
MULTICS TECHNICAL BULLETIN

To: Distribution

From:

Date: 03/30/76

Subject: vfile_ changes for release 4.0

INTRODUCTION

This MTB summarizes changes to
proposed for MR4.0. Aside from a
for iox_$delete_record, these
indexed files.

the vfile I/O module which are
slight alteration to the specs
are functional extensions of

NEW OPERATIONS

The changes include the following new control orders:

"min_block_size"

"record_status"

"get_key"
"add_key"
"delete_key"
"reassign_key"

"set_.file_lock
"set_wait_time"

NEW t'EATURES

record manipulation

index manipulation

synchronization

Some of the more important new features are:

record pointers
record locks
separate (unkeyed) records
separate (multiple) keys
duplicate keys
shared sequential operations
parallel access on passive shared operations

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2

REASONS AND IMPLICATIONS

The purpose of these changes is to provide a more powerful file
manipulation capability upon which to construct data base
systems.

Specific applications which should benefit from these changes
are:

selective access to portions and collections of records

construction of permanent list structures

sharing under almost all circumstances

establishing arbitrary many to many associations

DETAILED PROPOSAL

The revisions described in MCR's 1560, 1596, 1615 and 1616 are
documented in the following pages, along with draft MPM
documentation for the remaining vfile_ changes for MR4.0. Note
that the control orders "min block size" and "set file lock" have
been further revised since the publication of their -respective
MCR's (1596 and 1616).

FUTURE PLANS FOR INDEXED FILES

Most of the interface changes and new features which are planned
have been included in the 4.0 release. Some other extensions
under consideration are:

"key_range" order

2. "read_position" order

causes subsequent operations to see
only a selected portion of the
file's index.

(already supported with non-indexed
files)

3. Integration of system area package with vfile 's record
management logic to provide a general permanent area
capability and greater flexibility in targeting record
allocations.

The bulk of the remaining modifications which are planned deal
with various performance enhancements, not user interface
changes. Substantial improvements can definitely be achieved in
this area, at least for many common special-case situations.
Some of these are described briefly in MTB-258.

,,..

vfile_status vfile_status

vfile_status, vfs

The vfile_status comm~nd prints the apparent type
(unstructured, sequential, blocked, or indexed) and length of
stora~e system files. For str<.Jctured files, information about
the state of the file (if busy) and the file version <unless
current) is printed. The maxiTium record length is printed for
blocked files. For indexed files, the following statistics are
;Hinted:

1 •

2 •

3 •

4.

5 •

6.

7.

8.

9.

1 0.

The nJmber of records
length records

in the including zero

The number of nonnull records in the file1 if different
from the above

The total length of the records (bytes)

The numoer of blocks in the free space list for records

The height of the i,dex tree (equal to zero
files>

for empty

The number of nodes <each 1K words,
the index tree

The total length of all keys (bytes>

page aligned)

The number of keys Cif different from record count>

The number of duplicate keys Cif non-zero)

The total length of duplicate keys Cif any)

in

vfile_status path

where path is the pathname of the segment or multisegment file of
interest. If the entrynam~ portion of the pathname denotes a
directory, it is i'3nored. If no files are found for the given
pathname, a messaye to that effect is printed. If the entry is a
link, the inforTiation returnej pertains to the entry to which the
link points. The star convention is permitted.

DR.HT: MAY BE CHANGED 3/76 -334.2 03/30/76 AG92d

vfi le_ status. vfile_status

A·iditional information nay oe obtained through the status
c r' .11 in .~ n J •

DRAFT: ~AY BE CHANGED 3/76 -334.3 03/30/76 AG92B

iox iox_

~am~: iox

If the file is open for jirect_update and the deletion takes
place, the current and next record positions are set to null.
For keyed_sequential_uodate, the current and next record
oositions are set to the recorj following the deleted record or
to end df file (if there is n) such record>.

declare iox_$delete_record entry (ptr, fixed binC35));

call iox_idelete_record <iocb_ptr, code);

..ihere:

1 • iocb_ptr points to the switch's control block. (Input)

2 • code is an 1/0 systen status code. <Output)

iox_$detach_iocb

This entry point detac1es an 1/0 switch. If the switch is
dlready detached, its state is not changed, and the code
error_table_$not_attached is returned. If the switch is open,
its state is nnt changed, and the code error_table_$not_closed is
returned.

declare iox_~detach_iocb entry Cptr, fixedC35));

call iox_tdetach_iocb Ciocb_ptr, code);

where:

1 • iocb_ptr points to the switch's control ~lock. (Input)

2. code is an I/0 systeTI status code. (Output)

DRAFT: MAY BE CHANGED -334.85 03/30/76 AG93

v file_ status_ vfile_status_

~amf: vfile_status_

dcl 1 blk_info based (info_ptr),
fixed,

/* structure for
blocked files */ 2 info_version

2· type
2 records
? flags

3 lock_status
.5 pad

2 version
2 action
2 max_rec_len

fixed,
fixed (34) ,
ali Jnea,
bit<2) unal,
bit(34) unal,
fixed,
fii<ed,
fixed(21>;

jcl 1 indx_info based (info_ptr),
fixed,

/* structure for
indexed files */

I

2 info_version
2 type
2 records
2 flags

3 lock_status
3 pad

fixed,
f i x e d (34) ,
aligned
bit<2> unal,
bit(34) unal,

2 version aligned,
3 file_version fixedC17> unal,
3 program_version fixedC17) unal,

2 action fixed,
2 non_null_recs fixed(34),
2 record_:::iytes fixed(34),
2 free_blocks fixed,
2 index_hei9ht fixed,
2 nodes fixed,
2 key_bytes fixed(34),
2 change_count fixedC35),
2 num_keys fixed(34),
2 dup_keys fixedC34),
2 dup_key_bytes fixedC34),
2 reserved(1) fixed;

llJ h e r e :

1 .• info version

2. type

3. lock_status

ideitifies
str.Jcture;
the user.

the version of the
this must be set to

(Input)

info
1 by

ideitifies the file type and the info
structure returned:
1 Jnstruc tured
2 sequential
3 :>locked
4 indexed

if zero, indicates that the file's lock
is iot set: otherwise the file is busy

DRAFT: MAY 8E CHANGED 3/76 -126.1 03/30/76 AG93B

vfile_status_

4. records

5. header_present

6. head-er_id

7. bytes

max_rec_len

9. version

1 0. action

11. record_bytes

12. free_blocks

1 3. index_hei9ht

1 4. nodes

1 5. key_bytes

1 6. non_null_recs

1 7. change_count

MI'B-269

vfi le_status_

"01"0
"10"b
"11''o

busy in Cdller's process
ousy in another process
busy in a defunct process

is the number of records in the
including those of zero length.

if set, indicates
h ea j er is present •

that cm optional

cont a i n s t he identification from the
file's header, if present.
is Jser-defined.

Its meaning

gives the file's length, not ·including
the header in bytes.

is the maximum record length (in bytes)
associated with the file.

ide1tifies the version number
file and its creating program.

of the

if nonzero, indicates an
pro~ res s on the f i le:

operation in

-1 ~rite in progress
-2 rewrite in progress
-3 delete in progress
+1 truncation in progress

is the total length of all
the file in bytes.

records in

is tne number of blocks in the
free space list for records.

is the height of the index tree
to zero if file is empty)

file's

Cequa l

is the number of single page nodes in
the index.

is the total length of all keys in the
file in bytes.

is a count, not incl~ding those of Lero
length, of the records in the file.

i s t h e numb er o f
bee1 modified.

times the file hdS

DRAFT: MAY ~E CHANGED 3/76 -126.2 03/30/76 AG938

vfile_status_

1 8. num_keys

1 9. dup_keys

2 a. dup_key_bytes

is the total number
e ac ii associating

vfi le_status_

of index
a key with a

entries
record.

is the number of index entries with
the non-unique keys, not including

first instance of each key.

is the total length of all duplicate
keys in the file, as defined above.

The user must provide the storage space required by the
above structures. Normally, space should be allocated for the
largest info structure that might be returned, namely, the one
for indexed files.

See the description of tie vfile
:Jet ails.

DRAFT: MAY GE CHANGED 3/76 -126.3

1/0 module for further

03/30/76 AG93B

v f i Le v f i le

v f i Le

This 1/0 module supports 1/0 from/to files in the storage
system. All loqical file types are supported.

Entry points in this mojJle are not called directly by
users; rather, the module is accessed through the I/O system.
See "Multics Input/Output System" and "File Input/Output" in
Section V of the MPM Reference Guide for a general description of
the 1/0 system and a discussion of fi Les, respectively.

The attach description has the following form:

vfile_ path -control_args-

where:

1 •

2 •

oath

control_ar::js

is the absolute or relative pathname of the
file.

may be chosen from the following:

-extend specifies extension of the file if it
already exists. This control argument is
only me3ningful with openings for output or
input_output; otherwise, it is ignored.

-share -wtime- allows an indexed file to be open in more
than one process at the same time, even
though ~ot all openings are for input.
(See '' '1 u l ti o l e 0 pen i n gs" below. > The
wtime, if specified, is the maximum time in
seconds that this process will wait to
perform an operation on the file. A value

-blocked -n-

of -1 means the process may wait
indefinitely. If no wtiine is given, a
default value of 1 is used.

specifies attachment to a blocked file.
a nonern::>ty file exists, n is iynored
mat be omitted. Otherwise, n is used
set the rnaxirnum record size Cbytes>.

I f
and

to

DRAFT: MAY AE CHANGED 3/76 -1 I 03/30/76 AG93B

vfile_

-no_trunc

-append

-header -n-

-old

-ssf

I
-dup_ok

v f i le

indicates that a put_chars operation into
the middle of an unstructured file
<stream_input_output) is permitted, and no
truncation is to occur in such cases. Also
prevents the truncation of an existing file
at open.

in inpJt_output openings, this causes
put_chars anj write record operations to
add to end of file instead of truncating
when tie file position is not at end of
file. ~lso the position is initially set
to beginning of file, and an existing file
is not truncated at open.

for use with unstructured files, this
control argument indicates that a header is
expectej in an existing file, or is to be
created for a new file. If a header is
specified, it contains an optional
identifying number, which effectively
permits user-defined file types. If n is
given 3nd the file exists, the file
identifier must be equal ton: a new file
takes tie value of n, if given, as its
identifier. The header is maintained and
becomes invisible only with the explicit
use of this control argument.

indicates that a new file is not to be
created if an attempt is made to open a
nonexisting file for output, input_output,
or update.

restricts the file to a single segment. If
specified, an attempt to open a
multise~nent file or to expand a file
beyond a single segment is treated as an
error. The file must not be indexed.

indicates that
keys is to
Keys" below>.

the creation of duplicate
be permitted <See "Duplicate

The file must be indexed.

The -extend, -append, and -no_trunc
conflict: only one may be specified.

control arguments

DRAFT: MAY BE CHANGED 3/76 -1 8 03/30/76 AG93 8

I

MTB-269

v f i le vfi le_

To form
attachment, the
pathname.

the attach
pathname

Jescription
is expanded

actually
to obtain

used
an

in the
absolute

All opening modes are sJpported. For an existiny file, the
'TIOde must be compatible with the file type. <See "File
Input/Output" in Section V of the VIPM Reference Guide.) The mode
Tiust be compatiole with any cJntrol arguments yiven in the attach
description.

An existing file
switch is on and its bit

If the opening is
re4uired on the file.
on the file.

is ,ot truncated at open if its safety
count is nonzero.

for input only, only read
In all other cases, rw acc~ss

access is
is required

An additional type of positioning is available with
unstructured and blocked files that are open for input,
input_output, or update. Nhen the type argument of the
iox_$position entry point is 2, this specifies direct positioning
to the record or byte whose ordinal position co, 1, 2, ••• > is
~ i v e n • T h e z e r o p. o s i t i on i s j u s t b e y o n d t h e f i l e h e a d e r , i f a
header is present.

DRAFT: MAY BE CHANGED 3/76 -19 03130176 AG9313

v file v f i le

I n
operation
file or
position.

blocked and
is supported.
replace the

sequential f i Les open for update, this
Its effect is to append a record to the

next record, depending on the next record

If the file is a sequential file, the new record must be the
same length as the replaced record. If not, the code returned is
error_table_$lonq_record or error_table_$short_record.

In a blocked file, no rec:>rd 11ay be rewritten with a record
whose length exceeds the naximum record length of the file.
Attempting to do so causes the code, error_table_$long_record, to
:>e returned.

If the file 1s a sequential file, the record is
deleted, but the space it occJoies is not recovered.

Deletions are not supp:>rted in blocked files.
attempts to delete a recorj in a blocked file,
error_table_$no_ooeration is returned.

This operation is not su:>ported.

logically

If the user
the code,

The following control operations are supported by the vfile_
I/O module.

seek_head
r ead_;)OS it ion
t run ca te
'Tl.Jx_rec_ Len

min_block_size
record_st:itus
set_file_lock
set_wait_time

DRAFT: MAY BE CHANGED 3/76 - 18.1

get_key
add_ key
delete_key
reassign_key

03/30/76 AG93 8

v f i le vfi le_

seek_head

The seek~heai order is 3ccepted when the 1/0 switch is open
for keyed_sequential_input or keyed_sequential_update. For this
Jrder the info_ptr argument must point to a structure of the
following form:

dcl 1 info based (info_ptr},
2 relation_type fixed,
2 n fixed,
2 search_key char (0 refer (n}) ;

The operation locates the first record with a key whose head has the
specified relation with the given search_key. The next record position and (for
keyed_sequential_update) the current record · position are set to the
record. If no such record exists, the code error_table_$no_record is
returned.

The head of a record's key is the first n characters of the key,. the key
being extended by blanks if it has fewer than n characters. The allowed values
for info.relation_type are:

0 head = search_key
1 head >= search_key
2 head > search_key

DH~FT: MAY BE CHANGED 3/76 -18.2 03/30/76 AG93B

·'

vfile_ Vfile_

read_position

The read_position order is
attached to a nonindexed file. The
1, 2, •••) of the next record (byte
of file, relative to the fila base.
a header is present.

accepted when the I/O switch is open aud
operation returns the ordinal position (0,
for unstructured files), and that of the end
The file base is just beyond the header, if

For this order, the info_ptr argument must point to a structure of the
following form:

dcl 1 info

truncate

2 next_position
·2 last_position

based (info_ptr)
fixed(34), /*output*/
fixed(34); /*output*/

~ The truncate order is accepted when the I/O switch is attached to a
nonindexed file open for input_output or update. The operation truncates the
file at the next record (byte for unstructured files). If the next position is
undefined, the code error_table_$no_record is returned.

No info structure is required for this order.

max_rec_len

The max_rec_len order is accepted when the I/O switch is open and attached
to a blocked file. The operation returns the maximum record length (bytes) of
the file. A new maximum length can be set by specifying a nonzero value for the
second argument. In this case the file must empty and open for modification, or
the code error_table_$no_operation is returned.

For this order the info_ptr argument must point to a structure of the
following form:

dcl 1 info
2 old_max_recl
2 new_max_recl

based (info_ptr)
fixed(21), /*output*/
fixed(21); /*input*/

....

-»

control operation: "min_block_size"

This operation determines the Tiinimum size for blocks of record
space which are subsequently al located by write record or
rewrite record operations. The specification remains in effect
for the duration of the curr!nt opening or until another call to
this order is issued. The I/J switch must oe attached to an
indexed file open for output :Jr uµdate.

For this order the info_ptr argument must point to a structure of
the following form:

dcl min_blksz_info b3sed(info_ptr),

2 min_resi<.Jue fixej(21),

2 min_capacity fixed(21);

where:

1. min residue <Input)

specifies the minimum unused capacity of a record
block (bytes), i.e. the difference between the
record's length and the maximum length it can
attain without requiring reallocation.

2. min_capacity (Input)

specifies the minimum total record capacity
(bytes), i.e. the maximum length which the record
c3n attain witiout requiring reallocation.

...Jhen the I/0 switch is initially opened,
are set to zero.

both these parameters

control operation: "record_status"

This op~ration returns information about d specified record in an
indexed fi lei and optionally permits the user to manipulate the
record's lock and/or to allocate an empty record.

An argument is provided which permits one to entirely avoid usin~
the index in accessing and creating records <see Note below>.

The 1/0 switch must be open aid attached to
next record position is not altered or used
The current record position is always
referenced.

The 1/0 switch must be open for output or
lock, unlock or create a recorJ.

an indexed file. The
by this operation.
set to the record

update in order to

For this order the info_ptr argument must point to a structure of
the following form:

dcl 1
2
2

rs_info basedCinfo_ptr) aligned,
v er s i on f i x e d,
flags aligned,

3 lock_sw bit(1) unal,
3 u n lock_ s w bit (1) un a l ,
.3 create_ sw bit C 1 } un a l,
3 locate_sw bitC1> unal,
3 mbz1 bit(32) Jnal,

2 record_len fixedC21),
2 max_rec_len fixeJC21),
2 record_ptr ptr,
2 descriptor fixedC35),
2 mbz2 fixed;

dcl rs info_version_1 static internal fixed init(1);

MTB-269

where:

1 •

2 •

3.

4.

5 •

version (Input)

is provided for compatibility with
versions of this info structure. The
this argument to rs_info_version_1.

lock sw (ln,Jut)

possible future
user should set

if set to "1"b an attempt is made to lock the specified
record within the wait time limit given at attachment
or subsequently set via the "set wait time" order.
Possible error codes are those returned by
set_lock_$lock , as well as the code
error_table_$no_roon_for_lock, which is returned if the
allocated record block is too small to contain a lock.
<see section entitled "Records Locks").

unlock_sw CI np u t)

if set to "1"b an attempt is made to unlock the record.
Possible error codes are those returned by
set_lock_$unlock and the code
error_table_$no_roon_for_lock. If both lock_sw and
unlock_sw are set to "1"b, the locking takes place
first dnd determines the resultant error code. <This
permits one to clear an invalid lock in a single
operation.>

create_sw <Input)

if set to "1"b causes a new record to be al located
using the record_le~ and max_rec_len arguments as input
parameters. The contents of the record are set to
zero, and its lock is set in the same operation if
lock_sw = "1"b. Depending upon the setting of
locate_sw, the new record may be entered into the
index. If locate_sw = "O"b the current key for
insertion is added to the index as a key for the new
record. Otherwise, no index entry is created and the
key for insertion becomes undefined.

locate_sw (Input)

"O"b if create_sw also = "O"b, this indicates that the
current record position defines the record of interest.
Otherwise, the current key for insertion is used. If
the relevant position designator is undefined, the code
error_table_$no_record or error_table_$no_key is
returned, whichever is appropriate.

"1"b if create sw = "U"b this indicates that
argument is an input parameter defining

the descriptor
the location of

6 •

7 •

9 •

1 J.

dcl

the record of interest. If create_sw = "1"b this
causes the new recor::l to be created without a key.

mbz1 dnd mbz2 <Input) mJst be set to zero by the user

record_ Len (Output)

Cif create_sw = "1":> this argument is input) gives the
record's length in :>ytes.

rnax_rec_len (Output)

i f c r e a t e _ s w = '' 1 " b t h i s a r g um e n t i s i n p u t an d
overrides any minimJTI block size specification which
may currently be in effect (see "min_block_size"
order>. The returned value gives the maximum length
which the record can attain (bytes) without requiring
reallocation. In tie current implementation, records
are allocated in olocks whose record capacity is a
~ultiple of four bytes greater than or equal to 24.
when this argument is used as an input parameter, the
resultant maxiTium record length is smallest number
greater than or eqJ~l to max_rec_len which corresponds
to an implemented <non-zero) block size.

record_ptr COutnut>

points to the first oyte of the allocated record, or is
set to null if no allocated record exists.

dE>scriptor (Output}

is a process independent Locator for the specified
record. This valJe is used as an input argument when
locate_sw = "1"b an::l create_sw = "U"b. The actual
structure of each descriptor is as follows:

descrip_struct base::l CaddrCdescriptor>> aligned,

2 comp_num fixedC17) unal,

2 word_of fset bit C1!3> unal;

where:

a. comp_nJm is the msf
contain in~

component number
the record.

of the segment

o. word_offset is the #Ord offset of tne block of storage
containinJ the allocated record, relative to
the base :>f its file component.

A zero rlescript:>r
(zero-length) record.

designates an unallocated

Note:

Descriptors may also be arguments to the orders
"add_key", "del ete_key", "reassign_key_, and get_key".
Note that at any giJen time within a single file each
record is uniquely located by its descriptor, which
remains valid only fJr the life of a single allocation.

If locate_sw is set to "1"b, the resultant current
record position TIJves "outside" of the index in the
sense that there is no key associated with the current
record. This situ3tion 11ay also arise after using the
"delete_key" operatiJn.

When this is the case, a subsequent rewrite_record or
delete record operation behaves differently from the
usual case. The difference is that no corresponding
i n de x e n t r y i s c ha n ~ e d o r d e l e t e d t o reflect the change
to the record.

Extre11e caution mJst be exercised when using the
control operations which take a descriptor as an input
argument, especiallt in a shared environment. The user
is responsible for insuring that previously obtained
descriptors and poi11ters are still valid when they are
used. Also, pains nust be taken to maintain the index
in a consistent state, i.e., each index entry should
designate a valid record if a record reference may be
attempted.

control operation: "get_ key"

This operation returns both tie key and the record descriptor tor
the next record in an indexed file.

The I/O switch must be ooen for keyed_sequential_input or
keyed_sequential_update. If the next record position is at end
of file, the coJe error_table_$end_of_info is returned. If the
next record position is undefined, the code
error_table_Sno_record is ret~rned. The next record position is
unchanged, and the current record position is set to the next
record if the operation is successful: otherwise, the current
record position is set to null.

For this order the info_ptr
of the following form:

argument must point to a structure

d cl 1 get_key_info based Cinfo_ptr),

2 mbz fixed,

2 descriptor fixedC35),

2 key_ length fixed,

2 key_string char CO refer(get_key_info.key_length));

where:

O. mbz (Input) must be set to zero

1 •

2 •

3 •

Note:

descriptor (Output)

is the record locator for the next record. This value
may be used as an input argument to the control
operations "add_ke,.-" "delete_key", "reassign_key", and
"record status", <see Note below)

key_ length (Output>

is the lenyth of the key at the next record position.

key_strinJ <Output)

is the next record's key

The interpretation :if the descriptor argument as a
record locator is not Tiandatory, since the operations
"add_key" and "reassign_key" permit the user to set the
descriptor portion :if an index entry to an arbitrary 36
bit value. ~.

In such
as a

cases the descriptor
one-..iord rec::> rd which

itself may be thought of
is "read" by the "get_key"

operation.

control operation: "add_ key"

This operation creates a new index entry with
record descriptor.

a given key and

The 1/0 switch must be open for direct_output1 direct_update,
keyed_sequential_output, or keyed_sequential_update. Current and
next record posi ti ans are unc'lange::t.

Associations may be formed between any number of keys and a
single record via this operation. Duplicate keys may be added if
the file was attached with the -dup_ok option, or if the file
already contains duplic~tions: otherwise, the code
error_table_$key_dup is returned. (See section entitled
"Duplicate Keys">.

\Jote that this operation, as .iell as the orders "delete_key",
"reassign_key", and "get_ket", do not reference the l~ngth or
contents of a record. This permits one to avoid the use of
actual records altogether in'~ny given ind~xed file.

For this order the info_ptr ar]ument must point to a structure of
the following form:

dcl 1 add_key_info based(info_ptr),
2 flags aligned,

3 input_key bit<1> unal,
3 input_descriJ bit(1) unal,
3 mbz bit(34> Jnal, /* must be zero •I

2 descriptor fixed(35),
2 key_len fixed,
2 key_string char(O referCadd_key_info.key_len));

where:

1 •

2 •

input_key (Input>

"O"b indicates that the current key for insertion is the new
key. If this value is undefined, the code
error_table_$no_key is returned.

"1"b indicates that the key to be added
contained in this info structure.

; s the key_string

input_descrip (In PU t)

"O"b indicates that the current record defines the new
descriptor. If tie current record is undefined, the
code error_table_$no_record is returned.

"1"b indicates that the Jser supplied descriptor
info structure is the new descriptor.

in

~.

4 •

5 •

I

descriptor (Input)

This argument is used only if the variable
input_descrip is set to "1"b. The descriptor is stored
into the index together with its associdted key. Any
36 bit qu.:intity nay be supplied, although in general
this number will have been previously obtained via the
'' r e co rd_ st at us" o,. "g e t _key" cont r o l ope r at ions •
Descriptors are usej by operations which reference the
contents or length of a record, in order to obtain the
record's address.

key_len <Input)

is the length of the key_string.
0 and 256 chars, inclusive.

key_string (Input)

Keys must be between

is used only if adj_key_info.input_key is set to "1"b.
It defines the key to be added to the index with the
appropriate record jescriptor.

control operation: "delete_key"

This operation deletes a specified index entry.

The 1/0 switch must oe open for direct_update or
keyed_sequential_update. The current and next file positions are
left unchanged, with the following exception: if the deleted
index entry is at the next record position, then the next record
position is advanced to the following index entry, or becomes
unJefined in direct openings.

For this order the info_ptr ar~ument may be null, or may point to
a structure of the following form:

d c l 1 delete_key_info like add_key_info based Cinfo_ptr);

where:

1 •

2 •

3.

4 •

input_key <Input>

"O"b indicates that the i<ey associated with the current file
position defines the key of the index entry which is to
be deleted. If current position is undefined or
outside the index <e.g., after deleting the current key
of the current record),· the code error_table_$no_key is
returned.

"1"b indicates that the Jser_supplied key_string defines the
key of the entry to be deleted. If no such key is
found, the code error_table_$no_key is returned.

input_descrip (Input>

"O"b indicates that the index entry to be deleted is
associated with tie current record. if the current
record is undefined, the code error_table_$no_record is
returned.

"1"b indicates that the entry to be deleted is associated
with the user_supolied descriptor. If no such entry
exists, the code error_table_$no_record is returned.

descriptor <Input)

is used only if Jelete_key_info.input_descrip="1"b.
The entry which is deleted is the first whose
descriptor ~atches this value, amon~ those entries with
the specified key.

key_ Len <Input)

same as in "add_key"

5 •

MTB-269

key_strinq (Input)

when delete_key_info.input_key="1"b, this defines the
key for which the iidex entry with the specified record
descriptor is to be ::leleted.

If the info_ptr argument is iJLL, the index entry at the current
file position is deleted, i.e., the effect is the same as that of
settin1 both arguments, input_key and input_descrip, to "O"b.

MTB-269

control operation: "reassign_ key''

This operation causes the descriptor portion at a specified index
entry to be replaced with a given value.

The I/O switch must be
The

open for direct_update or
keyed_sequentidl_update.
changed.

file position designators are not

For this order the info_ptr argument must point to a structure of
the following form:

d c L 1 reassign_key_info b3sed(info_ptr),
2 flags aliyned,

3 input_key bi t(1) unal,
3 input_old_Jescrip bit(1) unal,
3 input_ne.i_descrip bit(1) unal,
3 mbz bitC33) unal,

2 old_descrip fixedC35),
2 new_descrip fixedC35>,
2 key_len fixed,
2 key_string charCO refer(reassign_key_info.key_len));

where:

1 •

2.

3.

input_key (Input)

"O"b indicates that the index entry to be reassigned has as
its key the .current key for insertion. If undefined
the code error_table_$no_key is returned.

"1"b indicates that the key_string argument defines the
portion of the i~Jex entry to be reassigned. If
key_string is not found in the index, the
error_tdble_$no_key is returned.

key
the

code

input_old_descrip (Input>

"O"b indicates that the entry to be chan9ed is associated
with the current record. If the current record is
undefined, the code error_table_$no_record is returned.

"1"b indicates that the otd_descrip argument defines the
descriptor portion Jf the index entry to be changed.

input_new_descrip <Input)

"O"b

"1"b

indicates that the
reasc;iqned to the
record is undefined,
returned.

specified index entry is to be
current record. If the current
the code error_table_$no_record is

indicates
the new

that the 3rgument new_descrip is to
value for the descriptor oortion

supply
of the

4.

5.

6.

7.

MTB-269

specifierl index entry.

old_descrip (Input)

is used only if
reassign_key_info.iriout_ol d_descrip="1"b. The entry
which is reassignej is the first whose descriptor
matches this value, among those index entries with the
specified key.

new_descrip (Input)

is usej only if
reassign_key_info.i,put_new_descrip="1"b. This value
replaces the old descriptor of the specified index
entry.

key_len (Input)

same as in "add_key"

key_strin~ (Inout)

when r.eassign_key_info.input_key="1"b, this
defines the key for which the index entry
specified descriptor is to be reassigned.

argument
with the

control operation: "set_fi Le_Lock

r The order "set file lock" is accepted when the I/O switch is open
for output or update and 3ttached to an indexed file with the
-share control argument. For this order, the info_ptr argument
~ust point to a structure of the fol Lowiny form:

dcl set_Lock_fla•] bit<2> ali]ned basedCinfo_ptr);

This operation causes the file to be Locked (if possible within
the wait-time Limit) or unlocked, depending on the user's settin~
the first bit of info_ptr~set_Lock_flag to "1"b or "O"b,
respectively.

The possible error codes are those returned by set_Lock_$Lock and
set_Lock_iunlock, excepting the code
error_table_$invalid_Lock_reset, which is not treated as an
error.

The second bit of set_Lock_flaJ indicates the class of operations
~hich are to be excluded oy Locking the file. If "O"b only
operations which alter the file are excluded: passive operations
jo not detect this state. Otherwise, all index referencing
operations are excluded. In 3~Y case, the exclusion only applies
to operations outside the current opening.

'·

control operation: "set wait tirne"

The
and
For
the

order "set_iNait_time" is :iccepted
attached to an indexed file with
this order the info_ptr argument
following form:

when the 1/0 switch is open
-share control argument.'

must point to a structure of

dcl new_wait_time fixed :>asedCinfo_ptr>:

This operation specifies a limit on the time that the user's
orocess will wait to perform 3n operation when the file is locked
by another process. The interoretat ion of new_wait_time is the
sa~e as that described earlier for the optional wtime argument
used with the -share attach ootion.

CJ

vfile_ Vfile_

Multiple Openings

It is possible to have or attempt to have multiple openings of the same
file, that is, to have two or more open I/O switches attached to the same file.
These switches might be in the same process or in different processes. With
respect to the effects of multiple openings, the various opening modes can be
divided into four classes (explained below). Multiple openings in which the
opening modes are in more than one class are invalid, as are multiple openings
within certain classes. The vfile_ I/O module prevents some cases of multiple
opening. If a multiple opening is detected, error_table_$file_busy is returned
by the open operation. In cases where an invalid multiple opening does occur,
I/O operations will cause unpredictable errors in the processes involved, and
the contents of the files may be damaged.

3/76

The classes of multiple openings are:

1. Openings for input without the -share control argument.
· Any number of openings in this class are allowed. The existence of an

opening in this class never causes damage to the file. When this
class of opening is attempted, the existence of all class 2 and 3
openings and some class 4 openings will be detected for structured
files.

2. Openings for output or input_output without the -extend control
argument.

3.

4.

Only one opening is allowed. The existence of another opening is
never detected when this class of opening is attempted. The file is
simply replaced by an empty file of the appropriate type. If the file
was already open with an opening of any class except class 1, the
contents of the new file will probably be damaged.

Openings for update without the -share control argument and for output
or input_output without the -share control argument and with the
-extend control argument.
Only one opening of this class i~ allowed. For structured files,
multiple openings within the class are detected. An invalid multiple
opening involving an opening of this class and other openings of class
4 may be detected. If not, the only effect is that the class 3
op~niag locks the file for the entire opening.

with the -share control argument.

ll~A~nlylln~u1m~b!llr~1o~f~o~p~e~n-1,n•glsllof this
a.- owed. When a process forms an on the file,
is locked. Other processes attempt! g an ration while the

is locked will wait up to the limit pecified by wtime in the
-share control argument. If the operation is not carried out because
of the wtime limit, the code error_table_$fil ~busy is returned.

3-19 AG93B

vfile_ vfile_

There are two codes that pertain only to class 4 openings:
error_table_$asynch_deletlon and error_table_$asynch_insertion. The
first is returned by the read_record, read_length, and rewrite_record
operations when a record located by a seek_key operation has been
deleted (by an operation in some other opening). The second is
returned by write_record when a record with the key for insertion
(defined by a seek_key operation) has already been inserted (by some
other opening).

Interrupted Openings

If a process opens a file and terminates without closing the file, the file
may be left in an intermediate state that prohibits normal I/O operations on the
file. The exception is openings for input only. The details depend on the
particular type of file as follows:

1. Unstructured·file.

2.

In general, the bit count of the file's last segment will not be
properly set. This condition is not detected at subsequent openings,
and part of the file's contents may be overwritten or ignored.

Sequential file.
In general, certain descriptors in the file and the bit count of the
file's last segment will not be properly set. This condition is
detected at a subsequent open, and the code error_table_$file_busy is
returned.

3. Blocked File.

4.

In general, the file's bit count and record count will not be correct.
This condition is detected at a subsequent open, and the code
error_table_$file_busy is returned.

Indexed file.
In general, the bit counts of the file's segments will not be properly
set, and th~ file contents will be in a complex intermediate state
(e.g., a record, but not its key in the index, will be deleted). This
situation is detected at a subseQuent open or at the beginning of the
next operation, if the file is already open with the -share control
argument. Unless the opening is for input without the -share control
argument, the file is automatically adjusted. If this situation is
detected by an opening for input without the -share control argument,
the code error_table_$file_busy is returned. Opening the file for
update will properly adjust the file.

When an indexed file is adjusted, the interrupted operation
(write_record, rewrite_record, or delete_record),, if any, is
completed. For rewrite_record, however, the bytes of the record may
be incorrect. (Everything else will be correct.) In this case, an
error message is printed on the terminal. The user can rewrite or
delete the record as required. The completion of an interrupted write
operation may also produce an incorrect record, in which case the
defective record and its key are automatically deleted from the file.

Any type of file may be properly adjusted with the vfile_adjust command All\
(described in the MPH Commands) if any interrupted opening has occurred.

'

f

MTB-269

vfile_ vfile_

Inconsistent Files

_The code error _table_$bad_file (terminal message: "File is not a structur-::d
file or is inconsistent") ~ay be returned by operations on structured files. It
means that an inconsistency has been detected in the file. Possible causes are:

1. The file is not a structured file of the reauired type~

2. A P,rogram accidentally modified some words in the file.

Obtaining File Information

The type and various statistics of any of the four vfile_ supported file
structures may be obtained with the vfile_status command or vfile_status_
subroutine (described in the MPM Commands and Subroutines respectively).

Record Locks:

This feature pertains only to indexed files. Record l 0 ck s
at the provide a basis for synchronizing concurrent access

individual record level. The setting and clearing of record
locks is expl·icitly controlled by the user via the
'' record_ status" order •

when the capacity of an 3llocated record block exceeds its
contents by at least four oytes, the last word of the block is
treated as a recorrl lock. A non-zero lock identifies the process
which set it. The user can i~sure that record allocations leave
room for a lock by using the "min_block_size" order with a
residue spec,f ication of at least four bytes.

All operations which reference the length or contents of an
existing record Ce.~., seek_<ey, but not "seek_head") also check
the record's lock Cif one exists>. If the record is not locked,
the operation proceeds norm3lly. Otherwise, the returned error
code reflects the state of the Lock, indicating that the contents
of the record may be in an inconsistent state. In this case, if
the ol)eration does not explicitly involve changing the file, it
proceeds normally and the ret;rned code is one of the following:

1. error_table_$record_busy

if the record is loc~ed by a live process.

2. error_table $lock_is inv3lid

i f the record's lock s set, but not by an existing
process.

Attempting a rewrite_record or delete_record operation on a
record locked by another orocess has not effect other than to
return the code error_table_$record_busy (file is unchanged). If
the lock is invalid, these operations return the code
error_table_$invalid_lock_reset and zero the lock, or if the lock
was set by the caller, the code returned is
error_table_$L0cked_oy_this_process: in either case the operation
is otherwise successful.

when a record which is locked by the user's process is
rewritten, its lock remains set, so long as the minimum block
size specification currently i~ effect is such as to leave enough
room for a record_lock.

Duplicate Keys:

By default vf ile_ prevents
single key with more than ~ne
This restriction is removed when
used or H the file's statistics
already present.

the user from associating a
record in the same indexed file.
the -dup_ok attach option is
indicate that duplicate keys are

Duplicate keys can be created via either the write_record
operation or the ~add_key" control order. When duplications are
permitted, the key for insertion is defined as the.key of the
current record, if it exists.

With this extension, the notion of a.n "index entry" becomes
~ore basic than that of 3 single key in the inde~. An index
entry is an association ~etween a string of characters (key> and
a number <record descriptor>.

Index entries are Jrdered by key.. ~ithin multiple
occurrences of the same key, the order is identical to the order
in which the entries were created. A seek~k•y or "seek_head"
operation locates the first instance of a set of ~uplicate keys.
A write_record operation advances the file position beyond the
last instance of the key for insertion, if the key already exists
in the index.

The next record position is best thought of as corresponding
to the next index entry. Oper:1tions which can advance the next
record position Cread_record, rewrite_record, position skip)
permit one to locate intermediate instances of duplicate keys.

