MULTICS TECHNICAL BULLETIN MTB_288 page 1

To: Distribution
From: J. Falksen / Dave Ward
Date: July 9, 1976

Subject: LRK, a Translator Construction System

This MTB describes the LRK system. LRK translates a BNF-like 1language
description into a parser for the language. The output from LRK is a se of
tables that control the operation of a parser procedure. Because these tables
are lists of signed integers they can be easily transported to computers other
than Multics. The parser procedure is a simple routine and versions of it have
been coded in PL/I, EOBOL and Assembly language. LRK has options which allow
the control tables to be generated as a Multics object segment, an ALM source
segment or a GMAP source segment.

The parser created by LRK (the tables along with the parser procedure) 1is a
"bottom-up" SLR(k) al%orithm that examines the input symbols in a left to right
manner, looks no more than k symbols ahead does no backtracking and halts
immediately if an input symbol is not accepéable. The size of the control table
and the code for the parser procedure is competetive with hand-coded methods.
LRK is an expedient means to provide parsers for computer languages.

The attribute of immediate error detection is accompanied by facilities for

error recovery. Because error recovery is lagguage related, no particular
sch?me is imposed. The tabular form of parser provides for a variety of error
analyses.

LRK requires that the user provide a description (a grammar) of the language for
which a farser is desired. This also serves as a document to describe the
syntax (allowable symbol arrangements) to people who will use the language. LRK
assures the correspondence between what a language is published to be and the
parser that "says" what the language "is".

Because of LRK's speed of operation, fre%uent adjustment can be made to the
language description until the user is satisified. Immediate test parses can_be
performed to observe the operation of the parser. LRK assures that a compiler
or translator will be constructed in a modular fashion (unless the user goes out
of his way to do otherwise). First the parser can be developed and checked,
next the scanner and finally the semantic routines. Each can be tested before
being incorporated in the translator.

For comparison purposes, a version of calc was developed using LRK. The
compilation and generation listings are included at the end of this MTB. This
version was run against the installed one for a few cases. The execution time
of the LRK version was from 98% to 144% of that of the installed calec. The
bound object size of the LRK version was 64% of that of the installed one. It
took 7 1/2 hours to complete.

The following non-trivial example of the use of LRK is available for inspection
on System M:

>udd>m>odf>schemadmids_tis_parse .list
>udd>m>odf>schema>mids_tis parse_g.list

This parses the subset of I-D-S/II Schema Definition Language supported by
Multics Integrated Data Store.

Multics Project internal working documentation. Not to be reproduced or
distributed outside the Multics Project.

MULTICS TECHNICAL BULLETIN MTB_288 page 2

Glossary

rule - a description of a valid combination of symbols in a language. There
may be alternatives.

production - a single valid combination of symbols. Equivalent to a rule if
there are no alternatives. If a rule has n alternatives, it then
represents n productions.

terminal - a symbol of a language.

variable - a non-terminal of a language.

complicated terminal - a pseudo-symbol of a language. It 1is treated 1like a
terminal in a grammar, but it lexically is one of a set a set of symbols;
e.g., <integer>.

DPDA - Deterministic Push-Down Automata

ECI - end of information. This is the final terminal of an input.

P

MULTICS TECHNICAL BULLETIN MTB_288 page 3

Qverview

This document contains information describing Multics commands comprising the
LRK system. You do not have to master all of this information to attempt a use
of LRK. Various parts are of interest only after you have tried LRK and are
selecting among different approaches in using LRK to aid in the implementation
of a translator.

The following are typical steps taken to examine the use of lrk:

1. Prepare a sample grammar, the input to 1lrk. (See Source format, page 4, and
Grammar format, page 5, and, e.g., ted text editor).

2. Execute 1lrk. (See 1lrk, page 8).

3. Rggiir)the grammar if it is not acceptable (scratch head). (e.g., ted text
editor).

4. Test the parser by executing lrkp, after the grammar is accepted by 1rk.
lrk_parse, page 9%.

5. If the facilities of lrk parse are sufficient, you then supply your semantics
for that environment. If desired, write a scanner following the lrk_parse
interface requirements.

6. Otherwise, you supply your semantics and scanner to match whatever interface
requirements you decide on. You then generate your parser procedure with the
macro (See Parser macro, page 3)

Consideration will be needed to accommodate error reporting and recovery. (See
Error Recovery, page 6) Recovery can not be guaranteed to work under all
circumstances or for all languages. You can anticipate a need for trade-offs
and compromises.

If you require unreserved keywords, realization of the 1limitations of the
ggovision from them by LRK must be understood. (See Unreserved Keywords, page

Both error recovery and unreserved keywords are an extension to the context free
parsing that .1rk is limited to. Use of these facilities "breaks the rules".

MULTICS TECHNICAL BULLETIN MTB 288 page 4

Processor functions

An LRK language processor is made up of three parts:
scanner parser semantics

The SCANNER recognizes symbols in the input. It must know what the encoding of
eag? symbol is to be, but it does not need to know the format of the parse
tables.

The PARSER recognizes rules, i.e., valid combinations of symbols as defined by
the grammar. It needs to know the format of the parse tables and the encoding

of symbols, but it does not need to know anything about the form of these
symbols.

The SEMANTICS represent the action to be taken when a rule has been recognized.
It needs to know nothing about the format of the parse tables. It probably
needs to know nothing about what makes up symbols.

Division of labor

The job to be done, processing a source ingut of a language, can be broken uE in
several different ways. The user makes his own decision as to which he likes

Certain types of recognition processes can be described in the grammar (parsed)
or done by the scanner. A user could write a grammar like this:

<letter> ::= a | b | bz Al ..otz
<dig1t> t:= 0 1] 1 t ‘i \ !
<symbol> ::= <letter> | <symbol> <letter> | <symbol> <digit> !

Then his scanner would be very simple, and would encode values for the letters
and digits. This would, however, be very slow because of many rules being
processed for each symbol.

Or the user could drop the first two rules and have the scanner smart enough to
recognize <letter> and <digit>. This would parse more quickly.

Or the user could drop all three rules and have the scanner implement this
directly and return an encoding for <symbol>. This is usually the best way to
do it. It shortens the grammar, making it more readable. It speeds up the
parse by having many less rules to works its way thru.

If a scanner recognizes a symbol <integer>, for example, there is still the

choice of whether the scanner or semantics actually converts the integer string
to binary.

Source Format

The source segment can be in one of two forms:
grammar only
2) control lines followed by grammar
If the first character of the segment is a "-" then it contains control lines.
If not, then the grammar begins with the first character.

When control lines are present, they are selected from this set:
-hash N 1 space separates the keyword from the N.
-alm

-gma

“RIOP

-thl

-count

-mark X 1 space separates the keyword from the X.
-sem X 1 space separates the keyword from the X.

”\

MULTICS TECHNICAL BULLETIN MTB_288 page 5

-table X 1 space separates the keyword from the X.

-order t ¢t ... This specifies the order which should be used when assigning
encodings to terminals. The first terminal will receive 1,
the second 2, ete. A minumum of 1 space separates the
keyword from the first terminal. Thereafter, each terminal
is separated by white space. This control lasts up until
the next line which begins with a "-",.

-recover t t ... This specifies terminals for skip-recovery. See Error
Recovery. The format is like -order.
-parse This specifies that everything following the keyword in the

segment is the grammar. This must occur last in the control
portion of the segment.

The source segment is really a PL/I procedure. LRK will create a compileable
se%ment from it by these steps.
Put /* and ¥/ around the control portion, if present.
2) Put /* and */ around each LRK rule.

3) Replace each %%%% in the semantics with a 4-digit number of the rule which
this represents.

Grammar Format

A grammar consists of rules written in a BNF-like notation. Each rule can have
associated semantics. The semantics represent coding which is to be executed
when the rule described has been recognized. The rules have this basic form:

{var> ::= <prod> ! <semantics>
<var> represents a "variable" (non-terminal). It must be the

first non-white-space on a line. It begins with a "<" and
ends with a ">".

= represents "is defined as". It must be on the same line as

the <var>.

<prod> represents a production list. A production is a sequence of
terminals and variables. If there is a list of them, they
are separated by "{". The production list may be empty.

! represents "end of production". Everything following it 1is
semantics. This must always be present.

<semantics> represents the coding which is to be executed if the rule is
arsed; it may be null. This cannot contain the string

s 1
.« o= .

Observe some LRK detail:

1. Rule ordering is unimportant, except that the rule that defines the
"start symbol" must be p?ysically first.

2. Orderln% of productions (rule parts) is unimportant.

3. Each rule must be terminated by an exclaimation mark, "!". It is after
this mark that semantic code is placed. ,

Y LRK reserves the use of the symbols, "<, ":s:=n = nin """ o and "I".
Spaces are ngt required except between adjacent terminal symbols,
i.e., "<0>::=+-!" is acceptable.

5. To specify symbols involving these reserved characters and '"space"
characters the following escape character convention is implemented.
The right apostrophe, " ", signals an escaped character. I may be
followed b three octal di

gits, whose 9-bit value specifies the
Multics ASCII character desired, or if not followed (immediately) by
three octal digits, whatever chargcter does follow is the character

being escaped, i.e., " " and " 040" both indicate one blank
character. This escage convention causes the , restriction of the use of
the right apostrophe character, 1i.e., is required (or 047) to
specify the " " character itself.

6. Variables are '"normalized" in the following manner: Any spaces

immediately after the "<" bracket and immediately preceding the ">"

MULTICS TECHNICAL BULLETIN MTB_288 page 6

bracket are deleted. Any internal strings of spaces are each replaced
by a sinﬁle space. This removes space sensitivity from variable
names. space" in this context refers to SP, HT, NL, FF, or VT.

The parsing of the LRK input treats all occurances of <...> as a variable as far
as normalization is concerned. However, this is not what determines its being a
variable; this 1is done only by appearing at the beginning of a rule. ny
others may be considered as "complicated terminals". This means that you intend
to have your scanner smart enough to know what <{integer> is, for example.

Unreserved keywords

LRK parsing can handle unreserved keywords in a context-free setting. In

general, 1f each statement has an initial keyword to insure proper recognition

gf stagements, then <identifiers> can include symbols which are identical to
eywords.

A read state contains a list of terminal encodings in increasing order which are
valid in the input at this point. When kegwords are to be unreserved, you must
specify one terminal as an alternative to the keywords. This is done with the
-mark option. Then all keywords which are to have this as their alternative
must be given encodings which are higher than the alternative.

Suppose you said:
-order + - <integer> = <symbol> let if
-mark <symbol>

Then ¥0u could recognize the statement:
et let = let + 1

The lookup procedure in a read table when there are unreserved keywords is this:
While doing a linear search of the read table, note whether a negative
terminal exists. If there is one, compare its absolute value against
the current terminal. Also remember what this one is. If the search
fails, but a negative (marked) terminal was found, use it.

Error recovery

Error recovery is, in general, a very specific thing which is hi%hly dependant
on your language. It 1s not usually an easy thing to take care of.

One simple case is in an interactive interpretor. It can just discard the rest
of the line and start in fresh on the next line. It is usually not that easy.

Two approaches have been developed along with the LRK compiler; local recovery
and skip recovery.

Local recovery
Local recovery uses the current (unacceptable) input symbol and the next input

symbol to simulate parses from this point up until the next state which reads a
symbecl. It then decides which action to take, if any.

Given:
B is the current (bad) symbol
N is the next symbol
C is the current state
R is the "next" read state
These are the conditions which can exist:
C(N) R(BN) kind of error
0 10 symbol leading to R is missing
0 01 B is a wrong symbol (alternate is chosen)
1 10 B and N are reversed in input
1 0 x B is an extra symbol in input
0 00 recovery fails

MULTICS TECHNICAL BULLETIN MTB_288 page 7

The recovery trys to find a useable combination. If one exists, it is
remembered but the search does not stop. If a second one is found then the
search will stop and the error message can include the fact that the recovery
done was not unique. The first one found is the one used. It then adjusts the
look-ahead stack b{ either dropping a symbol, interchanging two symbols or
generating a symbol.

Skip recovery

Skig recovery requires that the user define one or more recovery terminal
symbols by means of the

-recover <nil> sti1 st2

control included in the 1lrk source. st1 st2 etc. are skig terminals. They are
terminals which can end statements. They cause a table to be built for skip
recovery. This table is a list of all states which can read a skip terminal.

Skip recovery is done when an error has occurred and local recoverz (if used)
was not successful. Basically what it does is to skip forward in the source by
calling the scanner until it encounters one of the skip terminals. It then
looks Dbackward in the parse stack to trz to find a state which could read the
founddterminal. If one is found, it adjusts the 1lexical stack top and then
procedes.

Before proceding it Euts the encoding for <nil> in the look-ahead stack. If the
state does not contain a use of the <nil> symbol, then it is discarded and the
next symbol is used.

The <nil> symbol is one which the scanner must NEVER return. It is needed

because some languages do not allow all statements to occur at every point.

This means that when Kou back ug to the last statement beginning point, you may
a

not be allowed to have the statement you find next. As an example, take this
grammar:
<g> ::= <i> i <g> <i> !
<1> ::=<a> | !
<a> 1:= a ; <{rd> !
<rd> 2= pr ; | <pd> pr ; !
 t= b ; <{sd> !
<sd> ::z= 5 3 | <sd> s ; ! .
Then sup%ose that you intended to have an input like line (1) below, but instead
you got (2):
(1; a;r;r;bj;s:ss;ssa;;ri;r;:r:;:
(2 a;r;r;b;s3;s:s a::r;r;r;

When the "s" "a" ";" jis encountered, local recovery will decide that "a" is
extraneous and drop it. But this then means that it will miss the fact that it
should be entering the <a> rule. It will then get to_the "r" and local recovery
will fail, necessitating another skip. In this example, skipping will occur,
one statement at a time, until EOI is reached.

If the grammar had specified

. -recover <nil> ;
then skip recovery would skip to the next ";" and pick up where it was. But the
only thing it finds in the stack is a state which can read either an "a", "b",
or "s". So it will have to skip again. This means that no syntax _checking is
done in all of the "r" s which arée skipped. This is not highly desireable.

However, if you add a rule like this:
 ::= <nil> <Krd> !

then the generated <nil> from skip recovery will allow the <rd> to be correctly
parsed, reducing the number of useless error messages by quite a bit, usually.

These <nil> rules can help arse thru misplaced statements during error
recovery, but will never accept these statements under normal circumstances.

MULTICS TECHNICAL BULLETIN MTB_288

page 8

The semantics on these <nil> rules must then report an error.

Name: ‘1rk

The

text of the LRK source into a set of tables.
produced. '

lrk command invokes the LRK compiler to translate a segment containing the

Packaged

A listing segment is

optionally
of the tables may be requested.

forms These results are

placed in the user s working directory.

Usage:

1)

2)

3)

segment_name

list_arg

-source =-sc
-symbols -sb
~list -ls

-count -ct

-term

-Ss
-ssl
ctl arg

-sem X

-mark X
-hash N
-table X

~-tl
~thl

~-alm

-gmap

lrk segment_name -list_arg- -ctl_arg-

is the pathname of the LRK source segment containing the

grammar to be processed. _The entry portion of this pathname
can contain an optional .lrk suffix.

may be one or more of the following optional arguments. If
the source segment 1is named X.lrk, then the list segment
will be named Xg.list. This is done so that if the “user
choses to have his semantics file named X.pli1, the
gen?igt%on listing and compilation listing will not be 1in
conflict.

produces a line-numbered 1listing of the rules of the
grammar. No semantics are listed, only the rules.
variables used 1in

Epoduces a listing of the terminals and
he grammar.

Eroduces a "machine" listing of the DPDA resulting from the
RK execution.

produces a list of statistics about the tables.
go to wuser output if no other option
provides a list segment.

produces a listin of the
showing the encoding.

This will
is present which

terminals 1in encoding order,

produces source and symbols.
produces source, symbols, and list.
may be one or more of the following optional arguments.

produces a semantics file named X. X must have a .plt
suffix.

mark terminal X (see Unreserved keywords)
set the hash value of the variable and terminal tables to N.

produces a table named X (with all suffixes removed) and an
include file named X (with the supplied suffix). At present
the only suffix suEgorted is .incl.pl}. Unless_ this
argument 1s supplied, e arguments below (-tl, etc.) are
meaningless. The default 1is to produce the table as a
Multics object segment.

include the terminals list in the table.

%ng%ude the terminals 1ist and terminals hash 1list in the
able.

produce the table as an alm segment X.alm. X 1is the
supplied in the -table parameter less all suffixes.

name

produce the table as a gmap segment X.gmap.

MULTICS TECHNICAL BULLETIN MTB_288 page 9

Options -alm and -gmap may occur together.

Names: lrk parse, 1lrkp

The 1lrk parse command provides a means for testing an lrk produced parser table.
This program is an adequate parser in many applications.

Usage: lrk parse grammar_ name -source-~ -ctl _args-
1) grammar_name is the pathname of the grammar. It must be without the .1lrk

suffix. The directory referenced must be the one containing
the tables generated from 1lrk.

2) source is the pathname of a source segment to be parsed. If not
supglied, lines will be read from user_input. This is true
of the default scanner (see below). If a user scanner is
supplied, then it must provide for reading user_input if no
source is specified, or it must report an error.

3) ctl_arg may be one or more of the following optional arguments. (E
represents an entryname; it is found according to the search
rules.) :

-sem E is the entryname of a semantics procedure which corresponds
to the grammar. The default semantics do nothing.

-scan E is the entryname of a scanner procedure which corresponds to
the grammar. The default scanner is explained below.

~-trace causes a trace of the parsing and error recovery action to
be printed.

-print causes each line from source to be printed (with linenumber)

before starting to scan it. This is true of the default
scanner. If a user scanner is sugglied, then it determines
whether or not printing is available.

Scanner/Semantics

lrk_parse supplies a scanner grocedure and a semantics procedure. The user can
supply his own. This is how these procedures are used. User routines must have
these interfaces.

1) The semantics routine 1is called each time action is required. The
supplied semantics routine does nothing.
Usage:

del E entry(fixed bin(24),fixed bin(24),ptr,fixed bin(24));
call E (rulen,altn,addr(lex_stack),ls_topg;

rulen is the number of the rule completed
altn is which rule alternative was used

ls top is the location in the lexical stack corresponding to the rightmost rule
alternative symbol.

The values in lex_stack should not be modified.
2) The scanner contains an initialization entrzhpoint. It is called once, to

begin the parse. It allows the scanner to get e input information and to do
any initialization necessary.

MULTICS TECHNICAL BULLETIN MTB_288 page 10

Usage:

del E$init entrg(ptr,fixed bin(24),bit(1));
call E$init(input,leng,prsw);

input is a pointer to the source segment if leng is non-zero. Otherwise, it
points to an empty temporary segment. If the user choses to read from
user_input when source is not supplied, he should append each 1line read
to this segment (values in the lex_stack may reference more than the
current line).

prsw is "i"b if the -print option was specified, otherwise it is "O"b.

leng is the length in bytes of the source segment OR is zero if source was not

specified.

3) The scanner also contains a get-next-symbol entry. It is called each time
another symbol is needed. It must return an encoding of zero when
end-of-information (EQI) is reached.

Usage:

del ES$E entry(ptr gixed bin(24));
call E$E stkp,puti H

stkp is a pointer to the 1lexical stack. The stack declaration is in
1rk stk.incl.plf. It specifies that the stack is based on a variable
named "stkp".

putl is the location in the stack to put the symbol information.

The scanner must set these fields:
stk.symftr putl foints to the beginning of the found symbol.
stk.symlen(putl -length in bytes of found symbol (may be zero).
stk.line Eputl linenumber where symbol begins.

stk.symbol(putl encoding for the found symbol.
These fields may be set:

stk.ptr1§putl pointer to user data

stk.ptr2(putl pointer to user data

The default scanner algorithm is this:

1. During initialization, the terminals are separated into 2 lists.
One 1list contains all the terminals that consist only of alphanumeric
charagters. The other contains all the rest, sorted by decreasing
length.

However, the special terminals "<string>", "<integer>", and "<symbol>"
are looked for. These are built in "complicated terminals".

2. At get-next-symbol time, if an alphanumeric string exists, then it
is taken as a single token. This token is compared against the list of
alphanumeric terminals in the grammar. If one 1s found, that encocding
value 1is returned. The fact that the whole alphanumeric string is
compared against the terminal list means, for example, that a 1label
"delnam" will not be mistakenly taken as the terminal "decl".

If no terminal in the list matches, then if the token is all numeric
characters and the terminal "<integer>" exists in the grammar, this
encoding is returned.

Otherwise, if the terminal "<symbol>" exists in the grammar, this
encoding is returned.

If an alphanumeric string is not present in the input, then if the first
character is a " and the terminal "<string>" is present in the grammar,
a PL/I style string is scanned off and the proper encoding is returned.
Otherwise, the second list of terminals is searched, takin% the len%th
of each terminal to determine the amount of input to look at. If a
match is found, then the encoding for it 1is returned. Remember that
this 1list 1is ordered by decreasing length. This method of comparison
means, for example, that if both ">=" and ">" are terminals, the first
will always be found if it exists in the input.

\

MULTICS TECHNICAL BULLETIN MTB_288 page 11

If neither if the lists contained a match at this point in the input,
then the scanner moves ahead one character and tries again. If the
character skipped is <= \QU4O, it is dropped without comment.

stk.symptr(putl) is alwazs set to point to the first character of the
symbol which satisfied he scan. If "<symbol>", "<integer>" or
"{string>" 1is processed then stk.symlen(putl) is set to the 1eng£h of

the input string which was used; otherwise stk.symlen(putl) is set to
zero.

EOI is returned when the end of an input segment is reached, or when a
line is read from user_input consisting of "EOI" only.

Parser macro

The lrk system has available a macro which can generate a skeleton parser. Once
this parser is obtained, then it may be tailored to the individual application.
The ailoring actually begins during the generation, at which time many options
are ?gailable to dictate what will be obtained. This "macro" is processed by
runoff.

Figure 1. shows what a parse procedure generally looks 1like. However, it
fleshes out quite a bit when you add things like look-ahead processing, error
recovery of one or two kinds, and error reporting. The macro helps n this
grocess. To generate a parser, you must create a segment X.runoff. It has this
orm:

.if 1lrk skel

[.sr XXXTYYY]

.if 1rk_skel

The first call to 1lrk skel sets the default values in some variables. Then you

initialize
do while ("EOI);
if READ state then do;
enter state number into parse stack
if look-ahead stack empt
then call scanner; /* puts to look-ahead stack ¥/
look in read-table for 1st look-ahead symbol
if not found then ERROR
set next state from read-table
if look-ahead transition
then delete 1 state from parse stack
else move symbol from look-ahead stack
to lex stack
end;
else if LOOK_state then do; /¥ look ahead n %/
do until n symbols in look-ahead stack;
call scanner; /* put to look-ahead stack */
end;
look in look-table for n’th look-ahead symbol
if not found then ERROR
set next state from look-table
end;
else if APPLY_state then do;
call semantics
delete necessary symbols from lex stack
delete necessary states from parse stack
look in ap€l¥—tab1e for tog stacked state
set next state from apply-table
end;
end;

Figure 1. Generalized parse procedure.

MULTICS TECHNICAL BULLETIN MTB_288 page 12

adjust any of these values you wish. The second call to 1lrk_skel generates the
gagse{, l?irected by values in the variables. The result is a segment named
.inecl.pll.

If the segment 1is named X.runoff then the output segment will be named

X.incl.pl and the parse procedure therein will be named X. Following are the

gagia?les Yhich control the generation; they show the variable name and the
efault value.

.sr parameters o
The value of this variable 1is any parameters wanted on the parse procedure.
Example: "sptr,slen"

.8r db_sw "db_sw"
This controls the inclusion of the trace coding and names the switch to control
it. The declaration precedes the proc statement. If the value is "" then no

trace coding is included.

.sr lex_stack incl ""
.sr ls attr "based"
These sgecify things about the lexical stack include file.
lex_stack_1incl is the name of the include file to be generated, without the
".inel.plt". It also 1is the level 1 name of the structure generated. If the
value is "" then no include file is generated.
1s_attr is the attributes wanted on the structure in the include file.

.sr lex_stack "lex_stack"
.8r ls_dim 50
.sr 1ls toE 1s_top
.sr 1s_delf "
.sr ls decl? mu
.8r ls decl e
.sr ls_decl e
.sr ls_dcl5 "
.sr ls _delb n
.8r ls_dcl e
.sr 1ls_decl e
.sr 1s dcl9 o
These specify things about the lexical stack.
lex_stack is the name of the lexical stack.
1s_dim is the size of the lexical stack.
ls _top is the name of the variable which tells where the top element currently
is. The four fields required to be set by the scanner used by 1lrk parse are
always in the stack declaration.
1s_dcl1 thru 1ls_del9 are a way of specifying additional entries needed in the
stack. Do not include the level number or comma in the specification. Examples:
"yvalue fixed bin(24)"
"(ptri,ptr2) ptr"

!

Remember that in quoted strings runoff requires:
" be entered as ¥"
* be entered as ¥¥

.sr la _dim y
This is the size (dimension) of the look-ahead stack (FIFO). The lexical stack
is declared as

lex_stack(-la_dim:1ls_dim)
The look-ahead stack 1s the negative elements of the lexical stack; therefore
they have identical structure.

.sr ps_dim 100
This is the size of the parse stack.

.sr reserved_kw $false®
This controls the symbol lookup as to whether gou have reserved or unreserved
keywords. Can be set to %true%. Generally, the coding for unreserved keywords
is more time-consuming than that for reserved keywords. Reserved keyword codin
will not work when a symbol has been marked -mark option) for unreserve
purposes.

MULTICS TECHNICAL BULLETIN MTB_288 : page 13

.Sr scanner "scanner"
.8r sc_args n
.8r sc_incl e
These specify things about the scanner procedure.
scanner is the name of the scanner to be called.
sc_args is the arguments to be passed to it. . .
sc_incl is the name of an include file which contains the scanner. If this is
specified, then an %include statement will be generated inside the parser. Then
the 1lexical stack will be available without any include file or parameter
passing necessary.

.sr semantics "semantics"
.8r sem_args "rulen,altn"
.sr sem_incl me
These specify things about the semantics procedure. .
semantics is the name of the semantics procedure to be called when an apply is
done.
sem_args is the arguments to be passed to it. The default is to pass the rule
number and alternative number of the apply being done. .
sem_incl is the name of an include file which contains the semantics
procedure. If this is specified, then an %include statement will be generated
inside the parser.
.sr skip_recover ttrue% .
This determines whether or not the skip recovery mechanism is included in the
parser.
skip recover may be set %false% if not needed.

.Sr max_recover 0 .
This 1is the upper 1limit on the number of local recoveries which can occur in a
row. If zero, then no local recovery cocding will be generated.

After this macro source is Erepared it is processed by executing
runoff X -sm; dl X.runout

Thistwéll cause X.incl.pl1 and optionally xx.incl.pll (stack declaration) to be
created.

Sample usage of LRK

This example demonstrates the implementation of an online interpreter of logical
expressions.

With ghe text editor (e.g., ted) create a segment log.lrk as in Figure 2. Then
execute

.1rk log =-source -symbols ~terms \
to check it out. This is a useable grammar. Note on the 2nd line that a "," is
wanted in the language and so must be entered as "'| On the 6th line,
however, the "i" is the LRK "or" operator.

At this Eoint you could try out the language to see if it indeed describes what
you think it should. If you execute
1rk_parse log -trace

it will tXpe LRKP(2.0) and then wait for you to type a statement. If you reply
something like:

<log> 1= <or> !

<or> i1z <or> | <and> !;
<or> := <and> !

<and> t:= <and> & <not> !
<and> t:= <not> !

<not> HEES <bit> | <bit> !
<bit> = X g

<bit> t:= (<or>) !

Figure 2. Basic log.lrk (grammar only)

MULTICS TECHNICAL BULLETIN MTB_288 page 14

“T(X1X} (X&X&X)) &X
you will see a trace of the parsing action. It will stop when it reaches the
end of the line. You then reply

EOI
to signal end-of-input and the trace will complete.

The trace will be made up of things like
56 APLY (-3 1) pd=1 1d=0(19)

¥ 37 READ
The first number on the line is the state number; if preceded by a "*¥" it means
it was stacked (parse stack). The number pair following APLY is the
rule/alternative being applied. If the rule is negative, then no semantics
exist for it. '"pd=1" means 1 element is deleted from the parse stack. "1d=0"

mens 0 elements are deleted from the lexical stack. The list of numbers inside
tha second "()" s tell the states which are deleted from the parse stack.

The "{" following the READ is the symbol read. If it is followed by a quoted
string, this 1is the string in the source which is scanned as the named symbol.

You decide you need your own parser; the skeleton of one can be generated with
the macro. You decide that you need an entry in the lex stack to hold the bit
value of the result. You then create a macro input segment as in Figure 3, and
then execute

rf log parse_ -sm; dl log parse_.runout
to get log parse_.inecl.pli, your parse procedure.

You then build the rést of your semantics procedure around the grammar that you

.17 Irk skel
.sr 1s dell "val bit(1)"
.if 1lrk skel

Figure 3. Macro input, log parse_.runoff

MULTICS TECHNICAL BULLETIN MTB_288 page 15

know 1s acceptable to LRK. This gives a source which looks like Figure 4. Now
you run LRK again with

. 1lrk log =-source
This gives a listing file because of the -source option in the command call, and
a semantics include file because of the -sem option in the source.

In the semantics include file, you will notice that the %%%% s have been
replaced with 4-digit numbers, and since this is an incl.pl1 file all rules have
been converted to PL/I comments. This is done in such a way that the semantics

~sem log.Incl.plT
-parse
semantices: proc (rulen,alt);

del rule fixed bin, /¥ rule being applied */
alt fixed bin; /¥ alternate being applied */

goto rule(rulen);

<log> sz <or> !
rule(%%%%): R
call ioa_("result is ~1b",lex_stack.val(ls top));
return; ,
<or> 1= <or> | <and> !;
rule($%%%):

]
lex_stack.val(ls_top-2) = lex_stack.val(ls_top=-2)
i lex_stack.val(ls_top);

return;
<or> 1= <and> !
<and> ::= <and> & <not> !;
rule($%%%):

lex_stack.val(ls_top-2) = lex_stack.val(ls_top-2)

& lex_stack.val(ls_top);
return;

<and> <not> !
<not> e <bit> | <bit> !
rule(%%%%):

if (alt = 1) then R
lex_stack.val(ls_top~1) = ~ lex stack.val(ls_top)};

1nh

return;

<bit> HEERD G

<bit> si= (<or>) !

rule(%%%%):
lex_stack.val(ls_top-2) = lex_stack.val{(ls_top-1);
return;

end;

Figure 4. Completed log.lrk

MULTICS TECHNICAL

file line numbers
generated include

The listing file,
line numbers

BULLETIN MTB_288

file.

are, however, correct.

and source file line numbers are identical.

Figure 6, does not show all of the

Figure 5,

source;

only the
You will notice that

/* -sem log.incl.pll
-parse */

semantics: proc (rulen,alt);
dcl rule fixed bin,
alt fixed binj;

goto rule(rulen);

call ioa_("result is “1b",lex_stack.val(ls_top));

/% <log> 1= <or> ! ¥/
rule(0001):

return; i
/* <or> 1= <or> |

rule(0002):
lex_stack.val(ls_top-2)

return;
/* <or> 12z <and> ! ¥/
/% <and> := <and> & <not>

rule(000U):
lex_stack.val(ls_top-2)

/* rule being applied */
/¥ alternate being applied

<and> ! */;

1 ¥/,

lex_stack.val(ls_top-2)
lex_stack.val(ls_top);

lex_stack.val(ls_top-2)

& lex_stack.val(ls_top);
return;
/* <and> := <not> ! ¥/
/% <not> ::= T <bit> | <bit> ! ¥/
rule(0006):
if (alt = 1) then .
lex _stack.val(ls_top-1) = ° lex_stack.val(ls_top);
return;
/¥ <bitd> =X 1 %/
/* <bit> ::= (<or>) ! ¥/
rule(0008):
lex_stack.val(ls_top-2) = lex_stack.val(ls_top-1);
return;
end;
Figure 5. log.incl.plf
GENERATION LISTING OF SEGMENT log
Processed by: LRK 2.1 of 18 June 1976
Processed on: 06/18/76 1720.8 mst Fri
Options: -source
10 <log> = <or> !
14 <or> = <or> | <and> !;
20 <or> = <and> !
21 <and> ::= <and> & <not> !;
27 <and> = <not> !
28 <not> ti= T <bit> | <bit> !
34 <bit> =X I3
35 <bit> = (<or>) !

Figure b. logg.list

some of the rules

MULTICS TECHNICAL BULLETIN MTB_ 288 page 17

are double spaced and some are single spaced. There is a convention which
allows you to control this. The character following the semantic separator,
"i", is included in the listing. If this character is a NL, as in 1line 10_ or
27, then an empty line will follow it. If this character is a ";", as in line
14 or 34, then there is no empty line following.

Notice that the alternative on line 28 uses the "|" form. This means that the
alternative number must be used to determine what portion of the semantics to
do;

The alternative on lines 21 and 27 use the multiple definition form. Since each
of the definitions is a separate rule, then the alternative number need not be
checked (it is always 1).

Bibliography

This 1is a listing of many items havin% to to with language processing. LRK is
based on much of this material. Of particular significance s that of Knuth
{331, followed by DeRemer [13][14].

1. Aho, A. V. Denning, P. J. and Ullman J. D. "Weak and mixed strategy
precedence parsing." J. ACM 19, 2 (1§72), 225=-243 .

2. —--- Johnson, S. C. and Ullman, J. D. "Deterministic Parsing of Ambiguous
Grammars." Comm. ACM 18, 8(1975), 441-452 .

. === Johnson, S. C. and Ullman, J. D. "Deterministic parsing of ambiguous
grammars." Conference Record of ACM Symposium of Principles of Programming
Languages (Oct. 1973), 1-21.

. Johnson, S. C. "LR Parsing." Computing Surveys 6, 2(June 1974),

Y, -~-"an
99-124.

5. -=-- and Peterson, T. G. "A minimum distance error—correctin% parser for
context-free lanﬁuages." SIAM J. Computing 1, 4 (1972) 305-312

6. --- and Ullman, J. D, "A technique for speeding up LR(k) parsers." SIAM J.
Computinﬁ 2, 2 (1973), 106-127

7. --- and Ullman, J. D. "Optimization of LR(k) parsers." J. Computer and

g System Sciences 6, 6 (1992), 573-602.

--- and Ullman, J. D. The theory of Parsin% Translation and Compiling.
Prentice~Hall, Englewood Cliffs, N. J., 19 p

9. Altman, V. E. A Language Implementation System. MS Thesis, Mass. Inst.
Technoiogy 1973.

10. Anderson, t. Syntactic analysis of LR(k) 1la §ua§ s. PhD Thesis, Univ.
Newcastle-upon-Tyne, Northumberland, England ? 97 ?.

11. 5_Z1g¥§5 Jizagg orning, J. J. "Efficient LR(1) parsers." Acta Informatica

, -

12. Conway, M. E. "Design of a gseparable transition-diagram compiler." Comm.
ACM 6, 7(Julg 1963), 396-408

13. DeRemer, F. L. "Practical translators for LR(k) languages." PhD Thesis,

Oct. 1969, Project MAC Report MAC TR-65, MIT, Cambridge, Mass 1969.

14, —=="nSimple LRfkg grammarg." Comm. ACM 14, 7’(1971§, %53—%60,’

15. Demers, A. "Elimination of single productions and merging nonterminal
symbols of LR(1) grammars." Technical Report TR-127, Computer Science
Bag.,18$gt. of Electrical Engineering, Princeton Univ., Princeton, N. J.,

uly .

16. Demers, A. J. "Skeletal LR parsing." IEEE Conf. Record of 15th Annual
Symposium of Switchin% and Automata Theory, 1974.

17. 55—182n efficient context-free parsing algorithm." Comm. ACM 13, 2 (1970),

18. Earley, J. Ambiguity and precedence in syntax description. Tech Rep. 13,
Dept. Computer Science, Univ. of California, Berkeley.

19. El Djabri, N. Extending the LR Barsing technique to some non-LR grammars.
TR 21, Computer Science Lab., Dept. Electr. Eng., Princeton Univ.,
Princeton, N. J., 1973

MULTICS TECHNICAL BULLETIN MTB_288 page 18

20.
21.
22.
23.

24.
25.

26.

27.
28.

29.

30.
31.
32.
33.

37.

38.
39.

40.
b1,
h2.

43.

Ly,
45,

46.

47.
ug.
49.

. Korenja

F?ggg?n % 1?3 and Gries, D. "Translator writing systems." Comm. ACM 11, 2

Fischer, M. J. "Some properties of recedence languages." Proc. ACM

Symposium on Theory of Computing, May 1969, pp. 181-19

gigggj 31% 3"Syntact1c analysis and operator precedence." J. ACM 10, 3
’

Friedman, E. P. "The inclusion problem for simple machines." Proc. Eighth
%ggu?%7Princeton Conference on Information Sciences and Systems, 1974, pp.
Ginsburg, S. and Spanier, E. H. "Control sets on grammars." Mathematical
Systems Theory 2, 2(1968), 159-178.
Graham, S. L. and Rhodes, ’S.”P. "Practical syntactic error recovery in
compilers."” Conference Record of ACM Symposium on Principles of
Programming Lan%uages (Oet. 1973), 52-58.
?5%?3, D. Compiler Construction for Digital Computers. Wiley, New York,
Hopcroft, J. E. and Ullman, J. D. Formal Languages and their Relation tc
Automata. Addison-Wesley, ﬁeadinﬁ Mass.,
Ichbiah, J. D. and Morse, S. P. i technique for generating almost optimal
E%oygogvans productions for precedence grammars." Comm. ACM 13, 8 (1970),
James, L. R. "A syntax directed error recovery method." Technical Report
?S$g—13, Computer Systems Research Group, Univ. Toronto, Toronto, Canada,
Jolliat’ M. L. "On the reduced matrix representation of LR(k) parser
tables." PhD Thesis, Univ. Toronto, Toronto, Canada (1973).
;g;u"Pract§$al minimization of LR(k) parser "tables." Proc. IFIP Congress
p
Kernlgg . and Cher "A system for typesetting mathematics."
Comm. ACM 18 3(March 197% 151 2156
Knuth, D. E. ""On the translation of 1lan uages from left to right."
Information and Control 8, 6 (1965), 607- (Note' this paper contains
the original definition of LR ﬁrammars and langua%es
- "TOE down syntax analysis." Acta Informatica 2(1971), 97-110.
ractical method of constructlng LRk processors."
ComaYacm 13,711 (18685" "633-85%"
--- and Hopcroft J. E. "Simple deterministic languages." IEEE onf.
Rgcggd of Tth Annual Symposium on Switching and Automata Theory, 196
Lalonde, W. R. Lee, E. S. and Horning J. "An LALR(k) parser
ﬁenerator." Proc. 1IFIP Congress T71. TA- é North Hollad Publishing Co.
msterdam, the Netherlands (1971), pp. 153-157.
Leinius, B. "Error detection and recovery for syntax directed compiler
systems." PhD Thesis, Univ. Wisconsin, Madison, Wisec. (1970)

Lewis, P. M. and Rosenkrantz, D. J. "An Algoi compiler designed using

automata theory." Proc. Symp031um on Computers and Automata, Polytechnic

Institute of Brooklyn, N. 1971, Ep 75-88.

--- Rosenkrantz, D. J. and Stearns, . E. "Attributed translations." Proc.

Fifth Annual ACM Symposium on theory of Computing (1973) Pa§es 160~ 171

- tearns, R. E. "Syntax directed ransduction.” ACM 15, 3
(1968) 46“ 488.

Manna, Z., Ness, S. and Vuillemin, J. "Inductive methods for proving

Broperties of programs." Proc. ACM Conf. on Proving Assertions About
rograms, 1972 pp 27-50.

McGruther, T. Egroach to automatin% syntax error detection, recoverz
and correction for er s Thesis, Naval Postgraduate

%rammars " Mas

School, Montery, Calif.

McKeeman W. M. Horning J. J. and Wortman, D. B. A Compiler Generator.

Prentlce—Hall Englewood Cliffs, N. J., 70.

Mickunas, M. D. and Schneider, V. B. "A parser generating system for
8nsgructing compressed compilers." Comm. ACM 16, 11(November 1973),

Pager, D. "A fast left-to-right parser for context-free grammars."
Technical Report PE-24 , Information Sciences Program, Univ. Hawaii,
Honolulu, Hawaii 1972

? an open problem by Knuth." Information and
Control 17 1970? U62 473

——— "On eliminatin unit productions from LR(k) parsers." Technical
Report. (See 26). 1974.

--- "On the incremental approach to left-to-right parsing.'" Technical

Report PE 238, Information Sciences Program, Univ. Hawaii, Honolulu,

MULTICS TECHNICAL BULLETIN MTB 288 page 19

50.

51.
52.
53.
54,

Hawaii, 1972a.

Peterson, T. G. "Syntax error detection, correction and recovery in
?Sggers." PhD Thesis, Stevens Institute of Technology, Hoboken, N. J

A

Rosenkrantz, D. J. and Stearns "Progerties of deterministic
top-down grammars." Inf. Control 1& 5(1969)

Stearns, R. E. "Deterministic top-down parsing " Proc. Fifth Annual
Prlnceton Conf. on Information Science and Systems, 1971, pp. 182-188
Walters, D. A. "Deterministic context-sensitive languages." Inf. Contr.

8(1970) 14 61.

Wood . "The theory of left factored languages." Computer J. 12, U4(1969)
5892456 and 13, 5015700, S5 65"

GENERATION LISTING OF SEGMENT calc

Processed by:
Processed on:

Options:
32 <calc> =
36 <line...> ::=
37 <line...> ::=
8 <line> HEE
5 <line> s:=
50 <line> HHE
56 <nl> R
57 <exp> =
62 <exp> =
67 {exp> =
68 <term> ti=
7 <term> S
7 <term> =
gg <pwr> =
4 <pwr> =
85 {factor> ::=
86 {factor> ::=
91 {factor> =
96 {factor> =
101 <ref> =
102 <ref> tez
107 <ref> te=
112 <ref> =
117 <ref> te=
122 <ref> =
127 <ref> =
132 {ref> =
137 <ref> =
RERRRERERERREER RN NESE
28 Rules

30 Productions %
13 Variables *
30 Terminals *
States *

»

L

2§ DPDA words
HERERESRERLREER X ER NN

W ok W kK N W

LRK 2.0e of 11 June 1976
06/724/76 1125.3 mst Thu
-ssl -term -ct

<line...> q <nl> | q <nl> !

<line> !;
<line...> <lined> !
list <nl> !;

<{symbol> = <exp> <nl> !;
<exp> <nl> !

012 !
<exp> + <term>

<exp> - <term>
{term> !

<term> ¥ <{pwr> !;
<term> / <pwr> !;
<pwr> !

<pwr> ¥*¥¥ <factor> !;
{factor> !

{ref> !;
+ <ref>
- <ref> !;
(<exp>)

{real> !;
<{symbol> !;

sin (<exp> s
cos é <exp> !'
tan <exp>

atan (<ex§> i,
abs <ex§

in <exp

log (<exp>) ‘

882 GIW NIIITING TYIINHOIL OJILINW

0c 9%ed

) D

TERMINALS USED

———————————— SYMBOL-===———e—e - CODE ~———wrmeee-REFERENCES—~~=ceeeee
012 5 ref 56
(7 ref 96 107 112 117 122 127 132 137
) 13 ref 96 107 112 117 122 127 132 137
119 ref 68
»E 12 ref 79
+ 8 ref 57 86
- 9 ref 62 91
/ 10 ref 73
<real> 2 ref 101
<symbol> 1 ref 45 102
= 6 ref 45
abs 14 ref 127
atan 15 ref 122
cos 16 ref 112
list 3 ref 38
1n 1% ref 132
log 1 ref 137
q 4 ref 32 32
sin 19 ref 107
tan 20 ref 117
VARIABLES USED
{calec> -1 def 32 2 ref
<exp> -5 def 57 2 67 ref 45 50 57 62 96 107 112
117 122 127 132 13
{factor> -8 def 85 86 g1 9 ref 79 84
<line...> -2 def 36 7 ref 32 3
<line> —3 def 38 5 50 ref % T
<nl> - def 56 ref 32 2 8 5 50
<pwr> -7 def 79 84 ref 8 73 78 79
<ref> -9 dgg 18} 102 107 112 117 122 127 132 137 vref 85
<term> -6 def 68 73 78 ref 57 62 67 68 73
TERMINAL ENCODING
1 <{symbol>
2 <{real>
R list
5 q012
6 =
g (
+
g _
10 /
11 *
12 *%
13)

882 GIW NIIIT10E TYOINHOHL JILTINW

12 ©3ed

MULTIC TECHNICAL BULLETIN MTB_288 page 22

{

DPDA LISTING

1] 000000 000014
000001-> 000016
000002-> 000025
000003-> 000031
000004-> 00003
000007-> 0000
000008-> 000047
000002—> 00005
000014-> 00005
000015-> 000060
000016-> 000062
000017-> 000064
000018-> 000066
000019-> 000068
000020-> 000070

i6] 000000 000008
000005->~-000263

000006-> 0001
000008->-0002
000009->-0002
000010->-0002
000011->-0002
000012->-0002
000013->-0002

25 000004 0000
000000 0000
-000020 ~ 0000
000000-> 0001
000047-> 0001
000057-> 000149

31] 000000 000001
000005-> 000123

33] 000002 000031

34] 000000 000012
000001-> 000139
000002-> 000025
000007-> OOOORN
000008-> 000047
000009-> 00005
000014-> 0000
000015-> 000060
000016-> 000062
000017-> 000064
000018-> 000066

READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ

LOOK

READ
LOOK
LOOK
LOCOK
LOCK
LOOK
LOOK

APPLY
pd 1d

"<{symool>"
"<real>"
"list"
Nt

nin

"+"

n_n

" ab s "
"atan"
"COS "
llln"

" n
Il:ls.g%"

" tan"

"

n_n
nyn
n_n
n/w
nENn
nExn

u)n

rule/alt

READ

1"

SHARE

READ
READ
READ
READ
READ
READ
READ
READ
READ
READ

"<{symbol>"
"<reald>"
n(u

"+"

n_n

" abs"
"ata_n"
"COS"

Illn"

"log"

47]

571
58]

601
621]
64]
66]
68]
701

72]

741 000

000000
000007->

000000
000007->

000000
000007->

000000
000007->

000000
000007->

000068
000070

000009
000139
000025
000058
000060
000062
000064
000066
000068
000070

000047

000001
000152

000001
000153

000001
000154

000001
000155

000001

000066

READ "sin"
READ "tan"

READ "<symbol>"
READ "<reald>"
READ "abs"

READ "atan"
READ "cos"

READ "1n"

READ "log"

READ "sin"

READ "tan"

SHARE
READ "("
READ "("
READ "("
READ "("
READ " ("
READ " ("
READ "("

READ "EOI"

READ "<symbol>"
READ "<real>"
READ "list"™
READ 1t~ 1t
READ nn

READ "+"

READ "_"
READ "abs"
READ "atan"
READ "cos"
READ "1ln"
READ "log"

882 @IA NIIITING TYOINHOHIL OILTINW

¢ aded

"

000019
000020
89 000005
000000
-000002

g2] 000000
000005

000008
000009
96] 000000
000005

000008
000009
000010
000011
000013
103] 000000
000005

000008
000009
000010
000011
000012
00001

000000
000170

122] 000002

123 000004
000000
-000007
000000

0000
OOOO%%

-> 00012
-> 0001

6
6
0
6
->-00026
6
6
6

-> 000068
-> 000070

000074
000000
000001

-> 0001
0000
->-0002

->-0002
-> 0001
-> 0001
->-00026
00000
->-00027

->-00027
~->=00027
~>-00027
->-000279
~> 000170
->-000279

000005

000000

000001
=> 000103

3
6
6
6
6
8
9
b
7
9
9
9
9

-> 000220

-> 000228

000004
000000
000001
-> 000111
-> 000236

000034

000007
000000
000001
-> 000131
-> 000126
-> 000165

READ "sin"
READ "tan"
APPLY 1

pd 1d
rule/alt

READ "

READ "+"
READ "-"

LOCK "

LOQOK "4
LOQK "-"
READ "/
READ n¥En
LOOK u)n

LOOK "

LOOK "4"
LOOK "-m
LOOK "/"
LOOK nin
READ "¥#%n
LOOK u)n
APPLY

pd 1d

rule/alt

APPLY
pd 1d
rule/alt

pd 1d
rule/alt

— Mmoo

000159->
000171->

131 000004
000001
000004

000000->
000074->

136 000005
000001
000001

139 000006
000000
000021

142] 000000

000008->
000009->
OOOO12->

146 00000
000001
000017

149 000006
000001
000018

152] 000002
1531 000002

1541 000002
1551 000002
1561 000002
1571 000002
158] 000002
1593 000002
160 000005

885903

1631 000002
1647 000002

000203
000239
000004
000001
000001
000089
000160

000072
000001
000002
000025

000000
000001

000034
000034

000034
000034
000034
000034
000034
000031
000074
g0

000034
000034

APPLY
pd 1d
rule/alt

APPLY 1
pd 1d
rule/alt
APPLY SHR
pd 1d

rule/alt

READ "4"
READ n_n
READ n)n
APPLY SHR
pd 1d
rule/alt
APPLY SHR
pd 1d
rule/alt

SHARE
SHARE

SHARE
SHARE
SHARE
SHARE
SHARE
SHARE
et
rule/alt

SHARE
SHARE

882 dIW NIILIATING TYOINHOAL JDILTIOW

2 °Fed

LB e I s !

165

168]
169]
170]
171]
172

175]

179]

183]

1871

191]

1951]

199]

203

000006
000001
000006
000002
000002
000002
000002
000006
000002
000019
000000
000008->
000009->
000013->

000000

000000

000008->
000009->
000013->

000000

000005

000131
000001
000001

000034
000034
000034
000092

000117
000002
000001

000003
00016
00016
000242

000003
00016
00016
000245

000003
00016
00016
000248

000003
00016
00016
000251

000003
00016
00016
000254

0000
0001 3
00016
000257

00000
00016
00016
000260

000072

APPLY SHR
pd 1d
rule/alt

SHARE
SHARE
SHARE
SHARE

APPLY SHR
pd 1d
rule/alt

READ "+"
READ "-"
READ n)n

READ "+"
READ "-"
READ ") n

READ "+"
READ "-"
READ ") "

READ "+"
READ "-"
READ n)n

READ "+"
READ "=
READ u)"

READ "4"
READ "-"
READ n)n

READ ||+"
READ "-"
READ ")

APPLY 1

n

"

206]

2131

220]

228]

236

239

242

000002 000002
000001 000001
000000 000006

000005->-000285

000008->-000285
000009->—000283
000010-> 00016
000011-> 000169
000013->-000285

000000 000006
000005->-000288

000008->-000288
000009->-000288
000010-> 00016
000011-> 0001
000013->-0002

000000 0000
000005->-0002

000008->-0002
000009->-0002
000010->-0002
000011->-0002
000012-> 00017
000013->-000291

000000 ~ 000007
000005->-000294

000008->-000294
000009->-000294
000010->-000294
000011->-000294
000012-> 000130
000013->-000294

WOV 0O oo

8
3
7
1
1
1
1
1
0

000006 000111
000002 000002
000014 000001
000006 000131
000003 000003
000005 000001
000006 000025

00000 000003
00002 000001

pd 1d

rule/alt

LOOK

LOOK
LOOK
READ
READ
LOCK

LOCK

LOOK
LOCK
READ
READ
LOOK

LOOK

LOOK
LOOK
LOOK
LOOK
READ
LOCK

LOCK

LOOK
LOOK
LOOK
LOOK
READ
LOOK

nyn
"mn
n/n
nkn

n)n

nyn
n_n

LAl
nEn
n)n

"

nn
"_n

n/u
nkn
HEEN

n)n

nyn
u_mn

n/u
nkn
UR X 2l

n)n

APPLY SHR

d 1d

gule/alt
APPLY SHR

pd 1d

rule/alt
APPLY SHR

pd 1d

rule/alt

g8¢ dIW NILATING TYOINHOEL OILIAW

Ge 93ed

245 000006
000003
000025

248 000006
000003
000023

251 000006
000003
000027

254 000006
00000
00002

257 000006
000003
000022

260 000006
00000
00002

263 000006
000001
000021

266 000004

00016
285 000006
000003
000008

VVVVVVVVVYV

000025
000003
000001
000025
000003
000001
000025
000003
000001
000025
000003
000001
000025
000003
000001
000025
000003
000001
000025
000000
000001
000012

000096
000206
00021
00026
000002
000001

APPLY SHR -

pd 1d
rule/alt
APPLY SHR
pd 1d
rule/alt
APPLY SHR
pd 1d
rule/alt
APPLY SHR
pd 1d
rule/alt
APPLY SHR
pd 1d
rule/alt
APPLY SHR
pd 1d
rule/alt
APPLY SHR
pd 1d
rule/alt
APPLY

pd 1d
rule/alt

APPLY
pd 1d
rule/alt

APPLY SHR
pd 1d
rule/alt

288 000006
000003
000009

291 000006
000003
000012

294 000006
000003
000011

000266
000002
000001
000279
000002
000001
000279
000002
000001

APPLY SHR
pd 1d
rule/alt

APPLY SHR

pd 1d
rule/alt
APPLY SHR
pd 1d
rule/alt

8¢ 9IW NIIJTING TYDINHOAL OILTOW

gz o3ed

RS T NN NN T Y

N = OW CO~IONJ £E=AD N = OO O~ O LU N

NN s S e

2

P = VS VS UN VSIS VIIUN]
U1 2100 R =0 N = OO 00~ W &)

)

COMPILATION LISTING OF SEGMENT lcalc

Compiled by: Multics PL/I Compller

Compiled on: 06/24/76 1242.8 mst Thu
Options: map table

Release 20e, of May 22, 1976

lcale: proc;
A version of calc using LRK */
del sym_(200),
2 name char(8)
2 val float bin(27);
del 1 sym based like sym_;
del arenct fixed bln(zh);
del ifile char(200
del ifc(200) char(T)unai defined (ifile);
decl ifln fixed bin(24);
del ifi fixed bin(24);
del ifl fixed bin(2U4);
del ife fixed bin(24);
del sym num fixed bin(24);
del TLanl fixed bin(24) int static init(9);
del TLan(9) fixed bin(24) int static init(3,4,14,15,16,17,18,19,20);
del TLstl fixed bin(24) int static init 95,
del TLst(9) fixed bin(24) int statiec init(13,12,11,10,9,8,7,5,6);
sSym_num = 2;
sym_.name(15 = "pi";
sym_.val(1) = 3.14159265;
sym_.name(2) = "e";
sym_.val(2) = 2. 7182818
ifln = 0;
retry:
parenct = 0;
ifi =
ife = 260;
ifl =
call caic ' D3
return;
error:
call ioa_(""a",msg);
goto retry;
del nsg char(100)var;
del ioa_ entry options(variable);
del 1 calc_t_$TL ext static,
2 TLsize fixed bin,
2 TL(20),
3 (pt,1in) fixed bin(17)unal;

g8c gIW NILATING TYOINHOHL JDILINKW

L2 93ed

PIMO NN PN NI PN NN NP N NN NN NN NN NN R NN PN NN NN NN

B ol RN SR W U W Y

OV =W N = O 0O~ W 0N = OO o1 OWT 20 D N VT W0 N — OWw o O

POMNOMNIMOIMNDMNODMNOMNIN - e s s

3
!

= oo w
— O\ o\

del 1 cale_t_$TC ext static,
2 TCsize fixed bin,
2 TC char(50);
del 1 calc_t_$DPDA ext static,
2 DPDAsize fixed bin,
2 DPDA(296§,
3 (v1,v2 fixed bin(17)unal;
del DPDAp ptr;
/% BEGIN INCLUDE FILE cale_p.inel.pll 06/24/76 J Falksen ¥/

calc_p: proc ();
/* Parser for tables created by LRK. ¥/

current_state = 1;
1s tog fs to 6;
la pu a_ge 13

/* The parsing loop. ¥/
NEXT:

if (current_state = 0)

then do;
done_parse:

return;

end;

current table = current_state;

goto CASE (DPDA.v1 (current_ table))

CASE (3): /* Shared look */
urrent table = DPDA.v2 (current table);
CASE (1): /% Look. #%

la use = mod (la_get+la need-1, -lbound (1lstk,

if (la_need = -1bound Elstk 1)
then signal condition (lastk ovflo);
del lastk ovflo condition;

1a need = la_need + 13
gofo read_look;

CASE (10): /* Shared read #/
current_table = DPDA.v2 (current_table);

CASE (9): /* Read. %/
la need = 1;
la_use = la_get;
goto read_look;

/% .

*

1))+1;

/%

/¥

.Y
. ¥/

. ¥/

. ¥/

882 €ILW NILATING TYOINHOHL OILTIAW

Qe o3ed

HSHSHVHSHSHVLVHNESLNY SIS SLSLOE S HSHVHSLVHSHSHVHNHVHSHVOSHNHSHVHVHSHVH VOIS VNN TIVE VDLV ESLSTSENTNTINT Y\

))

42 CASE (2): /* Stack and Shared read */ VA B)
ﬁ current_table = DPDA.v2 (current_table);
45 CASE (0): /* Stack and Read. %/ VA
) la need = 1;
ug la_use = la_get;
4 if (ps_top_ = hbound (parse_stack, 1))
49 then sIgnal condition (pstk_ovflo);
50 decl pstk_ovflo condition; .
51 ps_top = ps_top+1; /% Top of parsing stack. ¥/
52 parse_stack 2ps_topg = current_state; /¥ Stack the current state. %/
53 cur_lex_top (ps_top) = 1s_top; /* save current lex top (for recovery) ¥/
54 read_look: .
do while (la_ct < la_need); /* make sure enough symbols are available */

call scanner ()
la_put = mod (la_put, -lbound (lstk, 1))+1;
la_ct = la_ct + T1;
end;
tesﬁ_symbol = 1lstk.symbol (-~la_use);
1b = current_table+1;
ub = current table+DPDA.v2 (current_table);
do while (1b <= ub);
m = divide (ub+lb, 2, 24, 0);
if (DPDA.v1 (m) ='test_symbol)
then do;
next_state = DPDA.v2 (m);
goto got_symbol;

end;
if {DPDA.v1 (m) < test_symbol)
then 1lb = m+1;
else ub = m-1;
end;

if (test_symbol "= 5)
then parenct = 0;
msg = errmsg(sign(parenct));
oto error;
del errmsg(-1:1) char(16)int static init(
"too many)",
"missing oPerator",
"too few)");

got_symbol:
current_state = next_state;

if (current_state < 0) then do; /* Transition is a look-ahead state. ¥/
g current_state = -current_state;

end;

elseé do;

if (1s_top = hbound (1stk, 1))

then signal condition (1stk_ovflo);
del 1stk ovflo condition;

ls_top = 13 _top + 13

\O£\0\0 Q000 0O QOO OO 00 0O~~~] ~J ~I~J~J~J~] OYONOYO\ONOYONONONOMT U AT LI
- N

O

g8¢ 9IW NILIATING TYOINHOIL JDILTNW

62 o3ed

MNPINIPPIMNMN N MNMNIN NI NN PN N MNDMNIN NN NN NI N NN NN NN A TN NN NN NN PPN N NN

NN Dt 23t b O O C OO O OO O OO0
U1 =100 N = OO0 0o~ OV =10 N = OO Co~J O DN = OO 00— OV

RN QU N WSSO (AT \RIIR AR N (ORI (IR U I N WU NP W U QT (U \IEE NN NELE DRY NI |

-t
PN
(@2}

P A N N N T o (VRSN WL WL NP NIV NPRIE N (DI W
= s e e SO I Lol LD N
N O LEWN = OW I OWTEWIN O

“~

del

del
del
del
del
del
del

1stk (1s_top) = lstk (-la_get);
la_get = mod (la_get, -lbound (lstk, 1)) + 1
la_ct = la_ct - 1;

end;
goto NEXT;
: /% Apply state. */ /® *y
: /* Apply single ¥/ /% ®/
: /% Apply Shared %/ /* ®/
la need = 1;
rulen = DPDA.v1 (current_table+2);
altn = DPDA.v2 (current_table+2);
if (rulen > 0) then do;
call semantics (rulen, altn);
end; v
Es_ﬁop = ps_top - DPDA.v1 Ecurrent_table+1;; /* Delete parse stack states. */
s_tog = 1s top - DPDA.v2 (current_table+1); /* delete lex stack states #*/
if (DPDA.v1 (current_state) = 5)
then do;
current_state = DPDA.v2 (current_table);
goto NEXT;
end;
if {DPDA.v1 (current_state) = 6)
then do;

current_table = DPDA.v2 (current_table);

end;

do i = current_table+4 to current_table+DPDA.v2 (current_table);
if (DPDA.v1 (i) = parse_stack (ps_top))

then do;
current_state = DPDA.v2 (i);
goto NEXT;
end;
end;
current_state = DPDA.v2 {(current_table+3);
goto NEXT;

1 1lstk (-4:50)

/% -4:-1 is the look-ahead stack (FIFQ) ¥/
/% 1:50 is the lexical stack (LIFO) ¥/

, 2 symftr ptr /¥ Eointer to symbol (must be_valid) ¥/
, 2 symlen fixed bin (2U4) /* length of symbol (may be Q) */

, 2 line fixed bin (24) /% line where symbol begins */

, 2 symbol fixed bin (24) /* encoding of symbol ¥/

, 2 value float bin (27)

, 2 def ptr

1s_top fixed bin (24); /* location of top of lexjcal stack ¥/

cur_lex_to 100; fixed bin é%ﬁ;; /* current lex top stack (with parse_stack) ¥/

parse_stac 100
altn fTixed bin (24);

: /* parse stack ¥/

fixed bin
. /¥ APPLY alternative number %/

current_state fixed bin (24); /¥ number of current state */
test_symbol fixed bin (24); /* encoding of current symbol */

D

992 LA NILATING TYOINHOAL JDILINW

0f a9ed

ONONONONOINT NN UM ITUR DN B 4=

P N i N I S U W Ul I G P QU ST
N = OO Oo~J O I N OO0 0O~ OV LI N () N == OO CO-I OV LI N OO OO

LA LU L LA L) L LA LA L LA Lad LD L) LI LA LD L) LA LA LA LA UAILA LAY LA LA LA L) PO A RO RO AN PO R RO P N N N O N N

del
del
del
decl
del
del
del
del
del
del
del
del
del
del

)

current_table fixed bin (24); /* number of current table */

i fixed bin (24) /% tem

la_ct fixed bln 3 /* number of terminals in look-ahead stack */

la_get fixed bin (2 z /* location in look_ahead stack to get next symbol ¥/
la_need fixed bin (2 5, /* number of look-ahead symbols nee %/

la_put fixed bin 24;, /* location in look_ahead stack to put next s¥mbol */
la_use fixed bin (22 /* location in look-ahead stack to test with
next_state fixed bin {24); /% number of next state ¥/

nil_sym fixed bin (24); .

ps_top fixed bin (24); /* location of top of parse stack */

recov_msg char (150gvar,

rulen fixed bin (24); /% APPLY rule number */
t fixed bin (24);

ioa_ entry options (variable);

/% BEGIN INCLUDE FILE cale_s.incl.pll 06/24/76 J Falksen */

scanner.: proc,

MORE:

del

del

lstk.symptr g-la putg
lstk.symlen (-la gut
1stk. 11ne (-la _pu
if (ifi > ifl)
then do;
if’ (ifi > ife)
then do; :
1stk.symbol (-la_put) =
return;

addr (ife (ifi));

end;
call get_line;
goto MORE;

end;

i= ver1f¥ (substr (ifile, ifi, ifl-ifi+1), alpha);
alpha char (53)int static
1?1% (;A?gDEFGHIJKLMNOPQRSTUVWXYZ abedefghi jklmnopqrstuvwxyz");
if (i
then doj;
i=1i-1;
char8 char (8);
char8 = su bstr (ifile, ifi, 1i);

ifi = 1f1 +
do jj = to TLanl
J = TLan
if (substr gTé TL.pt (3), TL.1n (J)) = char8)
then do;
1stk. symbol (-la_put) = j;
return;
end;
end;

882 dIW NIILZTING TVOINHOIL OILTAW

LE 83ed

L) L L) LAt Lad L Laxa) L Lo Lo LU Lo Lo Lo Lo Lo Lo LoD LD Lo Lo LBLD LA L Lo Lo LU LB LoD L Lo Lo L0 LU Lo Lo LALDLIILLY
O 00 CoCoCOCO Co 00 0000~~~ ~1—~] YOO OYONOYONOYOYON N U TN TN UT N U b = o o b e B e oW
OO CO~TONIT) N - OO 00—~ O 1) N =2 OO 00—~ OV 1) NV~ OO 00—~ YT L0 N = OO 00—~ OV EUI N e OO OO

do i = 1 to sym_num;
if (sym_.name(i) = char8)
then gofo found_sym;
end;
i, sym num = sym_num + 1;
sym_.name (sym num) = char8
sym_.val (sym_num) = 0.0;

lstk.def (-la_put) = addr (sym_ (i));
lstk.symbol (-la put) = 1;

found_sym:

return;
end;
else do;
jf: ver1f¥ (substr (ifile, ifi, ifl-ifi+1), "0123456789.");
i
then do;
if (substr (ifile, ifi+j-1, 1) = "e")
then do; .
%f (substr (ifile, ifi+j-1,) = an)
i (substr (ifile, ifi+j-1, 1) = nom)
then J :13 + 13
J=13
ond; + verify (substr (ifile, ifi+j-1, ifl), "0123456789");
del flb float bin (27);
J=3-1;
on conversion begin;
msg = "missing operator";
goto error;
end;
flb = convert (flb,substr (ifile, ifi, j));
lstk value (-la_put) b;
lstk.symbol 5 -la_put) = 2;
1stk.symlen la_put) = j;
ifi = ifi + j;
return;
end;
else do;

do’ jj = 1 to TLstl;

J = TLs Jg
if (substr T¢, TL.pt (j), TL.1n (j)
- substr (ifile, ifi, TL.1n (3)
then do
1stk.symbol (-la putg = j;
ifi = 1f1 + TL.1ln

)
))

if (J 7) /4i 1eft paren */
then parenct = parenct +

else if{(j = 13) /* ht paren %/
then parenct = parenct - T;

return;

end;
end;

g8¢ dIW NIILITING TYOINHDHL JDIITNW

2¢ o3ed

-

OOV e 0 b e 2 b . 3 a OO0 OO OO OO O OOO\OO OO

T T QU AU G S WU QT Y (U (T U QU QU T G Ut S G Gy
- O\ CO~IOWN £ N = OO CO~3 OV 00 N = 00 OO 0o~ O U0 N = OO CO-J OV L N = OO 0o~ ONUT £ELD N =

e EE e EE RN LWL LI LU LD LD LD LD LD LI LA L LD LD LD LI LD LA D

[T 1 N N)

end;
end; .
if lsubstr (ifile, ifi, 1) = " ")
then do;
ifi = ifi + 1
goto MORE;
end;
msg = "1lle$al char ";
msg - msg || substr(ifile,ifi,1);
goto error;

/% /% . . . GET_LINE . . . ¥/

get_line: proc;
ifln = ifln + 1;
ifi = 1;
ifl = 13
do whlle(lfl < 2) . .
a; call iox $ge£ line (iox_$user_input, addr (ifile), 200, ifl, 0);
en
del iox_$user_input ptr ext static;
" if (substr (ifile, ifi, ifl) = "EOI

then ifl, ife = 0;
end;
end;
/* END INCLUDE FILE cale_s.incl.plt ¥/
/* -order <{symbol>
<real>
list
012

Lo

~ WA | U

3]
o L
4]

atan
cos

log

sin

tan
-tl

g TVOINHOFL OILTINNW

882 gIW NILITI

€€ o3ed

Fgi e o S g g . P S - P —F oS g g o g~ g o i e N g S S L R S R i g g s g

~NI N1 OONOYONONONONOYONON T U T UTWTUT T TN = 8 B e I = 20 5) Lolbotuo Lo b
U0 N~ OO 00—~ OV =t N = OO 00—~ AT 10 PN = OO Co—~3 O 10 N0 — OO0 o~ o =0

-table cale_t_.inel.pl?
-sem calc_.incl.pli

-parse */
semantics: proc(rulen,altn);
del rulen fixed bin(24),

altn fixed bin(24);
goto rule(rulen);

/* <cale> ::= <line...> q <nl> | q <nl> | ¥/
rule(0001):
goto done_parse;

/¥ <line...> {line> ! ¥/;
/% <line...> ::= <dine...> <line> 1 ¥/
/* <line> ::= list <nl> ! ¥/;
rule(0004):
do i = sym_num to 1 by_=1;
call Toa_(""8a = "f",sym_.name(i),sym_.val(i));
end;
return;

/¥ <line> ::= <symbol> = <exp> <nl> ! ¥*/;

rule(0005):
1stk.def(1ls_top-3)->sym.val = lstk.value(ls_top=1);
return;

/% <line> :1:= <exp> <nl> ! #*/
rule(0006):

call ioa_("= “f",1stk.value(ls_top-1));
return;

del chari15 char(17);

/% <nl> 1= 012 1 ¥/

/* <ex8> 1= <exp> + <term> ! ¥/;

rule(0008):

lstk.value(ls_top-2) = lstk.value(ls_top-2) + lstk.value(ls_top);
return;

/% <exp> 1:= <exp> - <term> ! ¥/:

rule(0009):
lstk.value(ls_top-2) = lstk.value(ls_top-2) - 1lstk.value(ls top);
return;

/* <exp> ::= <term> ! #/

/¥ <term> ::= <term> * <pwr> ! ¥/;

rule(0011):
1stk.value(ls_top-2) = lstk.value(ls_top-2) * lstk.value(ls_top);
return;

/% <term> ::= <term> / <pwr> ! ¥/;
rule(0012):

882 dIW NIIITINd TYOINHOAL OILINW

#€ o3ed

4

g g ~gi— =g o g S g S S S L - F Ao g S g — S R g i ¥
POV Db R et D = 2 0 O OO0 O OO O O\OWOONODNONOND D 00 00 OO 0000 CO 00 0 00 00~ ~J =1 ~J~]

=3 VU 10 N = OO 0o~ OV F5100) N =2 OO 003 MU £ N = OO O~ OV LU N = OO G0~ NN LU N — OO0 G0~ O

R U N UIT QI ST QU (U WY WY QT QPUIE (ST QU QN NS (P WS QU W W NI NI WS T I i Y

)

1stk.value(ls_top-2) = lstk.value(ls_top-2) / lstk.value(ls_top);
return;

/% <term> ::= <pwr> | */
/¥ <pwr> ::= <pwr> ¥¥ <(factor> ! ¥*/;
rule(0014):

1stk.value(ls _top-2) = lstk.value(ls_top-2) ** lstk.value(ls_top);

Mo

return;

/® <pwr> ::= <factor> ! %/

/* <factor> sz <refd> ! */i

/% <factor> = + <ref> | ¥/,

rule(0017):
lstk.value(ls_top-1) = lstk.value(ls_top);
return;

/* <Lfactor> 11z = Lref> ! ¥/,

rule(0018):
lstk.value(ls_top-1) = - lstk.value(ls_top);
return;

/¥ <factor> ti= (<exp>) ! ¥/

rule(0019):
1stk.value(ls_top-2) = lstk.value(ls top-1);
return;

/% Lref> <real> ! ¥*/:
/% <Lref>

: <{symbol> ! i/;
rule(0021):

lstk.value(ls_top) = lstk.def(ls_top)->sym.val;
return;

/% <ref> ::= sin (<exp>) ! ¥/;

rule(0022):
1stk.value(ls_top-3) = sin(lstk.value(ls_top-1));
return;

/% <ref> ::= cos (<exp>) ! ¥/;

rule(0023):
l1stk.value(ls_top-3) = cos(lstk.value(ls_top-1));
return;

/% <ref> ::= tan (<exp>) ! ¥/;
rule(0024):
lstk.value(ls_top-3) = tan(lstk.value(ls_top-1));

return;

/% <ref> :1:z atan (<exp>) ! ¥/;

rule(0025):
l1stk.value(ls_top-3) = atan(lstk.value(ls_top-1));
return;

/% <ref> ::= abs (<exp>) ! ¥/;

882 9IW NILATING TYOINHOAL OILTINW

GE 9%ed

PN EE ST

PR QU \UIE Y QU WIS \QIY NP N DRI S DU QI I O (O T N G ¥
SO ONE ool Lol Lalousiw N o

~I O] OUTEN) = O 0o~ OW 10 N —= OO0 0o

rule(0026):
lstk.value(ls_top-3) =
return;

/¥ <ref> ::= 1n (<exp>) ! ¥*/;
rule(0027):
lstk.value(ls_top~3) =
return;

/% <pefd> :1:= log (<exp>) ! %/
rule(0028):
1stk.value(ls_top~3) =
return;
end;

end;

abs(1lstk.value(ls_top=-1));

log(lstk.value(ls_top=1));

log10(1stk.value(ls_top-1));

/¥ END INCLUDE FILE cale_p.inel.plt */

end;

gg8¢ 9IW NILATIN TVOINHOAL OILTAW

- 9§ aFed

INCLUDE FILES USED IN THIS COMPILATION.

LINE NUMBER NAME
Ly 1 calc_t .incl.pl?
46 2 calc_p.incl.pli
2-163 g calc_s.inecl.pli
2-16 calc_.inel.pl1

PATHNAME .
>udd>m> jaf>cur>cale_t_.incl.pl1
>udd>m> jaf>curd>calc_p.incl.pl1
>udd>m> jaf>cur>calc_s.incl.pl1
>udd>md> jaf>cur>calc_.incl.plt1

g8¢ dIW NILITING TVOINHOAL JDIITAW

LE o3ed

