MULTICS TECHNICAL BULLETIN MT'B-269

To: Distribution
From: M. Asherman
Date: 03/30/76

Subject: vfile_ changes for release 4.0

INTRODUCTION

This MTB summarizes changes to the vfile_ 1/0 module which are
proposed for MR4.0. Aside from a slight alteration to the specs
for iox_¢delete_record, these are functional extensions of
indexed files.

N P TIO
The changes include the following new control orders:

"min_block_size"
' record manipulation
"record_status" ‘

"get_key"

"add_key" index manipulation
"delete_key"

"reassign_key"

"set_file_lock synchronization
"set_wait_time"

NEW FEATURE
Some of the more important new features are:

record pointers

record locks '

separate (unkeyed) records

separate (multiple) keys

duplicate keys

shared sequential operations

parallel access on passive shared operations

Multics Project internal working documentation. Not to Dbe
reproduced or distributed outside the Multics Project.

Page 2 MTB-269

AN MP A

The purpose of these changes is to provide a more powerful file
manipulation capability wupon which to construct data Dbase
systems.

Specific applications which should benefit from these changes
are:

selective access to portions and collections of records
construction of permanent list structures
sharing under almost all circumstances

establishing arbitrary many to many associations

DETAJILED PROPOSA

The revisions described in MCR's 1560, 1596, 1615 and 1616 are
documented in the following pages, along with draft MPM
documentation for the remaining vfile_ changes for MR4.0. Note
that the control orders “min_block_size" and "set_file_lock" have
been further revised since the publication of their respective
MCR's (1596 and 1616).

FUTURE PLANS FOR IN F S

Most of the interface changes and new features which are planned
have been included in the 4.0 release. Some other extensions
under consideration are:

1. "key_range" order causes subsequent operations to see
only a selected portion of the
file's index.

2. "read_position" order (already supported with non-indexed
files)

3. Integration of system area_ package with vfile_'s record
management logic to provide a general permanent area
capability and greater flexibility in targeting record
allocations,

The bulk of the remaining modifications which are planned deal
with various performance enhancements, not user interface
changes. Substantial improvements can definitely be achieved in
this area, at least for many common special-case situations.
Some of these are described briefly in MTB-258.

Nameg: vfile_status, vfs

The wvfile_status command prints the apparent type
(unstructured, sequentials, blocked, or indexed) and length of
storage system files. For structured files, information about
the state of the file (if busy) and the file version (unless
current) is printed. The maxinum record length is printed for
btocked files. For indexed files, the following statistics are
orinted:

1. The number of records in the filees including zero
length records

2. The number of nonnull records in the file, 1if different
from the above

3. The total length of the records (pbytes)

4. The number of blocks in the free space list for records

5. The height of the index tree (equal to zero for empty
files)

6. The number of nodes (each 1K words, page aligned) in

the index tree
7. The total length of all keys (bytes)
8. The number of keys (if different from record count)
9. The number of duplicate keys (if non-zero)

10. The total length of duplicate keys (if any)

Jdsaye

vifile_status path

where path is the pathname of the segment or multisegment file of
interest. If the entrynam2 portion of the pathname denotes a
directory, it is ignored. If no files are founa for the given
pathname, a messaye to that effect is printed. If the entry is a
Links, the information returned pertains to the entry to which the
Link points. The star convention is permitted.

DRAFT:s MAY BE CHANGED 3/76 =-334,2 03/730/76 AG9283

yofes

Additional information may ©pe obtained through the status
conman 1,

DRAFT: MAY BE CHANGED 3/76 -334.3 03730776 AG928

D)

MI'B-269

10X _ 10x _

damg: dox_

If the file is open for direct_update and the deletion takes
place, tne current and next record positions are set to null.
For keyed_sequential _updater the current and next record

nositions are set to the record following the deleted record or
to end of file (if there is na> such record).

Usage

declare 1ox_%delete_record entry (ptr, fixed bin(35));

call iox_%delete_record (iocb_ptr, code)d.

Jshere:
1. iocb_ptr points to the switch's control block. (Input)
2. code is an I/0 syst2mn status code. (Qutput)

Eptcy: iox_%detach_1ioch

This entry point detacres an 1/0 switch, If the switch 1is
already detached, its state is not chanygeds, and the code
error_table_3%not_attached is returned. If the switch i1s open,
its state is not changed, and the code error_table_$not_closed is
returned.
JS539€

declare iox_sédetach_iocb entry (ptr, fixed(35))’

call 1ox_3detacn_iocb (iocb_ptr, code):

where:
1. iocb_ptr points to the switch's control block. (Input)
2. code 1s an 1/0 systen status code, (OQutput)

DRAFT: MAY BE CHANGED =334 .85 03730776 AG93

vfile_status_

Nanme:
decl 1 blk_info based (info_ptr)., /* structure for
2 info_version fixed, blocked files =/
2 type fixed,
¢ records fixed(34),
2 flags alignear
3 lock_status bit(2) unatl,
3 pad bit(34) unal.,
2 version fixed,
2 action fixed,
2 max_rec_LlLen fixed(21),
4cl 1 ‘indx_info based (info_ptr), /* structure for
2 info_version fixed, ‘ indexed files x/
2 type ' fixed,
2 records fixed(34),
2 flags aligned
3 lock_status bit(2) unal,
3 pad bit(34) unale.
2 wversion aligned,
3 file_version fixed(17) unal.,
3 program_version fixed{(17) unal,
2 action fixeds
2 non_null_recs fixed(34),
l record_oytes fixed(34) .,
2 free_blocks fixed,
2 index_height fixed,
2 nodes fixed,
2 key_bytes fixed(34),
2 change_count fixed(35),
2 num_keys fixed(34),
¢ dup_keys fixed(34),
2 dup_key_bytes fixed(34),
2 reserved(l) fixed:
“here:

1. info_version idertifies the wversion of the 1info
structure, this must be set to 1 by
the user. (Input)

le type idertifies the file type and the info
structure returned:

1 Jnstruc tured
2 sequential

3 »olocked

4 indexed

3. lock_status if zero, indicates that the file's lock
is 20t set. otherwise the file is busy

DRAFT: MAY BE CHANGED 3/76 =~126.1 03730776 AG93B

4, records
5. header_present

6. header_id

7. bytes
LR max_rec_Llen
9. version

10. action

11. record_bytes
12. free_blocks
13. index_height
14. nodes

15. key_bytes

16. non_null_recs

17. change_count

_—— e - - - -—————

"01"o busy in caller's process
"10"b bobusy in another process
"11"5 busy in a defunct process

is the number of records 1in the files
including those of zero length.

if seto. indicates that an optional
header 1is present.

contains the identification from the
fil2's header, if present. Its meaning
is user-de fined.

gives the file's lengths, not “including
the header 1in bytes.

is the maximum record length (in bytes)
associated with the file.

idevtifies the version number of the
filz and its creating program,

if nonzero, indicates an operation in
projress on the file:

-1 arite in progress

-2 rewrite in progress

-3 delete in progress

+1 truncation in progress

is the total length of all records in
the file in bytes.,

is tne number of blocks in the fite's
fres space list for records.

is the height of the index tree (equal
to zero if file is empty)

is the number of single page nodes in
the index.,

is the total length of all keys in the
fila in by tes.

is a count, not including those of zero
lLenyth, of the records in the file.

1s tne number of times the file has
been modified.,

DRAFT: MAY BE CHANGED 3/76 -126.2 03730776 AG93B

-———— e - = - - - - - -

- - - - - - - —— - - - — - -

18. num_keys is the total number of index entries
each associating a key with a record.

19. dup_keys is the number of index entries with
non-unique keys, not including the
first instance of each key.

20. dup_key_bytes is the total length of all duplicate
keys in the file, as defined above.

Notes
The user must provide the storage space required by the
above structures. Normally, space should be allocated for the

largest info structure that might be returneds, namely, the one
for indexed files.

See the description of the vfile_ I1/0 module for further
details. '

DRAFT: MAY BE CHANGED 3/76 -126.3 03730776 AG9383

-—— - - - - - -

Name: vfile_
This 1/0 module supports I/0 from/to files in the storage

system, All Llogical file types are supported.

Entry points in this module are not called directly by
userss, rather, the module 1is accessed through the I1/0 system.
See "Multics Input/Output System" and "File Input/Output” in
Section V of the MPM Referenc2 Guide for a general description of
the I/0 system and a discussion of files, respectively.

Attach_Description

The attach description has the following form:

vfile_ path -control_args-

where:
1. path is the absolute or relative pathname of the
file.
] . control_args may be chosen from the following:
-extend specifies extension of the file if it
already exists. This control argument 1is

only meaningful with openings for output or
input_outputs; otherwise, it is ignored.

-share -wtime~- allows 3n indexed file to be open in more
than one process at the same time, even
though not all openings are for input.
(See "qultiple Openings"” below.) The
wtime, 1f specifieds, is the maximum time in
seconds that this process will wait to
perform an operation on the file, A value
of -1 means the process may wait
indefinitely.. If no wtime is givens, a
default value of 1 is used.

-blocked -n- specifi2s attachment to a blocked file. If
a nonemd>ty file exists, n s ignored and
may be omitted. Otherwise, n 1s used to

set the maxinum record size (bytes).

DRAFT: MAY BE CHANGED 3/76 -17 03730776 AG938B

- ——

The
conflict/

DRAFT:

-no_trunc

-append

-header

-old

~ssf

~-dup_ok

-n-

-extend,
only one

- -

indicat2s that a put_chars operation into
the middle of an unstructured file
(stream_input_output) is permitteds, and no
truncation 1s to occur in such cases. Also
prevents the truncation of an existing file
at open.

in inpJut_output openingsSe this causes
put _chars and write_record operations to
add to snd of file instead of truncating
when tnhe file position 1is not at end of
file. A4lso the position is initially set
to beginning of files, and an existing file
is not truncated at open.

for us2 with unstructured files, this
control argument indicates that a header 1s
expected in an existing files, or is to be
created for a new file, 1f a header s
specified., it contains an optional
identifying number, which effectively
permits user-defined file types. If n is
given 3and the file exists, the file
identifier must be equal to n, a new file
takes tae value of n, if given, as its
identifier. The header is maintained and
becomes invisible only witnh the explicit
use of this control argument.

indicat2s that a new file 1is not to be
created 1f an attempt is made to open a
nonexisting file for output, input_output.,
or update.

restricts the file to a single segment, If
specifiad, an attempt to open a
multisegnent file or to expand a file
beyond a single segment is treated as an
error, The file must not be indexed.

indicat2s that the «creation of duplicate
keys 1is to be permitted (See "Duplicate
Keys"” below). The file must be i1ndexed.

-appends and -no_trunc control arguments
may be specified.

MAY BE CHANGED 3/76 -18 03730776 AG938

To form the attach description actually used in the
attachment, the pathname is expanded to obtain an absolute
pathname.,

Qoening_and_Access_Reguirements

AtlL opening modes are sJipported. For an existiny files, the
mnode must be compatible with the file type. (See "File
Input/Qutput” in Section V of the YPM Reference Guide,) The mode
nust be compatiole with any control arguments given in the attach
description,

An existing file is 1ot truncated at open if its safety
switch is on and its bit count is nonzero.

If the opening 1is for input only., only read access is
regquired on the file. In all other casess rw access is required
on the file,

°gsitign_Qperatign

An additional type of positioning 1is available with
unstructured and blocked files that are open for input.,
input_output., or update. dhen the type argument of the

iox_S%Sposition entry point is 2, this specifies direct positioning
to the record or byte whose ordinal position (0, 1+ 2/ <as) is
given. The zero position is just beyond the file header, if a
header is present,

DRAFT: MAY BE CHANGED 3/76 =19 03730776 AG9313

——— - - -

drite_Qperation

In blocked and sequential files open for update, this
operation i1s supported. Its effect is to append a record to the
fite or replace the next records, depending on the next record
position.

Rewrite_Qperation

If the file 15 a sequential file, the new record must be the
same length as the replaced record. If nots the code returned is
error_table_%$long_record or error_table_$short_record.

In a blocked file, no record nay be rewritten with a record
whose Llength =exceeds the maximum record Llength of the file.
Attempting to do so causes th2 code, error_table_%long_record, to
de returned.

Delete_Qperation

I1f the file is a sequential files, the record 1is Llogically
deleted, but the space it occupies is not recovered,

Deletions are not supported in blocked files. 1f the user
attempts to delete a record in a blocked file, the codes
error_table_3%no_operation 1s returned.

Jodes_Qperation

This operation i1s not sudported.,

Control_QOperation

The following control opesrations are supported by the vfile_
I1/0 module.

seek_head min_block_size get_key
read_position record_status add_key
truncate set_file_lock delete_key
max_rec_Llen set_wait_time reassign_key

DRAFT: MAY BE CHANGED 3/76 -18.1 03730776 AG938

- - - —

seek_head

The seek_head order is accepted when the I/0 switch is open
for keyed_seqguential_input or keyed_sequential_update. Ffor this
>rder the info_ptr argument must point to a structure of the
following formg

det 1 info based (info_ptr).,
2 relation_type fixeds
2 n fixed,
2

search_key char (J refer (n)):

The operation locates the first record with a key whose head has the
specified relation with the given search_key. The next record position and (for
keyed_sequential_update) the current record ' position are set to the

record. If no such record exists, the code error_table_$no_record is
returned. .

’

The head of a record's key is the first n characters of the key, the key

being extended by blanks if it has fewer than n characters. The allowed values
for info.relation_type are:

«

0 head = search_key
1 head >= search_key
- 2 head > search_key

DRAFT: MAY BE CHANGED 3/76 -18.2 03730776 AG938B

MT'B-269

vfile_ o : vfile_
—_— “~N
read_position TTTTm————

The read_position order 1is accepted when the I/0 switch is open ana
attached to a nonindexed file. The operation returns the ordinal position (0,
1, 2, ...) of the next record (byte for unstructured files), and that of the end
of file, relative to the file base. The file base is just beyond the header, if
a header is present.

For this order, the info_ptr argument must point to a structure of the
following form:

del 1 info based (info_ptr)
2 next_position fixed(3%4), /®*output#/
-2 last_position fixed(34); /®*output#*/

truncate

. The truncate order is accepted when the 1I/0 switch 1is attached to a
nonindexed file open for input_output or update. The operation truncates the
file at the next record (byte for unstructured files). If the next position is
undefined, the code error_table_$no_record is returned.

No info structure is required for this order.

max_rec_len

The max_rec_len order is accepted when the I/0 switch is open and attached
to a blocked file. The operation returns the maximum record length (bytes) of
the file. A new maximum length can be set by specifying a nonzero value for the
second argument. In this case the file must empty and open for modification, or
the code error_table_3$no_operation is returned.

For this order the info_ptr argument must point to a structure of the
following form:

del 1 info based (info_ptr)
2 old_max_recl fixed(21), /*output®*/
2 new_max_recl fixed(21); /*input#/

ww

MTB-269

control operation: "min_block_size"

This operation determines the minimum size for blocks of record
space which are subsequently allocated by write_record or
rewrite_record operations. The specification remains in effect
for the duration of the curr2nt opening or until another call to
this order is issued. The I/ switch must bpe attached to an
indexed file open for output >r update.

For this order the info_ptr argument must point to a structure of
the following form:

dcl 1T min_blksz_info based{(info_ptr).,
2 min_residue fixed(21),

2 min_capacity fixed(21):/

where:

1. min_residue (Input)
specifies the minimum unused capacity of a record
block (bytes)s, 1.e. the difference between the
record’'s tength and the maximum length it can
attain without requiring reallocation.

e min_capacity (Input)

specifies the minimum total record capacity
(bytes), i.e. the maximum length which the record
can attain witnout requiring reallocation.

Jhen the I/0 switch ts initially openeds, both these parameters
are set to zero.

MTB-269

control operation: "record_status"

This operation returns information about a specified record in an
indexed files, and optionally permits the user to manipulate the
record's lock and/or to allocate an empty record.

An argument 1is provided which permits one to entirely avoid using
the index 1n accessing and creating records (see Note below).

The I/0 swWwitch must ve open and attached to an indexed file. The
next record position is not altered or used by this operation.
The current record position is always set to the record
referenced.

The 1/0 switch must be open for output or update in order to
locks unlock or create a record.

For this order the info_ptr argument must point to a structure of
the following form:

dcl 1 rs_info based(info_ptr) aligned,
2 wversion fixed.,
2 flags aligned,
3 Llock_sw bit(1) wunal.,
3 unlock_sw bit(1) unal,
3 create_sw bit(1) unal.,
3 Locate_sw bit(1) unal.,
3 mbzl bit(32) unal.,

2 record_len fixed(21),
2 max_rec_Llen fixed(21),
2 record_ptr ptre.

2 descriptor fixed(35),
2 mbz?2 fixed;

dcl rs_info_version_1 static internal fixed init(1);

MTB-269

where:

1. version (Input)
is provided for compatibility with possible future
versions of this info structure,. The user should set
this argument to rs_info_version_1.

l. lock_sw (Input)
1f set to "1"p an attempt 1is made to lock the specified
record wWwithin the wait time Limit given at attachment
or subsequently set via the "set_wait_time" order.
Possible error codes are those returned by
set_Llock_%lock ’ as well as the code
error_table_%$no_roon_for_Locks which is returned if the
allocated record block is tooc small to contain a lock.
(see section entitled "Records Locks").

3. unlock_sw (Input)

t’-

5.

creat

locat

"U"b

”1"b

if set to "1"b an attempt is made to unlock the record.

Possible error codes are those returned by
set_lock_%unlock and the code
error_table_%no_roon_for_Llock. If both lock_sw and
unlock_sw are set to "1"b., the locking takes place
first and determines the resultant error code. (This

permits one to <clear an invalid lock 1n a single
operation.) '

e_sw (Input)

if set to "1"b causes a new record to be altlocated
using the record_Llen and max_rec_len arguments as input

parameters. The <contents of the record are set to
zeror, and its lock 1s set in the same operation 1f
lock_sw = "1"b, Depending wupon the setting of
locate_sws the new record may be entered into the
index. If Llocate_sw = "(O0"b the current key for
insertion is added to the index as a key for the new
record. Otherwise, no index entry 1s created and the

key for insertion becomes undefined.
e_Sw (Input)

if create_sw also = "0"b, this indicates that the
current record position defines the record of interest.
Otherwises the current key for insertion is used. If
the relevant position designator is undefineds, the code
error_table_%no_record or error_table_%no_key is
returned, whichever is appropriate.

if create_sw = "0"b this indicates that the descriptor
argument 1s an input parameter defining the location of

MTB-269

the record of interest, If create_sw = "1"b this
causes the new record to e created without a key.

b. mbz1l and mbz?Z2 (Input) must be set to zero by the user
7. record_Llen (Qutput)
(if create_sw = "1"> this argument is input) gives the

record's Length 1in oytes.

8. max_rec_Llen (Dutput)
i f create_sw = "1"b this argument is input and
overrides any minimun block size specification which
may currently be in effect (see "min_block_size"
order). The return=2d value gives the maximum length
which the record can attain (bytes) without requiring
reallocation., In tie current implementation, records
are allocated in olocks whose record capacity is a
multiple of four bytes greater than or equal to 24.
when this argument is used as an input parameter, the
resultant maximum vrecord tength 1is smallest number
greater than or equal to max_rec_len which corresponds
to an implemented (non-2zero) block size.

7. record_ptr (Qutput)

points to the first oyte of the allocated records, or is
set to null 1f no allocated record exists,

1J. descriptor (Qutput)

decl 1
2
2
where:
3.
D.

is a process independent locator for the specified
record. This wvalue is used as an input argument when
locate_sw = "1"b and create_sw = '"0"o. The actual
structure of each descriptor is as follows:

descrip_struct based (addr (descriptor)) aligned,
comp_num fixed(17) unal.,

word_offset bit(18) wunal,

comp_nuam is the msf component number of the segment
containing the record.

word_offset is the word of fset of tne block of storage
containing the allocated records relative to
the base >f 1ts file component,

A zero descriptor designates an unalltocated
(zero-length) record.

Note:

MTB-269

Descriptors may 3also be arguments to the orders
"add_key", "delete_key",» "reassign_key_r, and get_key".
Note that at any given time within a single file each
record is uniquely located by its descriptor, which
remains valid only for the life of a single allocation.,

If Llocate_sw is set to "1"b, the resultant current

record position mndoves "ogutside" of the index in the
sense that there is no key associated with the <current
record. This situation may also arise after using the

"delete_key" operation.

Wwhen this is the caser, a subsequent rewrite_record or
delete_record operation behaves differently from the
usual case. The difference is that no corresponding
index entry is changed or deleted to reflect the change
to the record,

Extrene caution mJust be exercised when using the
control operations which take a descriptor as an input
argument, especially in a shared environment. The user
is responsible for insuring that previously obtained
descriptors and pointers are still valid when they are
used. Also, pains nust be taken to maintain the index
in a consistent states, i.e.r, each index entry should
designate a valid record if a record reference may be
attempted. '

MT'B-269

"

control operation: get_key"

This operation returns both the key and the record descriptor for
the next record in an indexed file.

The 1/0 switch must be open for keyed_sequential_input or

keyed_sequential _update. I1f the next record position is at end
of file, the code error_table_$end_of_info is returned. If the
next record position is undefined., the code
error_table_%no_record is returned. The next record position 1is
unchanged, and the current record position is set to the next
record if the operation 1is successful; otherwise, the current
record position is set to null.

For this order the info_ptr argument must point to a structure
of the following form:

dcl 1 get_key_info based (info_ptr).,
2 mbz fixed.,
2 descriptor fixed(35),
2 key_length fixed,
2 key_string char(0 refer(get_key_info.key_lLength))’
where:
0. mbz (Input) must be set to zero
1. descriptor (Output)
is the record locator for the next record, This value
may be used as an input argument to the control
operations "add_key" "delete_key", "reassign_key'", and
"record_status'", (s2e Note below)
2. key_Llength (Qutput)
is the lenyth of the key at the next record position.
3. key_strinyg (Qutput)
is the next record's key
Note: The interpretation of the descriptor argument as a
record locator is not mandatory, since the operations
"add_key" and "reassign_key" permit the user to set the
descriptor po[tion >f an index entry to an arbitrary 36

bit value.

In such cases the da2scriptor itself may be thought of
as a one-word recd>rd which is "read" by the "get_key"

MT'B-269

operation.
control operation: "add_key"

This operation creates a new index entry with a given key and
record descriptor.,

The 1/0 switch must be opzn for direct_outputs, direct_update,
keyed_sequential _outputs, or keyed_sequential_update. Current and
next record positions are unchanged.

Associations may be formed between any number of keys and a
single record via this operation. Duplicate keys may be added 1 f
the file was attached with the -dup_ok option, or if the file
already - contains duplications, otherwise, the code
error_table_S$key _dup is returned. (See section entitled
"Duplicate Keys'").

Note that this operation, as ~ell as the orders '"delete_key",
"reassign_key", and I'"get_key", do not reference the length or
contents of a record. This pzrmits one to avoid the use of
actual records altogether in‘any given indexed file.

For this order the info_ptr arjument must point to a structure of
the following form: i

det 1 add_key_info based(info_ptrl,
2 flags aligned,
3 input_key bit(1) unal.,
3 input_descrio bit{(1) unal,
35 mbz bit(34) unal, /* must be zero */
2 descriptor fixed(35),
2 key_Llen fixed.,
2 key_string char{(0 refer(add_key_info.key_Llen));

where:
1. input_key (Input)
"0"b indicates that the cturrent key for insertion is the new
key. If this value is undefined., the code

error_table_%no_key is returned.

"1"b indicates that the key to be added is the key_string
contained in this info structure.

2. ihput_descrip (Input)
"0"b indicates that the current record defines the new
descriptor. 1f tne current record i1is undefined, the

code error_table_%$no_record is returned.

"1"b indicates that the user supplied descriptor in this
info structure 1s the new descriptor.

3.

4.

5.

descriptor (Input)

This argument is used only if the wvariable
input_descrip 1s set to "1"b. The descriptor is stored
into the index together with its associated key. Any

36 bit quantity nay be supplieds although in general
this number will have been previously obtained via the
"record_status" or "get_key" control operations,
Descriptors are used by operations which reference the
contents or length of a record, in order to obtain the
record's address.

key_Llen (Input)

is the length of the key_string. Keys must be between
0 and 256 chars, inclusive.

key_string (Input)

is used only i1f add_key_info.input_key is set to "1"b.
It defines the key to be added to the index wWwith the
appropriate record descriptor.

MT'B-269

control operation: "delete_key"
This operation deletes a specified index entry.

The 1/0 switch mus t e apen for direct_update or
keyed_sequential_update. The current and next file positions are
left unchanged, with the following exception: if the deleted
index entry is at the next record position, then the next record
position is advanced to the following 1index entry, or becomes
undefined in direct openings.

For this order the info_ptr argument may be nulls, or may point to
a structure of the following form:

del 1 delete_key_info Lliks add_key_info based (info_ptr)-
“here:
1. input_key (Input)

"0"b indicates that the key associated with the current file
position defines the key of the index entry which is to
be deleted. If current position 1s undefined or
outside the index (e.g., after deleting the current key
of the current record), the code error_table_3%no_key 1is
returned,

"1"b indicates that the user_supplied key_string defines the
key of the entry to be deleted. If no such key is
found, the code error_tablte_%no_key is returned.

2. input_descrip (Input)

"O0"b indicates that the index entry to be deleted 1is
assoclated with tne current record. if the current
record 1is undefineds the code error_table_%$no_record 1is
returned.

"1"b indicates that the entry to be deleted is associated
with the wuser_supolied descriptor. If no such entry
exists, the code error_table_%no_record is returned.

3. descriptor (Input)
is used only if Jdelete_key_info.input_descrip="1"b.
The entry which is deleted is the first whose
descriptor matches this value, amonyg those entries with
the specified key.

4, key_Llen (Input)

same as in "adgd_key"

MTB-269

S. kKey_string (Input)

when delete_key_info.input_key="1"b, this defines the
key for which the index entry with the specified record
descriptor is to be deleted.

1f the info_ptr argument is "ull, the index entry at the current
fite position is deleteds, 1.e., the effect 1s the same as that of
setting both arguments, input_key and input_descrips, to "0"b.

MTB-269

control operation: "reassign_key"

This operation causes the descriptor portion ot a specified index
entry to be replaced with a given value.

The 1/0 switch must be open for direct_update or
keyed_sequential_update. The file position designators are not
changed.

For this order the info_ptr argument must point to a structure of
the following form:

del 1 reassign_key_info based(info_ptr),
' 2 flags aliyned,
3 input_key bit(1) unal,
3 input_old_descrip bit(1) unale.
3 input_ned_descrip bit(1) unal.,
3 mbz bit(33) unal.,
2 old_descrip fixed(35).,
2 new_descrip fixed(35).,
P key_Llen fixed,
2 key_string char(0 refer(reassign_key_info.key_Llen))’
where:
1. input_key (Input)

"0"b indicates that the index entry to be reassigned has as
its key the .currant key for insertion. If undefined
the code error_tabl=s_%$no_key is returned.

"1"b indicates that the key_string argument defines the key
portion of the idindex entry to be reassigned. If the
key_string 1is not found in the 1indexs, the code
error_table_%no_key 1s returned.

2. input_old_descrip (Input)

"J"b indicates that the 2ntry to be <changed 1is associated
with the current record. If the current record 1s
undefined, the code error_table_%no_record is returned.

"1"b indicates that the old_descrip argument defines the
descriptor portion >f the index entry to be changed.

2. input_new_descrip (Input)

"0"b indicates that the specified 1index entry 1is to be
reassigned to t he current record. 1f the current
record s undefineds, the code error_table_$no_record is
returned.,

"1"b indicates that the argument new_descrip is to supply
the new value for t he descriptor portion of the

MTB-269

specified index entry.

old_descrip (Input)

is used onty if
reassign_key_info.inout_ol d_descrip="1"b. The entry
which s reassigned is the first whose descriptor
matches tnis value, among those index entries with the
specified key.

new_descrip (Input)

is used only if
reassign_key_info.inout_new_descrip="1"b. This wvalue
replaces the old descriptor of the specified 1index
entry,

key_Llen (Input)

same as in "add_key"

key_strinyg (Input)

when reassiyn_key_info.input_key="1"b., this argument
defines the key for which the index entry with the
specified descriptor is to be reassigned.

MT'B-269

control operation: "set_file_lock

The order "set_file_lock" is accepted when the I/0 switch is open
for output or update and attached to an indexed file with the
-share control arjument. For this orders, the info_ptr argument
aust point to a structure of the fol lowing form:

del set_Llock_flag bit(2) aligned based(info_ptr);

This operation <causes the file to be locked (if possible within
the wait-time Limit) or unlocked, depending on the user's settiny
the first bit of info_ptr>set_lock_flag to "1"b or "0"b.,
respectively,

The possible error codes are those returned by set_lock_3%lock and
set_lock_%unlock., excepting the code
error_table_s$invalid_Llock_res2t, which is not treated as an
error.

The second bit of set_lock_flay indicates the class of operations
#which are to be excluded oy 1locking the file. If “0"b only
operations which alter the file are excluded, passive operations
do not detect this state, Otherwise, all index referencing
operations are excluded, In any cases the exclusion only applies
to operations outside the current opening.

MT'B-269

control operation: "set_wait_time"

The order "set_wait_time" 1is accepted when the [/0 switch is open
and attached to an indexed file with =-share <control argument,’
For this order the info_ptr argument must point to a structure oOf
the following form:

decl new_wait_time fixed nased(info_ptr);

This operation specifies a limit on the time that the user's
orocess will wait to perform an operation when the file is locked
by another process. The interoretation of new_wait_time is the
same as that described earlier for the optional wtime argument
used with the -share attach ootion.

. " MIB-269

viile_ viile_

le enings

It is possible to have or attempt to have multiple openings of the same
file, that is, to have two or more open I/0 switches attached to the same file.
These switches might be in the same process or in different processes. With
respect to the effects of multiple openings, the various opening modes can be
divided into four classes (explained below). Multiple openings in which the
opening modes are in more than one class are invalid, as are nmultiple openings
within certain classes. The vfile_ I/0 module prevents some cases of multiple
opening. If a multiple opening is detected, error_table_$file_busy is returned
by the open operation. In cases where an invalid multiple opening does occur,
I/0 operations will cause unpredictable errors in the processes involved, and
the contents of the files may be damaged.

The classes of multiple openings are:

1. Openings for input without the -share control argument.
~.Any number of openings in this class are allowed. The existence of an
opening in this class never causes damage to the file. When this
class of opening is attempted, the existence of all class 2 and 3
openings and some class 4 openings will be detected for structured
files.

2. Openings for output or input_output without the -extend control
argument.
Only one opening 1is allowed. The existence of another opening is
never detected when this class of opening is attempted. The file |is
simply replaced by an empty file of the appropriate type. If the file
i3 was already open with an opening of any class except class 1, the
contents of the new file will probably be damaged.

3. Openings for update without the -share control argument and for output
or input_output without the -share control argument and with the
-extend control argument.

Only one opening of this class is allowed. -For structured files,
multiple openings within the class are detected. An invalid multiple
cpening involving an opening of this class and other openings of class

4 may be detected. If not, the only effect is that the class 3

ocpening locks the file for the entire opening.

Openings with the -share control argument.

Any humb r of openings of this
on the file,

type are allowed. When a process
the file is locked. OQther processes attemptigg an ration while the
file 1is 1locked will wait up to the limit gpecified by wtime in the
-share control argument. If the operation is|inot carried out because
of the wtime limit, the code error_table_$filg busy is returned.

3/76 3-19 U.Pd*’;’tﬁ/ AG93B

MTB-269

vfile_ vfile_

3

There are two codes that pertain only to «c¢lass 4 openings:
error_table_g¢asynch_deletion and error_table_g$asynch_insertion. The
first 1is returned by the read_record, read_length, and rewrite_record
operations when a record located by a seek_key operation has been
deleted (by an operation in some other opening). The second is
returned by write_record when a record with the key for insertion
(defined by a seek_key operation) has already been inserted (by some
other opening).

Interrupted Openings

I1f a process opens a file and terminates without closing the file, the file
may be left in an intermediate state that prohibits normal I/0 operations on the
file. The exception 1is openings for input only. The details depend on the
particular type of file as follows:

1. Unstructured -file.
In general, the bit count of the file's last segment will not be
properly set. This condition is not detected at subsequent openings,
and part of the file's contents may be overwritten or ignored.

2. Sequential file.
In general, certain descriptors in the file and the bit count of the
file's 1last segment will not be properly set. This condition is
detected at a subsequent open, and the code error_table_¢$file_busy 1is “~
returned.

3. Blocked File.
In general, the file's bit count and record count will not be correct.
This condition 1is detected at a subsequent open, and the code
error_table_$file_busy is returned.

y, Indexed file.

In general, the bit counts of the file's segments will not be properly
set, and the file contents will be in a complex intermediate state
(e.g., a record, but not its key in the index, will be deleted). This
situation 'is detected at a subsequent open or at the beginning of the

8 next operation, if the file is already open with the -share control
argument. Unless the opening is for input without the -share control
argument, the file is automatically adjusted. If this situation is
detected by an opening for input without the -share control argument,
the code error_table_$file_busy is returned. Opening the file for
update will properly adjust the file.

When an indexed file 1is adjusted, the interrupted operation
(write_record, rewrite_record, or delete_record), if any, is
completed. For rewrite_record, however, the bytes of the record may
be incorrect. (Everything else will be correct.) In this case, an
error message 1s printed on the terminal. The user can rewrite or
delete the record as required. The completion of an interrupted write
operation may also produce an incorrect record, in which case the
defective record and its key are automatically deleted from the file.

Ang type of file nay be properly adjusted with the v{ile_adjust command -~
(described in the MPM Commands) if any interrupted opening has occurred.

MTB-269

vfile_ T) viile_

Inconsistent Files

The code error_table_gbad_file (terminal messaée: "File is not a structured
file or is inconsistent") may be returned by operations on structured files. It
means that an inconsistency has been detected in the file. Possible causes are:

1. The file is not a structured file of the required type;

2. A program accidentally modified some words in the file.

Qbtaining File Information

The type and various statistiecs of any of the four vfile_ supported file
structures may be obtained with the vfile_status command or vfile_status_
subroutine (described in the MPM Commands and Subroutines respectively).

l\&

MTB-269

Record Locks:

This feature pertains only to indexed files. Record locks
provide a basis for synchronizing concurrent access at the
individual record level, The setting and <c¢learing of record
Locks is explicitly controlled by the user via the
"record_status' order.

Wwhen the capacity of an 3allocated record block exceeds its
contents Dby at least four oytess, the last word of the block 15
treated as a record lock. A non-zero lock identifies the process
which set it. The user can iasure that record allocations Lleave
room for a lock by wusing the "min_block_size" order with a
residue specification of at least four bytes.

All operations which reference the length or contents of an
existing record (e.uy.sr Seek_x2ys, DUt not "seek_head”) also check
the record's lock (if one exists). I1f the record is not locked,
the operation proceeds normally. Otherwise, the returned error
code reflects the state of th2 locks indicating that the contents
5f the record may be in an inconsistent state, In this case. if
the operation does not explicitly involve changing the file, it
proceeds normally and the returned code is one of the following:

1. error_table_srecord_busy
if the record is locked by a live process.
2. error_table_%lock_is_invalid

if the record's lock 3is set, but not by an existing
process.

Attempting a rewrite_record or delete_record operation on a
record locked by another orocess has not effect other than to
return the code error_table_3%record_busy (file is unchanged). If

the Lock is inval id, thesz2 operations return the code
error_table_$invalid_lock_resst and zero the locks or if the lock
was set Dy the caller., the code returned is

error_table_%$lncked_vy_this_process, in either case the operation
is otherwise successful.

Wwhen a record which 1s Llocked by the wuser's process 1is
rewrittens, its Lock remains sets, so long as the minimum block
size specification currently ian effect is such as to leave enough
room for a record_locka.

MTB-269

Duplicate Keys:

By default vfile_. prevents the wuser from associating a
single key with more than s>ne record in the same indexed file.
This restriction is removed when the -dup_ok attach option 1is
used or if the file's statistics indicate that duplicate keys are
already present. . ‘

Duplicate keys <can be created via either the write_record
operation or the "add_key" control order. When duplications are
permitteds the key for insertion is defined as the key of the
current records, if it exists. ’ :

With this extensions the notion of an "index entry” becomes
more basic than that of 2a single key in the index. An index
entry is an association ocoetween a string of characters (key) and
a number (record descriptor).

Index entries are srdered by - key. - Within multiple
occurrences of the same key, the order is identical to the order
in which the entries were created. A seek_key or "seek_head"”
operation Locates the first instance of a set of duplicate keys.
A write_record operation advances the file position beyond the
Last instance of the key for insertion, if the key already exists
in the index. o

The next record position is best thought of as corresponding
to the next index entry., Operations which can .advance the next
record position <(read_record, rewrite_records, position - skip)
permit one to locate intermediate instances of duplicate keys.

