCFEPT, DISABLE, ENABLE.,
RECFIVE, SEND)D refer to either an input "or an output
Communications Descriptor (chy. The ACCEPT and RECFIVE
verbs always refer to an Input CD while the SEND verb always
reters to on output €D, The DISABLF and FNAGQLE verbs refer
ta either an input or an output (D dependent upon whether
the INPUT or QUTPUT phrase is specitied.,

The COroL proagram itself uses the structures described 1in

section 4.3 for the input and output Ch's. The following
information is hased on the premise that there will exist a
COBOL Object Program Interface run-time routine. This 0PI

run-time routine will communicate between the commands and
the CORGL program itself, The COBOL compiler will translate
the comreunication verbs into calling sequences to ~the 0PI
run-time routine whicn in turn will call the command. Note
that this is not necessarily the way in which it will be
implemented bLut is merely a template on which to base
examples, The in-line calling sequences will contain
pointers to the pertinent 1nput or output CD structures,
ine CPI run-time routine will use calling sequences to the
comrands whicn contain enough infaormation for the command to
perfora its function. The original CD structure contains
only symholic intormation, scne of which 1s resolved down to
actual queuzs by the command, but some of which must be
resolvea to pointer addresses prior to the transfer of
control to the command. .This resoluticn of symbolic names
to pointers can be done eilther by the in-line code or by

some run-time subroutine (0PI). The interpretation of
returned error-codes and the decision as to what to do when
they occur is probably best handled in a run-time
subroutine. This decision (all in-line code or a run-time

subroutine) may be left up to the COROL ccmpiler people.

A CCI0L program refers to a gueue hierarchy scmeplace in the
permanent file system, Multiple qucue hierarchies are
allowed so a method is regquired to determine which hierarchy
the program 1s to manipulate, ANSIT specifications deny us
the option ¢f deftining new syntax in the conoL language
(such as a "SET HIERARCHY'™ statement) so another method must
be used, This i1s not bad as we would like to be able to
execcute a COBOL program and have it manipulate different

- 7P -

hierarchies 1in different executions without requiring a

re-comnitation, One possibility s to have the COBOL
callinn sequences to C(0BOL-MCS pass the current working
directory. A search is then ma e for .directory

"message_gueues which may exist oftf of the current working
directory or may be linked to from within the current
working directory. At any particular execution of a COBOL
rrogram the Job Control Lanqguage can set the working
directory as desired.

The following <calling seguence and structures are given as
an example of what 1s needed by the commands. This is given
as an example only and may not bear any resemblance to what
is ultimately implemented by the compiler people.

AriEs RECEILIVE

12z

The RECEIVE entry point returns one message or portion of a
message to the caller.,

U3 4GE

cecltire RECEIVE entry (pointer,pointer,fixed bin(35));
call RECEIVF((D_ptr,0PI_ptr,code).
where:
1. CD_ptr Vs a pqinter to the input_CD structure
2. OPl_ptr is a pointer to the OPI_input_CO structure

3. code is for the returned error code
o3 SIRUCIURES

NCL 01 Input_CD based unaligned,
02 sgq char(12),
02 ssql char(12).,
(12 ssq? char(12),
02 ssa? char(12),
2 message_date pic "999999",
U2 message_time pic "99999G GG,
02 symbolic_source char(12),
02 text_length pic "9999%",
02 end_key char (1),
02 status_key char(2),
02 message_count pic "9999%999";

- K-

DCL (01 Output _CD hased unaligned,
02 destination_count pic "72969",
02 text_Llength pic "9999",
02 status_key char(2).,
(2 destination_table (1),
03 error_key char(1),
03 symbolic_destination char(12):’

PCL 01T OPI_input_CD oased aligned,
02 g_ptr ptr.,
02 date_ptr ptr,
02 time_ptr ptr,
02 sourca_ptr ptr.,
02 length_ptr ptr.
N2 end_key_ptr ptr,
2 status_key_ptr ptr,
02 count_ptr ptr;

DCL 01 OP1_output_CD based aligned,
02 dest_count_ptr ptr.,
02 lenath_ptr ptr.
07 status_key_ptr ptro.,
02 dest_table_ptr ptr:

