
MULTICS TECHNICAL BULLETIN MT B-2 62

To: Distribution

from: Robert s. Coren

Date: 02/25/76

Subject: New Strategy for Conversion of Terminal Input

MTB 234 described a new method for processing terminal
output in ring zero making extensive use of EIS. The design
described has since been implemented in MIT system 27-6, and will
be part of Multics Release 3.1. The new implementation shows
approximately a threefold improvement in the efficiency of
tty_write, measured in terms of the virtual CPU time spent in
tty_write for each character sent to the 355; on MIT, about 1% of
total time charged is now spent in tty_write, as compared to
about 2.5% in pre-27-6 systems.

The current implementation of the ring-zero input-processing
module, tty_read, has essentially the same problems as those
described in MTB 234 for the old tty_write: characters are
processed one at a time, even in "rawi" mode; translation,
canonicalization1 and escape processing are handled
simultaneously and driven by a single table; fixed tables in ring
zero are used, pointers to which are constructed on every call.
In addition, canonicalization is mishandled in some cases, as
indicated in MTB 251; and the "prescan" function, which is
intended to examine input for case-shift characters and to update
the current column position for use by tty_write, is invoked at
the wrong time and is therefore unreliable.

This MTB proposes a redesign of tty_read along the same
lines as the recently-completed redesign of tty_write.
Character-by-character processing is abandoned in favor of
separate phases using PL/I builtin functions and ALM subroutines
coded with EIS; canonicalization is reimplemented so as to
conform to the rules set forth in MTB 251; the "prescan" function
is removed from tty_read altogether, and its equivalent added to
the 355 software <as described in a separate MTB>. A version of
tty_read implementing this design is intended for Multics Release

Multics Project working documentation. Not to be reproduced or
distributed outside the Multics Project.

-1-

MULTICS TECHNICAL BULLETIN MTB-2 62

4.0.

One incompatible change that :is being proposed is to discard
all "invisible" characters <i.e., control characters that do not
involve carriage or paper motion> whenever the channel is in
"can" or "erkl" mode. The motivation for this proposal arises
from these characters' invisibility: they do not show up on most
terminals, and their retention violates the principle of
canonicalization, that the contents of a line of input depend on
its physical appearance. In other words, there is no way to
distinguish visually between a#b and a<ETX>#b; what does the #
erase? What column position does the ETX occupy?

The ability to input such characters directly Ci. e., rather
than by using octal escape sequences> seems to be of limited
utility. The one exception might be the desire to use such a
character as a kill or erase character; there are systems in
existence which use CAN (octal 030, input by typing <CTL>x), as a
kill character. User-replaceable kill and erase characters are
planned for the. future: it would not be too difficult to arrange
not to throw away control characters which were being used for a
Multics-defined purpose. For the present, a user employing
special characters for erase and kill must process them in the
user ring, and accordingly would not be in "can" or "erk l" mode.

In addition, since the elimination of control characters would
be a translation function <see below), user-substitutable
translation tables Calso a planned future improvement) would
allow a user to admit selected control characters at will. In any
case, all possible 9-bit patterns can be input as octal escapes.

One implication of this change is
of the ESC character (octal 033) is
character has been used primarily
characters; this can be done by using
\016 and \017.

that the special meaning
eliminated for input. This
to insert ribbon-shift
the o ct a l escape s eq u enc es

The obligation of tty_read, when called through he~_, is to
return in a caller-supplied buffer either 1) as
as the caller specified; 2> all characters up to
the first "break" character present in ring-zero
speci tied channel: or 3) all characters remaining

-2-

many characters
and including

buffers for the
in the buffers

MULTICS TECHNICAL BULLETIN MTB-262

for the specified channel, whichever is fewest. The "break"
character is by default a newline character: there is currently
no way to change this, but future modifications. may permit lt.

Certain transformations may be performed on the characters
typed by the user, such as reduction to canonical form, removal
of "erased" and "killed" characters, and the interpretation of
escape sequences. The application of these transformations
depends on both the modes associated with the channel and the
contents of certain tables which are available to tty_read.

The functions of tty_read may be divided into the
phases:

following

1. 'OQ~iog raw input data
ring-zero buffers;

2. l!4D~i.at.ig.o to ASCII

from tty_buf, and freeing

3 .. ~!l!H20i'-~1.iza.t.igo of the contents of column positions

the

Clearly, these five phases are not always necessary. Phases 3, 4,
and 5 depend on "can", "erkl", and "esc" modes, respectively; in
"rawi" mode, only phase 1 is required.

For convenience and to ensure consistency, conversion Cthe
generic term used here for the relevant subset of phases 2
through 5> is done on all characters up to and including the
first break character in the input buffers, whether or not the
bre3k character is found within the limH specHied by the
caller. This avoids the possibility of terminating conversion in
the middle of an escape sequence or of a line that is
subsequently killed, and also allows for the possible shrinkage
of the input string <through the deletion of extraneous white
space and the condensation of escape sequences, for example>.
"E x t r a " c h a r a c t e r s t h u s c on v e r t e d (i • e • , t h o s e t h a t c a nn o t b e
returned because the caller has not provided sufficient space>
are saved in reallocated buffers in tty_buf; these buffers are
marked wHh a "converted" flag and chained to the b~Sl.d of the
channel's input chain so that they can be picked up by the next
call to tty_read. In two exceptional cases, conversion cannot
proceed to the first break character: the first is, obviously,
when no break character is present; the other is when the size of

-3-

MULTICS TECHNICAL BULLETIN

tty_read's internal automatic buffers is exceeded.
that will be explained later in this document, both
are Pxpected to be very rare.

MT B-2 62

For reasons
these cases

Reference is made in the course of this document to entries
in the subroutine tty_uiil_, which is described in MTB 234. A new
entry, tty_util_$tct, has been added: it performs the same
function as tty_util_$find_char, except that it checks neither
for characters with t'hei'r high-order bits on nor for combinations
of white-space characters.

The remainder of this document consists of the following:

1. A few remarks on the management of
buffer space:

t t Y._ read ' s internal

2. A more detailed description of the five conversion phases
mentioned above:

3. A description of the modifications required to the data
structures described in MTB 234;

4. Module descriptions of the new column canonicalization
r o u t i n e , t t y _ c a non (w h i c h r e p l a c e s t h e o l d t t y_ c on > , a n d
the new ~ntry tty_util_$tct.

familiarity with the material in MTBs
throughout.

2 34 and 251 is assumed

During conversion, intermediate forms of the input string
result from each conversion phase: for the storage of these
i n t e r m e d i a t e s t r i n g s , t w o b u t f e r s a r e m a i n t a i n e d i n tt y_ r e a d ' s
automatic storage. Clearly this sets an upper Umit on the
allowable length of the input string. The normal limiting
factor, of course, is the presence of a break character, and
input lines longer than 100 characters are rare; a further
limitation is imposed by the 355 software, which takes a channel
out of receive mode if more than 600 characters are input without
a break character. The input string can grow during
canonicalization through the .replacement of carriage returns by
multiple backspaces, but this occurrence too is rare. All in all,
a buffer size of 720 is very unlikely to be exceeded. ~

-4-

MULTICS TECHNICAL BULLETIN MTB-262

Consequently, no more than 720 characters are copied into
the internal buffer from tty_buf. If the canonicalization phase
attempts to increase the length of the string past 720, tty_read
will start again from the beginning with a limit of 480
characters to be copied. This limit is entirely safe, since
canonicalization cannot 1ncrease the length of the string by more
than SOX. Because of the remote possibility that this restart may
be necessary, buffers in tty_buf from which input characters have
been copied cannot be freed until after the canonicalization
phase is completed.

Since conversion is, if possible, carried out on all
characters up to and including the first break character, the
final converted string may be larger than the buffer provided by
the caller. If this is the case, enough characters to fill the
caller's buffer are returned: the remainder of the converted
characters, as indicated above, are saved in buffers in tty_buf
1n each of which a "converted" flag is ~et. In addH·ion, if one
of these buffers contains a break character (the last one
generally will), a "break" flag is set in that buffer. These
buffers are added to the head of the chain of unconverted input
buffers (the "read chain"), and the input pointer in the control
block associated with the channel is set to point to the first
"converted" buffer.

IN "rawi" MODE

The copying phase in "rawi" mode is very simple. Characters
are copied from tty_buf, starting at the head of the read chain,
directly into the caller's buffer, until either the caller's
buffer is filled or the read chain is exhausted. Any buffer from
which all the characters are thus copied is freed.

NOT IN "rawi" MODE

If there are any "converted" buffers at the head of the read
chain, characters are copied from these buffers directly into the
caller's buffer until either the caller's buffer is full, a break
character has been copied, or the chain of converted buffers is
exhausted. (In general, the last converted buffer contains a
break character, and non-last converted buffers do not.> Any
converted buffer from which alt the characters are copied is

-s-

MULTICS TECHNICAL BULLETIN MT B-2 62

freed.

If th~re are no converted buffers, or the converted buffer
chain is exhausted without encountering a break character or
filling the caller's buffer, characters are copied from the
unconverted read chain (if present) into the first of tty_read's
automatic buffers, until either a break character is encountered,
the read cha;n is exhausted, or the internal buffer is filled.
Buffers are not freed at this time, for the reason given above
under "Space Management."

Because the 355 does not normally send input to the 6180
until a break character is typed, the read chain almost always
ends with a break character. <Consequently, the converted chain
usually does, too.> It might not if there was a quit on a channel
not in "hndlquit" mode Cin "hndlquit" mode the read chain is
discarded on a quit), or if the channel exceeded the 355
software's 600-character limit.

If any characters were copied from unconverted buffers,
conversion of the contents of tty_read's automatic buffer begins.

Lt a.a~ la.tioo

If a translation table exists for the terminal type
associated with the channel, it is used in a call to
tty_util_$mvt to copy the characters from one internal buffer to
the other, simultaneously translating it to ASCII. Translation is
required for IBM-type terminals using either EBCDIC or
Correspondence character codes: it is also used to translate
capital ~etters to lowercase for uppercase-only terminals such as
a Teletype Model 33. <Escaped letters will be changed back to
uppercase by the escape-processing phase.>

The translation phase does not have to deal whh case-sh; ft
characters. Under the new design, the 355 is responsible for
recognizing case shifts, and for turning on the 100<8> bit in al!
uppercase characters (characters on shifting terminals are only
six bits>. All that is necessary on the 6180 side is a
translation table that includes characters with the "100" bit on

-6-

MULTICS TECHNICAL BULLETIN MTB-262

and translates case-shift characters to ASCII NUL characters.

If the channel is in "can" or "erkl" mode, a further
translation is done using a general table which translates
"invisible" characters Csee above) to NUL <all zero> characters.
NUL characters are subsequently discarded by the canonicalization
phase.

Column-position canonicalization takes care of itself unless
the input string contains leftward carriage motion, i. e.,
backspace ~nd/or carriage return characte~s. In addition,
backspaces and carriage returns at the left margin or immediately
preceding a newline are discarded. In other cases,
canonicalization must be performed in accordance with the rules
given in MTB 251.

The canonicalization phase therefore begins by searching the
internal buffer <using the PL/I "search" builtin> for a
left-motion character <carriage return or backspace>. If the
first character is a left-motion characte~, the buffer pointer is
advanced by one character, the string length is decremented by
one, and the new string is searched as before. If a left-motion
character is found, a verify builtin is used to discover if the
rest of the line consists of white space (backspaces, carriage
returns, spaces, horizontal tabs, or NULs> followed by a newline.
If this is the case, the string length is reduced to the result
of the search, and the newline is copied to the new end of the
string. If a left-motion character is discovered in any other
position, tty_canon is called to pe.rform column canonicalization.

The subroutine tty_canon is a revised version of the old
tty_con, and uses the same basic algorithm: store each printing
graphic from the input string in an array along with its correct
column position: sort the array by column position, and by
character within each column position; restore the characters to
the input string location in the resulting order, inserting
backspaces and spaces as appropriate. Tabs must be treated as a
slightly special case of printing graphic, so that tabs which are
in no way overstruck are preserved but others are replaced by
spaces.

-7-

MULTICS TECHNICAL BULLETIN MTB-262

A module description of tty_canon appears at the end of this
document: the calling sequence has been modified so that the
module could theoretically be called with an arbitrary string in
othPr environments than that of the ring-zero typewriter DIM. The
resulting calling sequence is still not ideal, as it contains
arguments that are both input and output: this approach is
retained for reasons of efficiency. Eventually, an essentially
equivalent module can be implemented in the user ring.

The structure used
makes th~ sort very easy,

for
thus:

the elements of the sorting array

dcl 1 column_array Cmax_size) aligned,
2 column fixed bin C17> unaligned,
2 erase bit (1) unaligned,
?. kill bit C1> unaligned,
2 vertical bit (1) unaligned,
2 pad bit CS) unaligned,
2 not_tab bit (1) unaligned,
2 char char C1 > unaligned;

The "erase" bit inriicates an erase character: the "kill" bit
inciicates a kill character: the "vertical" bit indicates a
non-newline char~cter requiring vertical carriage motion Ci. e.,
vertical tab or form-feed>: the "not_tab" bit is on for any
character except a horizontal tab. It can be seen that by
treating each element of the array as a single value for the
purpose of sorting, the characters automatically come out in
column order and in character order in each column, except that:
1> an erase character will always be the last character in its
column position: 2> a kill character will be last in its column
position unless overstruck with an erase character: 3) a
horizontal tab will always be the first character in its column
position: and 4> a vertical-motion character will follow all
characters other than an erase or kill character. Since during
the initial scan, a vertical-motion character causes both the
"current" column and the "starting" column to be set to the next
highest multiple of 1000 (the "starting" column is the column
assigned to the left margin, initially 0), a vertical-motion
character cannot share a column position unless 1000 or more
column positions are actually typed. A newline is assigned a
column position of 2••17 - 1 so that it will always sort to the
end of the line.

Kill processing is not done by tty_canon: kill characters
are sorted to the end of the column position to make things
easier for the kill-processing phase of tty_read. Erase
characters are only interesting to tty_canon if they are

-8-

MULTICS TECHNICAL BULLETIN MTB-262

overstruck; since an overstruck erase character sorts to the end
of its column position, the rescan step, when it finds an erase
character that is not first in its column position, deletes it
and all preceding characters with the same column position.

Since a tab sorts to the beginning of its starting column
position, it is sufficient to check'whether the graphic following
the tab has a column position less than the next tab stop; if it
does, the tab is dropped, and spaces are inserted as they are
whenever there is qap between two graphics. Otherwise the tab is
inserted in the final string.

NUL characters are not stored in the column_array; thus
tty_canon completes the elimination of "invisible'' characters.

The maximum length of the input string is passed as an
argument to tty_canon; if the final string exceeds this length,
only max_length characters are returned, and a status tode of
error_table_Slong_record is returned.

Upon return from tty_canon, if the status code is zero,
tty_read frees the ring-zero buffers from which characters were
copied, as explained above: otherwise it resets its internal
buffer size limit to 480 and starts again from the copying phase.

If the canonicalization phase completes without calling
tty_canon, the string may still contain NUL characters; therefore
jf tty_canon has not been called, tty_read indexes the string for
NUL characters, and copies the characters preceding and following
each NUL into the other internal buffer, decrementing the string
length by one for each NUL it finds.

Erase and kill processing is really done in two passes, kill
and then erase. The string resulting from the canonicalization
phase is indexed from the right for a ki (l character: if one is
found, and the immediately preceding character is not a
non-overstruck escape character, the pointer to the beginning of
the string is incremented to point to the character following the
kill character, and the length of the string is decremented
accordingly. If the kill character is preceded by an escape
character that is c~1 preceded by a backspace, the pointer and

,,.... the length are not changed, and the remainder of the string Cif

-9-

MULTI CS TECHNICAL BULLET IN MTB-2 62

~ny) is scanned for further kill characters.

T he s t r i n g res u l t in g f r om t he k i l l pa s s i s now ind ex e d f or
an erase character. If one is found anywhere but at the
beqinninq of the string1 the characters before and after the
erased character(s) must be copied to the other internal buffer.
The basic mechanism is to copy the characters to the left of the
erased characters, decrement the count of total input characters
by the number of erased characters plus one for the erase itself,
and resume the scan starting with the character after the erase
character. <If the erase character is preceded by an escape
character not preceded by a backspace, the escape and erase
characters are copied along with the preceding characters.> When
the end of the string is reached, provided any copying has been
done, all characters to the right of the last erase character are
copied.

The number of characters to be erased <i. e., not copied) is
determined as follows: if the character preceding the erase is
"white space" (space or horizontal tab) the source string is
searched backward for a non-white character, and all characters
to the right of it are erased; if the character preceding the
erase is a printing graphic, then the source string is searched
backward until two non-backspace characters are found in
succession, whereupon all characters from the one to the left of
the leftmost backspace on are erased. Note that the character
immediately preceding the erase character cannot be a backspace,
since all overstruck erase characters are processed by tty_canon.

If the second or subsequent scan turns up an erase character
as the first character in the string (as would happen if two
erase characters were typed in succession), the determination of
the number of erased characters is made in the same fashion as
that described above, except that the characters at the end of
the t~L~~1 string are examined; the erasing is carried out by
decrementing the target pointer so that the erased characters
will be overwritten, and decrementing the overall length
accordingly.

This phase, which is implemented in a similar manner to the
formatting phase of tty_write <as described in MTB 234), actually
deals not only with escape sequences, but with the elimination of
white space before break characters and of characters designated
a s be i n g "th r own away " for the cur re n t t e rm i n a l t y p e. It us es
test character and translate (tct> instructions under control of

-10-

,...
MULTICS TECHNICAL BULLETIN MTB-2 62

a table containing zero entries for ordinary characters, and
indicators identifying four types of "interesting" characters:
break character, escape character., form-feed1 and "throw-away"
character.

This phase uses tty_util_$tct1 which scans for "interesting"
characters and returns a tally of characters skipped over, the
indicator value for the character stopped at, and an updated
po i n t er to t he c ha r a c t e r s t opp e d a t • I f t he t a l l y i s n on - z er o,
ttY_read copies the skipped characters into whichever internal
b u f f e r doe s no t c on t a i n t he sour c e s t r i n g ; t hen i t e x am i ne s t he
indicator. For a break character, it scans the copied characters
(if any) from the right for the last printing graphic; the break
character is copied immediately to the right of it. If any
intervening white space was found, the length of the final string
is decremented by the number of white-space characters. Finally,
a flag is set to indicate that a break was found.

If the scan finds a form-feed, and the terminal has a
non-zero page length, the form-feed is thrown away, on the
assumption that the user typed it for the purpose of starting a
new page. Otherwise it is stored as a normal char act er. The
interrupt handler, dn3551 is responsible for adjusting the
current line count on the page when a form-feed or newline is
input.

If the indicator shows an escape character, tty_read must
find out if it is in fact the start of an escape sequence. If the
channel is not in "esc" mode, or if the character immediately
preceding or either of the two characters immediately following
the escape character is a backspace, the escape is copied as a
normal character and the scan continues. <The backspace test is
to ensure that neither the escape nor the column position to its
immediate right is overstruck.) If the following character is an
escape, erase, or kill character, it is copied to the target
string; if it is an octal digit, the character whose value is
represented by the one to three non-overstruck octal digits
following the escape character is inserted in the target string;
if the escape is followed by zero or more white-space characters
followed by a newline, all ch~racters from the break through the
newline are skipped (the newline is not treated as a break in
this case); otherwise the character following the escape is
looked up in the input_escapes string in the appropriate
special_chars structure <described under "Data Structures" later
in this document). If it is found, the corresponding character
from the input_results string is inserted in the target string.
If the character is not found, then there is no escape sequence,
and the escape character is copied as above. If an escape

/" sequence is identified, the pointer used for the next call to

-11-

MULTICS TECHNICAL BULLETIN

tty_util_$tct
sequence.

is updated

MTB-262

to point past the end of the escape

If the indicator shows that the character is to be thrown
away, it is not counted in the length of the final string, and
the scan continues starting with the following character. Note
that "invisible" characters <see above) have already been thrown
away by the time this phase is reached. The present default
tables do not include any other characters to be thrown away;
however, a user-supplied table might specify some other character
which the user wishes the typewriter DIM to discard rather than
returning it to the user ring.

If the first call to tty_util_$tct returns an indicator of zero
and uses u~ the entire source string, no characters at all are
copied by this phase.

If the total number of characters in the now fully-converted
string plus the number of previously-converted characters already
copied into the caller's buffer is less than or equal to the
number of characters requested by the caller, and the converted
string ends in a break character, all the converted characters
are copied into the caller's buffer, and tty_read returns. If
the total number of converted characters exceeds the number
requested by the caller, the caller's maximum is copied into the
caller's buffer, and the remainder are placed in "converted"
buffers in tty_buf as described above, to be picked up by a
future call. If the total number of converted characters is less
than the number requested by the caller, and the converted string
does not end in a break character (either because a break
character was escaped, or because the internal buffer size limit
was reached), all avai table characters are copied to the caller's
buffer and1 if a read chain is still present, the next block of
characters Cup to the next break) is copied from the read chain
and converted as above: any excess characters resulting from the
l at t e r con v er s i on are saved i n "convert e d" bu ff e r s as ab o ve.

This section describes the modifications necessary to the
data structures described in MTB 234 to make them useable for
input conversion as well. Translation tables used by
tty_util_$mvt and tty_util_$tct are similar to those used by
tty~write, anrl, like them, are kept in ring zero by terminal
type; future modifications will allow a user to specify his own

-12-

MULTICS TECHNICAL BULLETIN MTB-2 62

version of one or more of these tables.

The default table has been expanded and rearranged slightly,
and the names of some of the items have been changed. The new
format is shown below:

d~l 1 device_defaults aligned based,

shifter

2 flags unat,
3 shifter bit (1) unal,
3 upper_case_only bit (1) unal,
3 pad bit (7) unal,

2 delay_char char <1> unal,
2 upper_case char (1) unal,
2 lower_case char <1> unal,
2 delay_offset (4) fixed bin (18),
2 output_tct_offset fixed bin (18),
2 output_mvt_of fset fixed bin (18),
2 special_offset fixed bin C18),
2 input_tct_offset fixed bin (18),
2 input_mvt_offset fixed bin C18>,
2 break_char char C1) unal,
2 pad bit <27> unat:

is "1"b if the terminal reQuires case
shift characters.

upper_case_only is "1"b if the terminal handles only
capital letters.

delay_char

upper_case

lower_cas~

delay_offset

outout_tct_offset

i

is the ASCII t'orm of the character used
for carriage movement delays.

is the uppercase shift character.

1s the lowercase shift character.

is an array of offsets of the
delay_tables (described in MTB 234) to
be used for this terminal type at 110,
150, 300, and 1200 bps respectivelt.

is the relative offset Cin
the default table

-13-

tty_ctl>
used

of
by

MULTICS TECHNICAL BULLETIN MTB-262

output_mvt_of fset

special_offset

input_tct_offset

input_mvt_offset

break_char

tty_util_$find_char for identifying
"special" characters during output
processing.

is the relative offset of the table used
by tty_util_$mvt for translation during
output processing, or 0 if translation
is not required for the particular
terminal type.

is the relative offset of the default
version of the special_chars table
described below.

is the relative offset of the default
table used by tty_uti l_$t ct for
identifying "special" characters during
input processing.

is the relative offset of the table used
by tty_util_$mvt for translation during
input processing, or 0 if translation is
not required for the particular terminal
type.

is the break character for this device.

The special characters table is as described in MTB 234,
except that the following items have been added at the end of the
structure:

2 input_escape_length fixed bin,
2 input_escapes char (1,refer Cinput_escape_length))

unaligned,
2 input_ res u l ts ch a r C 1 refer (i n put_ es ca pe _ le n gt h} >

unaligned;

input_escape_length is the number of characters in each of

input_escapes

the strings input_escapes and
input_results.

is a string of characters each of which
forms an escape sequence when preceded

-14-

MULTICS TECHNICAL BULLETIN MTB-262

input_results

by an escape character.

is a string of characters each of which
is to replace the escape sequence
consisting of an escape character and
the character occupying the
corresponding position in input_escapes
{above>.

~J2QlIJQ!L!Q_~QQ.!.l!..£_Q~~£E!.E!llQ.~_Q£ tty _u ti l _

~D1!~: tty_util_Stct

This entry uses a tct (test character and translate>
instruction to search a given string tor "interesting" characters
in the same manner as tty_util_$find_char.

where

declare tty_util_$tct entry Cptr);

call tty_util_$tct (argptr);

argptr is a pointer to the structure described
below. (Input>

dcl 1 tct_arg_structure based aligned,
2 stringp ptr,
2 stringl fixed bin,
2 tally fixed bin,
2 tablep ptr,
2 indicator fixed bin,
2 workspace <3> fixed bin;

All members of the structure have the same meaning as for
tty_util_$find_char, except for the following:

stringp is a pointer to the string to be tested:
it is updated to point to the first
"interesting" character in the string.

-15-

MULTICS TECHNICAL BULLETIN MTB-2 62

(Input/Output)

indicator is the result of the search. It may have
the following values: (Output>

0 no special characters

1 break character

2 escape character

3 character to be thrown away

tJ am.~: t t y _can on

This subroutine is used to reduce a character string <which
is expected to consist of one typed line image> to canonical
form, i.e., sort the characters by column position and by ASCII
value within each column position.

declare tty_canon entry (ptr, fixed bin <24), fixed bin <24),
cha.r (1) aligned, char (1) aligned,
fixed bin <35));

call tty_canon Cstring_ptr, length1 max_length,
erase_char, kill_char, code>;

string_ptr i s a pointer to the string to
reduced: the result string replaces
input string. (Input>

length i s the length of the string. It
adjusted to reflect the length of
result string. <Input/Output)

max_ length i s the maximum allowable length of
result string. (Input>

erase char i s the character which i s to
interpreted as an erase character,
blank ;f no erase processing i s to
done. (Input)

-16-

be
the

is
the

the

be
or
be Al\

-

MULTICS TECHNICAL BULLETIN MTB-262

kill_char

code

i.s the character which is to be
interpreted as a kill character, or
blank if no kill character is to be
recognized. Cinput)

i$ a standard sy~tem status code. If the
canonicalization of the string requires
a result string whose length exceeds
max_length1 code is set to
error_table_$long_record; otherwise it
is set to zero. (Output>

-17-

