
MULTICS ltCHNICAL BULLET!~ t<iTB-266

To: JJistribution

From: Andre Bensoussan

Date: 03/12/7b

Subject: hemoving Directory Control from the Security Kernel

ltiTI\QDUCTION.

This document is a proposal to remove directory control from the
Air Force security kernel in the Multics Syst~m. It is intended
to serve as a basis for further discussions with the various
groups involved in project Guardian at the Air Force, Mitre, MIT
and Honeywell, in order to evaluate its feasibility.

The long range objective is to show that the mathematical model
for security, developed by Mitre, can be met by a system for
which the top level formal specifications do not refer to
directories at all.

The short range objective is to make minor changes to the Multics
version known as the ''new storage system" in order to obtain a
system where the security access rules (i.e., no read up and no
write down) are enforced regardless of how directories are
manipulated.

This document addresses the· short range objective only. The term
"security kernel" is used to refer to the set of supervisor
procedures and data bases which are necessary to enforce the
security access rules.

hemoving the management of directories from the security kernel
would require restructuring the current ring O supervisor into
two hierarchical layers. The security kernel would operate in
ring O; it would provide the segment and the process entities and
would be responsible for enforcing the security access rules.
Directory control would operate in ring 1, under the rules
imposed by the kernel, and would use the abstract machine made
available by the kernel in the form of a set of ring 0 kernel
primitives.

The design of the new storage system has, to a large extent,
achieved the separation of directory control and segment control,
and would provide a very good basis for implementing this
proposal without a major rewriting of the current ring zero
supervisor.

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2 MTB-266

THE KEhNEL AND l'HE DIRECTORY .I.l:IB.t;. STRUCTURE.

Une would expect the new kernel to be ignorant of directories.
The new storage system has the appropriate modularity to cope
with this situation, except for the quota implementation. The
quota facility is defined in terms of the directory tree
structure, and the procedures that implement this facility must
know about the tree structure. Since the implementation of ouota
is distributed between directory control, segment control and
page control procedures, the knowledge of the tree structure,
instead of being encapsulated in directory control, has
penetrated deeper into segment control and page control. To
eliminate the knowledge of the tree structute from the new
kernel, one has to reimplement the quota facility in such a way
as to perform in directory control those quota manipulations that
take place in segment control and page control of the current
system (as well as the new storage system). Such an
implementation of the quota facility poses no logical problem:
the quota information would be stored in directories and managed
by directory control; a "page fault" for a page with no disk
address would be turned into a "quota fault" handled by directory
control; the quota fault handler would check and update the quota
information and would call the page fault handler in page control
after having authorized this page to use a disk record.

~ractically, however, it would require a large effort since the
data structures used in the new storage system would have to be
changed, a large number of segment control and page control
procedures would have to be modified, and new procedures would
have to be written. In addition, it would introduce a high
overhead since the "quota fault" handler, invoked quite often,
would induce new page faults to do its job while, in the current
system, all data needed to do the quota checking at page fault
time is carefully kept in core memory by page control and segment
control.

1For a long range project, or for an experimental system, one
certainly should consider reimplementing the quota facility in
artier to simplify the kernel specification as well as its
implementation and certification.

For a sho~t range project, what I am proposing instead, is to
retain the present implementation of quota, as in the new storage
system, and to retain in the security kernel just enough
knowledge about the directory tree structure to guarantee that
the kernel would never violate the star property wh~n performing
a quota operation.

MTB-266 Page 3

ThE BASIC SXSTE.tJ. REQUIREMENTS.

In order to remove directory control from the s~curity kernel the
system should be endowed with the following properties:

1. Directories must no longer contain any item needed to
implement the segment entity or to enforce the security access
rules.

2. Access to directories must be subject to the security access
rules as if they were user segments.

3. Directory control procedures must execute in a less privileged
mode than the kernel.

4. The kernel must guarantee its ~ntegrity without using
directories and, in particular, without using the ACL
protection mechanism provided by directory control

These four requirements are discussed separately below.

SEGMENT ATTHJ;B,U'.f}!:~ !1EORGANI.Zl\TION.

In the old storage system, the first requirement was far from
being satisfied. All segment attributes, .regardless of their
nature, Qere stored in directories. For example, the file map of
a segment, needed to implement the segment entity, was stored in
a directory, making segment control vulnerable to directory
control since any directory control procedure could modify the
file map.

In the new storage system, segment attributes have been
reorganized into two groups. The first group consists of those
attributes that directory control is responsible for, such as the
symbolic names, the access control list, the ring brackets; these
attributes are still stored in the branch. The other group
consists of those attributes which are needed by segmen~ control
and page control to implement the segment entity and the quota
facility, as well as the security attributes; these attributes
are stored in a data base manipulated exclusively by segment
control procedures. This data base is called the VTOC (Volume
Table of Contents). There is one VTOC for each disk, describing
all segments stored on the disk. The VTOC for a disk is stored
in the disk itself, at a conventional location, and consists of
an array with one entry for each segment residing on the disk.
Each V1GC entry contains the following segment attributes:

the unique identifier
the security access class
the file map
the current and maximum segment length

~age 4

the dates the segment was last used and modified
the directory switch (*)
the unique identifier of the parent (*)
the number of records used (*)
the quota information (if directory) (*)

- .a few other items needed by the salvager

MTB-266

All items marked with an (*) are used by segment control or page
control procedures that deal with Quota. If the quota facility
was· entirely implemented by directory control procedures, these
items would be moved to the branch (or to some other non-kernel
data base), and segment control would totally ignore the
existence of directories,

The basic system requirement 1 is entirely satisfied by the new
storage system, due to the way segment attributes are split
between the directory branch and the VTOC entry.

ACCESS TO DIRECTORIES.

The second requirement states that access to directories must be
subject to the security access rules. What is meant by ''access"
is direct access, hardware access through a segment descriptor
word (SLJW). A process should never be permitted to modify even a
single bit of a directory if the classiciation of the process is
not equal to the classification of the directory. A process
should never be permitted to read even a single bit of a
directory if the classification of the process is not greater
than or equal to the classification of the directory.

In the old storage system, there were many instances where a
process could not perform under these restrictions:

A process of any classification had to be able to write in a
directory of any classification in order to deactivate a segment.
The new storage system handles the deactivation of a segment
without reading or modifying or locking or having to know
anything about the parent.

A high classification process had to be able to modify lower
classification directories in order to activate a high
classification segment. The new storage system handles the
activation of a segment without modifying any bit of any
directory.

A high classification process had to be able to modify a lower
classification directory in order to lock it since the lock was a
word of the directory. In the new storage system, the lock of a
directory does not reside in the directory therefore locking and
unlocking a directory does not require modifying the directory.

MTb-266 Page 5

une could probably find other examples where the security access
rules had to be violated when accessing a directory. ln the old
storage system, a simple analysis of the various items stored in
a directory would show that they can be classed into three
categories, with respect to security: first, those with the same
classification as the directory itself, such as the header, the
names, the ACLs; second, those with the same classifications as
the segments they refer to, such as the size of the segment, the
time it was modified, the quota information; and third, those
with no classification at all such as the file map, the AST entry
pointer. because of the heterogeneousness of the information
recored in a directory, some of the directory manipulations could
not be done without reading and modifying the . directory
regardless of its classification. In the new storage system all
items stored in directory are exclusively of the same
classification as the directory itself. All items that were not
of the same classification as the directory have been eliminated
and, as a result, all directory operations that required
violating the security rules have been eliminated. Therefore,
subjecting directory control to the security access rules would
still give all proc~sses enough access to perform all operations
they are supposed to perform, and would guarantee that security
could not be compromised by a malicious or erroneous directory
control procedure.

The basic system requirement 2 is also satisfied by the new
storage.system.

LihECTORY CONTROL lH .IUil.Q l•

lt is clear that, for this proposal to make any sense at all,
directory control should not be able to change the kernel. The
most natural way in Multics to protect the kernel from di~ectory
control is to use the ring mechanism. The kernel would execute
in ring zero and directory control in ring 1. This means that
all directories would reside in ring 1 and all directory control
procedures would execute in ring 1. (The current ring 1 would be
moved into ring 2, curently empty).

All supervisor ring O gates such as hcs$xxx entry points would
become ring 1 gates which may, in turn, call upon a new set of
kernel ring O gates.

The kernel must present an adequate interface to directory
control in the · form of a set of kernel primitives to create
segments, to delete them, to truncate them, to manipulate those
segment attributes which are relevant to directory control but
stored in the VTOC entry (such as the quota), to assign segment
numbers and to.manipulate the access fields of segment descriptor
words. The list of these kernel primitives is given in one of
the next paragraphs.

Page tJ tv;TB-266

The basic system requirement 3 is not satisfied by the new
storage system, of course. Bowever, the new storage system
provides a very good framework for implementing it since segment
control has been made functionally independent of directory
control. As a result, the new storage system already exhibits the
exact modularity one would expect the system to have. for moving
directory control into ring 1. In fact, each of the kernel
primitives described later is already available as a separate
ring O procedure.

~EL. INTEGRITY•

In the current system, the integrity of the kernel is achieved by
using the ring protection mechanism and the ACL mechanism. The
ring information, as well as the ACL information are stored in
directories and manipulated by directory control primitives.

lf directory control is no longer part of the kernel, access to
all kernel segments must be determined by using information
recorded in a kernel data base and manipulated by kernel
procedures. The protection mechanism needed to protect kernel
segments does not have to be as flexible and sophisticated as the
ACL mechanism used to protect user segments because, in most
cases, all users are given the same access rights to a given
kernel segment, and also because these access rights are not
likely to change as often and as freely as the ACL for user
segments.

The protection mechanism I am proposing is only one of many
possible mechanisms; it is less flexible but simpler than the
ACL mechanism and can be described as follows: A kernel segment
always has the same ring brackets; it has a single standard
access mode used for standard processes, and a single privileged
access mode, associated with a single privileged process key,
used for privileged processes that have requested and obtained
this privilege key at login time. The privileged access mode
would allow a trusted system process to call special kernel gates
that are not available to normal users. These privileged
processes would have to request that a given key be associated
with them at login time. This request would be validated the
same way the user name, project name, and access class are
validated at login time.

This mechanism can easily be implemented in the new storage
system. The VTGC entry of a segment could indicate whether or
not the segment is a kernel segment. If it is a kernel segment,
the access control information would be found in the VTOC entry
and would be used by the kernel to manufacture the access field
of the segment descriptor word for that segment.

· l-iTB-266 Fap,e 7

KERNEk fRIMITIVES.

This paragraph provides the list of the primitives the kernel
should make available to directory control, in order to make it
possible for directory control to perform those functions it is
responsible for. All these primitives already exist in the new
storage system but they are not implemented as kernel gates and
they do not perform any security checking. The purpose of this
paragraph is to select from the set of segment control procedures
those which need to be a gate, to give a short description of
what their functions are, and to give a complete description of
the security checking they are responsible for. Special gates ·
available to only privileged ~rocesses, such as "declassify", are
not relevant to this discussion and have been omitted.

1he following notation is used in this paragraph:

~Rh = error
s = segment number
uid = unique identifier
cl (process)= clearance of the current process

·Cl (uid) - classification of the segment defined by uid
par (uid) = parent of the segment defined ~Y uid

1. create (parent_uid, dirsw, access_class) returns (uid)

This procedure creates an empty segment (i.e., a VTOC entry)
.with the access_class defined by the input argument
"access~class". The parent of the created segment is defined
by its unique identifier "parent_uid", and the directory
switch "dirsw" defines whether or not the created segment is a
directory. A new unique identifier is assigned to the created
segment and its value "uid" is returned to the caller.

ERh if parent_uid does not denote a directory
ERR if cl (process) t cl (parent_uid)
ERR if (cl (process) ~ access_class) = false
EflR if dirsw = 0 AND access_class -J cl (parent_uid)

2. delete (uid)

This procedure deletes the segment · (i.e., the VTOC entry)
defined by its unique identifier "uid".

~hR if uid not found or if it denotes a kernel segment
ERH if cl (process) -J cl (par (uid))
~hh if cl (par(uid)) < cl (uid) AND segment to be deleted is

not empty ·

1his primitive provides a "write-down" channel when deleting
an upgraded directory. This channel also exists in the
current system and is not due to the fact that directory
control is outside the kernel. It could be· eliminated by

Page b MTB-266

making deletion of upgraded directories a trusted process
function.

3. truncate (uid, n)

This procedure truncates the segment defined by "uid'', from
the word number "n".

EHh if uid not found or if it denotes a kernel segment
ERh if cl (process) i cl (uid)

4. give_quota (uid, q)

This procedure delegates an amount of auota equal to q (q>O)
to the directory whose unique identifier is "uid", from its
parent.

hRH if uid does not denote a directory
ERH if cl (process) i cl (par(uid))

5. return_quota (uid, q)

This procedure returns an amount of quota equal to q (q>O)
from the directory whose unique identifier is ''uid" to its
parent.

Ehh if uid does not denote a directory
ERR if cl (process) i cl (uid)
~Rh if cl (process) i cl (par(uid))

b. read_vtoce_item$XXX (uid) return (v)

This procedure has one entry point for each item XXX located
in the VTOC entry, that directory control may have to know the
value of. The entry point XXX reads the item XXX from the
VTOC entry defined by its unique identifier "uid'', and returns
its value "v" to the caller.

hkh if uid not found
ERh if (cl(process) ~cl (uid)) = false

7. write_vtoce_item$XXX (uid, v)

lhis procedure has one entry point for each item XXX located
in the VTOC entry, that directory control may have to change
the value of. The entry point XXX selects the VTOC entry
defined by its unique identifier "uid", and assigns the value
"v" to its item XXX.

ERH if uid not found or denotes a kernel segment
EHR if cl (process) i cl (uid)

.. '

MTB-266 Page 9

b. assign_segno (uid) returns (s)

Assigns a
identifier

new segment number "s" to the segment whose unique
is "uid", and returns the value "s" to the caller.

~hh if uid not found
&Rh if (cl (process) ~cl (uid)) = false

9. release_segno (s)

Makes segment number "s" invalid in the current process.

EHR if segment number "s" has not been assigned by the
assign_segno primitive in this process

10. give_access (s, mode, rings)

Sets, in the segment descriptor word for segment number "s",
the ring brackets to the values specified by "rings", and the
access field to the mode specified by "mode", adjusted
according to the star property.

t..kR if segment number "s" has not been assigned
ERR if any ring numbers specified by "rings" is zero
ERR if segment defined by "s" is a kernel segment

11. revoke access (uid)

Revokes any prior access that has been granted to that segment
by the "give_access" primitive in any process.

Ehfi if uid not found or denotes a kernel segment

The first time a process references a segment to which access
has been revoked, an "access_must_be_recomputed" fault occurs,
transferring control to the "recompute_access" procedure in
directory control. This procedure recomputes the access and
calls the "give_access" kernel primitive to set the access
bits in the segment descriptor word.

12. lock_directory (uid)

Performs a P operation on a binary semaphore associated with
the airectory defined by uid.

Ehh if uid does not denote a directory
Ehh if (cl (process) ~ cl (uid)) = false

~age 10 MTB-266

13. unlock_directory (uid)

Performs a V operation on a binary semaphore associated with
the directory defined by uid.

EHh if uid does not denote a directory
ERh if (cl (~recess) 2 cl (uid)) = false

CONCLDSION.

If the decision is made to implement this proposal, the short
range project would consist of (a) giving informal (but precise)
specifications of the kernel functions, (b) using these
specifications to get a good level of confidence that they
represent the mathematical model for security, and (c) modifying
the hultics new storage system as proposed in this document.

The long range project would consist of (a) giving formal
specifications of the kernel, without refering to directories at
all, not even to the tree . stru~ture, (b) proving that these
formal specifications represent the mathematical model and (c)
implement a kernel that meets the formal specifications.

I am very thankful to Jerry Stern for the long discussions he had
with me and for his valuable comments and criticisms.

