
MULTICS TECHNICAL BULLETIN MTB-253

Toi Olstrloutlon

From I J. Berson

Oates 02/03/76

SubJect1 Release 2 of the Multics Sort/Merge

Attached ls lnformatlon about Release 2 of the Mu1 tlcs
Sort/Merge, which ls scheduled for Multics Release 4.0 ln June
1976. There are four write-ups, including sort command, merge
command, sort_ subroutine, merge_ subroutine, ln the usual form
for the Multics Programmers• Manual, and one wrlte-up of
addltlonal interfaces to be documented in the PLM.

Comments and criticisms are solicited, whether on tec~nlcal
aspects or on the documentation. They may be sent to Joel Berson
at Honeywell 811 lerlca by mall or phone; or vla "mall Berson
MSORT" on either the HIT or Phoenix Multics systems.

Multlcs Project internal working documentation. Not to be
reproduced or distributed outsloe the Multics ProJect.

Page 2
MTB-253

1•1 A Merge, or file col latlon, function has been added.

1.2 A subroutlne lnterf ace for botn the Sort and Merge has been
added.

1•3 Support for the SORT portion of the ANSI COBOL Sort/Merge
Module, level z, h~s been added. <The COBOL MERGE function
ls not supported by thls package).

1.4 Additional data types for keys and multiple key fields are
supported. Release 1 supported only character string and a
single key fleld.

1.s Additional storage media and file organizations are
supported for the input and otuput flies. Essentially any
file can be supported which can be read or written
seQuentlally vla lox_ uslng any available I/O module.
Release 1 supported only seQuentlal input and output flies
ln the Multics storage system <uslng vflle_).

1.6 The following ajditlonal user exit points are provldedl

lnput_record exitl

output_record exit&

Permits the user to alter, delete, or
insert records before they enter the
sorting or merging process.

Permits the user to alter, delete,
Insert, or sJmmarlze records coming
out of the sorting or merging process
before they are written to the output
file.

1.7 Sequence checklng for output records has been added.

1.s A flle slze argument has been added.

1.9 Command arguments for measurement and testing have been
aaded (-time, -merge_order, and -string_slze).

MTB-253 Page 3

The keyword -sort_desc C-sd) must Precede t~e oatrname of
the Sort Description (when the Sort Oescrlptlon ls suoolled
ln a segment). In Release 1, the pathname of the Sort
Oescr!ptlon ~ust be tne first argument and ls not preceded
by a keyword.

I would Jike to raise the following questions about
documentation of the Sort/Merge.

3·1 Should the Sort and the Merge be documented In four separate
MPH write-ups, as attached; or should the Merge <command and
subroutine> be documented ln two shorter write-ups which
then refer to the two Sort write-ups for details? There ls
much In common between the Sort and the Merge. On the other
hand, notlng differences applicable to the Merge ln the Sort
write-ups may be somewhat complicated and confusing.

3·2 Should there be a separate Users• Gulde for the Sort/Merge?
If so, what Information shoutd go ln the MPH and what ln the
Users• Gulde? Some Information not presently ln the MPM
write-ups which might go lnto a Users• Gulde Isl

text of error messages

description of the report produced by the Sort/Merge
(various counts of records processed; data produced by
the -time argument>

I/O usage; e.g. for PL/I I/O, Fortran, recora_stream_,
svn_, etc.

Relationship between ·fl le size, work space reQulreo,
optimization, etc.

3.3 Should the additional command arguments described 1n the PLM
write-up be documented directly 1n the MPH Commands
~rlte-ups?

sort sort

sort

The sort command prov1des a generalized file sortlng
capablllty, which ls speclal lzed for executlon by user
supplied oarameters. The basic function of the Sort ls to
read one or more input files of records which are not
ordered, sort those records accordlng to the values of one
or more key flelds, and wrlte a slngle file of ordered (or
"ranked"> records. The Sort has the folloNlng general
capabilities•

Input and output flies may be on any storage medium an1 ln
anv file organization;

Very large flies, such as multisegment flies, can be sorted;

Multiple kev flelds and most PL/I strlng and numerlc data
types may be speclfled;

Exits to user supplied subroutines are permitted at several
points during the sorting process.

In addition to arguments to the sort command, other
lnformatlon ls necessary to special lze the Sort for a particular
execution. This information, called the Sort Description, can be
supplied either through the user•s terminal or in a segment.

The description glven here of the sort command ls sufficient
for situations where the Sort ls free standing; that ls, where
no user supplled procedures are executed. (User supplied
proceaures are cal led "exlt procedures".> Addltlonal lnformatlon
ls necessary for executlng the sort command wlth exit procedures,
and is contained ln the description of the sort_ subroutlne In
the Multics Programmers• Manual, Subroutines, Section II.

INPUT ANO OUTPUT

The user can specify the lnput and output flies. In thls
environment, the Sort reads the input flies and writes the output
file. Each Input or output flle may be stored on any medium and
in anv file organization supported by an IIO module through lox_.
The I/O module may be one of the Multics system I/O modules (such
as tape_ansl_>, or one supplied by a specific lnstat latlon, or
one written bv a user. An input or o~tout fi~e ls speclfled
either by a pathname or by an attac~ descriotlon.

Alternatively, the user can supply either an lnput_file
procedure or an output_f lie procedure <or both). An inout_file
orocedure ls responsible for reading input and releasing records ~

Page 4

sort
sort

to the Sort. An output fite procedure ls responsible for
retrieving records (ranked by the Sort> from the Sort and writing
output.

In aJI cases, records may be elther fixed length or variable
length.

KEY FIELDS

The user can specify the key flelds to be used ln ranking
records. Key f lelds are described ln the Keys statement of the
Sort Description. Up to 20 key fields may be soeclf led. Anv
PL/I string or numeric data type - except complex or pictured -
may be speclfled for a given key fleld. Ranking may be
ascenalng, descendlng, or mixed. For a :naracter string f letd,
the col latlng sequence ls that of the Muttlcs standard character
set.

Alternatively, the user can specify a user supplied compare
procedure, which is then used to rank records.

The orlglnal order of records wlth eQuat keys is preserved
CFIFO order). Orlglnal input order ls defined as fotlowsr

1• If two eQual records come from different Input flies, then
the record from the file which ls specified earl !er in the
command llne ls first.

2• If two equal records come from the same Input flle, then the
record which ls earlier ln the f lie ls first.

EXITS

The Sort provldes exits to user supplled procedures at
specific points during the sorting process. Exlt procedures are
named ln the Exits statement of the Sort Oescrlotlon. Tne
fol lowing exit points are provided&

lnput_f lte

output_flte

lnput_record

To obtain Input records and release them one
by one to the sortlng process.

To retrieve ranked records one by one from
the sorting process and output them.

To perform special processing for each input
record, such as deleting, lnsertlng, or
altering records to be Input to the Sort.

Page 5

sort sort

output_record To oerform speclal processing for each output
record, such as deleting, lnsertlng, or
altering records to be output from the Sort;
or summarlzlng data by accumulatlng lt Into a
summary record.

compare To compare two records; that ls, to rank them
for the sorting process.

Page 6

sort
sort

sort -lnput_specs output_spec control_args

where&

1· lnput_specs lndlcates that the user ls speclfvlng the
lnput flies. Up to 10 lnput fltes may be
speclfled. Each lnput file soeclficatlon
(each lnput_specJ mav be supplied in one of
tne fol lowlng formsa

-lnput_flle Pathname
-lf pathname If an input fflle is in the Multics

storage system and its flle organlzatlon
ls either sequential or lnoexed, tnen lt
may be specified by lts pathname. The
flle may be elther a slngle segment or a
multlsegment flle. The star convention
can not be used.

An Input file speclfled by a pathname
wlll be attached using the attach
descrlptlon "vflle_ pathname".

-input_descrlptlon "'attach_desc 11

-ids "attach_desc" If an input flle ls not in the Multics
storage system or its f lfe organlzatlon
ls neither sequential nor indexed, then
it must be specified by an attach
descrlptlon. The attach descrlotlon
must be quoted. The target l/O module
specified vla the attacn description
must support the sequentlal_lnout
opening mode and the lox_ entry oclnt
read_record.

Pathnames and attach descriptions can be
intermixed in the lnout_specs argument.

If the user ls supplying an Jnput_flle exlt
procedure, then the lnput_specs argument must
be omitted and the lnp~t_f11e exlt procedure
~ust be named ln the Exits statement of the
Sort Oescrlotion.

Page 7

sort

2. output_spec

-output_flle
-of pathname

sort

indicates tnat the user ls speclfvlng the
output file. Only one output flle can be
speclfled. The output flte speclflcatlon
Coutout_specl may be supplied ln one of the
fotlowlng forms&

pathname
If the output file ls ln the Multics
storage system and lts f lie organization
ls seQuentla1, then lt may be speclfled
by lts pathname. The f11e may be either
a slngle segment or a multisegment file.

The eQuals convention may be
it ls, it ls applied to the
the first input file and the
file must be specified by a
not by an attach descrlptlon.

used. If
patrname of
f lrst lnput

pat rname,

An output flJe specified by a pathname
will be attached using the attach
descrlotlon •vtile_ pathname". Thus lf
the flle does not exist, it will be
created. If it does exist, it wll I be
overwr .it ten.

-output_flle -replace
-of -rp The output flle ls to replace the first

-output_description
-ods "attach_desc"

lnput flle. That lnput file will be
overwritten during the merge phase of
the Sort. If -replace ls used, the
first input flle Must be specified by a
pathname, not by an attach description.

"attach_desc"
If the output file ls not In the Multics
storage system or lts flle organlzatlon
ls not seQuentlal, then lt must be
specified by an attach descrlptlon. The
attach description must be quoted. The
target I/O module soecifled vla the
attach description must support the
sequentlal_output opening mode and the
lox_ entry polnt ~rlte_record.

If the user ls supplying an output_flte exit
procedure, then the output_spec argument must
be omitted and the outout_file exlt procedure
must be named in the E~lts statement of the
Sort Oescrlptlon.

Page 6

sort

3. control_arg~

-console_input
-c 1

sort

must be chosen from the followings

indicates that the Sort Oescrlotlon ls
read via the I/O switch user_irput
<which normaltv ls the user•s terminal>.

-sort_desc sd_oath
-sd sd_path indicates that the user ls soeclf vlng

the pathname of the segment contairlng
the Sort Description.

Either the -console_lnput or the -sort_aesc
argument - but not both - must be soeclfled.
See the heading Sort Description below.

-temp_dlr td_path
-td td_path.

-file_slze 1

Indicates that the user ls specifying
the pathname of the directory which will
contain the Sort•s work flies. The
eQuals convention can not be used.

If this argument ls omitted, work flies
wilt be contained in the user"s process
directory.

This argument shoJld be used when the
process directory will not be large
enough to contain the work flies. The
Cwdl active function may be used for
td_path to place work flies in the
user•s current working directory.

specifies that the total amount of data
to be sorted ls 1 millions of by1es.
The argument 1 must be a decimal number.
If the -fi le_slze argument ls omlt1ed,
the default assumption ls approximately
one million bytes <1=1.Q).

This argument ls intended for use when
some or al I .of the input flies are not
in the storage syitem (that is, are not
soeclfied by pathnames) or when an
lnput_flle exit procedure ls used. In
these cases the Sort cannot determine
the amount of input data. <The Sort
does compute the total amount of input
data which ls in the storage system,
using segment bl t counts.} The

Page g

sort

NOTES

sort

1 ·f ile_slze argument may also be used
when all of the l~put flies are in the
storage system but records are to be
Inserted or de1eted through an
input_record exlt p~ocedure.

The -file_size a~gument ls used for
optimlzatlon of performance; the actual
amount of input data can be considerably
larger without preventing the Sort from
completlng. The maKimum amount of data
which can be so~ted is Cin bytes)
approximately &o m11Jlon times the
square root of !•

Arguments can appear ln any order, out a pathname or attach
description must immediately follow lts kevword.

The temporary directory pathname (td_path> ls the name of a
directory. The Sort Oescrlptlon pathna~e (sd_pathl ls the name
of a segment.

Anv pathname may be relative <to the user•s current working
dlrectorv> or absolute.

Page 10

sort
sort

The Sort Oescrlptlon contains addltlonal lnformatlon to
speciallze the Sort for a oartlcular exec~tlon. The information
supplied may be:

Keys - Description of one or more key f iefds used for
ranking records.

Exits - Specif !cation of which exit points are to be used
and the names of the corresponding user suPolled
exlt procedures.

A Sort Description ls required. As a mlnlmum, the user
specify how records are to be ranked, either by descrlblng
flelds in the Keys statement or by naming a compare
procedure in the Exits statement. Other lnformation In the
Oescrlption ls opptlonal.

must
key

exit
Sort

The Sort Oescrlptlon may be supplied as a segment or read
vla the I/O switch user_lnput (normal Iv the user•s terminal).

If the Sort Description ls supplied ln a segment, lts
Pathname ls speclf ied ln the -sort_aesc argument.

If the Sort Oescrlotlon ls read via the user•s terminal,
the -console_lnout argument ls used. The Sort prints .. Input&"
vla the I/O switch user_output and waits for input. The user
then types the Sort Oescriptlon. To terminate the Sort
Descrlption, the user types a line consisting of a oerlod < ,
fol lowed by a tine feed. <This line ls not part of the Sort
Description.>

SYNTAX OF THE SORT DESCRIPTION

A Sort Oescrlptlon consists of a set of statements. Each
statement must begin wlth a functlon keyword. The function
keyword ls folJowed by the function keyword dellmiter colon
("I"). The statement Itself consists of one or more parameters,
separated by parameter dellmlters. The parameter delimiters are
spaces, commas (.. , .. ,, or (ln certain specific cases as specified
below) parentheses ("(" and .. ,.,. Each st9tement must end with
the statement delimiter semicolon (";">.

In the descriptions below, certain notational conventions
are used. A word encfosed between the less than and greater than
symbols (.. < .. and .. > 11) ls a notational 11arlable, which must be
replaced by an actual word or phrase of the Sort Oescrlptlon
language. A word not enclosed between < and > ls an actual word

Page 11

sort
sort

of the sort Oescrlptlon language. A phrase enclosed bet"een
brackets ("(" and ••1 .. , ls optional. A phrase enclosed between
braces("{" and••}'") and folJowed by an ellipsis (..... "') ls
requlred, and mav be repeated one or more times.

KEYS STATEMENT

The Keys statement
recoras of the input files.

specifles key fields used to rank the
The format of the Keys statement 1st

keys: C<key_descrlption>} ••• ;

The Keys statement consists of a series of one or more
<key_descriotion>s. The key descrlptlons are specified ln order,
the flrst describing the maJor key and the last describing the
most minor key. Up to 20 key descriptions may be suPolled.

A key descrlotlon ls the specification of a single key
field. The format of a <key_descrlption> isl

<datatype> «slze» <position> C descending)

where I

1· <datatvoe>

2. <size>

ls the data type of the key field. This
aJement is required. See the table below for
th~ encoding of <datatvoe>.

is the size of the key f leld, expressed in a
form which depends on the data type. This
element ls required.

For string data types, <size> ls the length
(characters or bits> of the field. The
length ls the exact amount of space occupied
by the field.

For arlthmetlc data types, slze ls the
preclslon (binary or decimal digits) of the
fleld. Seate factor, If any, must not be
~rltten (lt is not reQulred by the Sort>.
The soace occupied ls determined by the
oreclslon ln comblnatlon with the data tyoe
dnd the alignment. (Alignment ls specified
via <posltlon>.) For an aligned blnary field
(fixed or floating), the space occupied ls
Increased lf necessary to an lnteqral number
of words.

Page 12

sort

3. <posltlon>

<w>

<w> ()

~. aescendin~
dsc

sort

<slze> must be a declmal integer. The unlt
jepends on the data type. See the tabla
below for the semantics of <size>. <The
rules used are the same as those used by
~u1tlcs PL/I.)

ls the offset of the oeglnnlng of tre key
f letd, relatlve to the beglnnlng of the
record. Consider the record as belng aligned
on a word boundary, as wlll be the case for a
Multics PL/I structure. This element ls
reQuired. There are two formats:

where <w> is the word off set. Words are
numbered ~rom o for the first wora of
the record. This format specifies to
the Sort that the kev field ls atlgned
on a word or Clf <w> is even) on a
double word boundary.

where <w> ls the word portion of the
offset and is the bit portion of the
offset; that ls, the bit offset within
the word. Bits are numbered from O to
35. This format lmplles that the key
fleld ls not aligned on a word boundary.
If the key f leld ls allgnea on a word
bo~ndary but the user specifies a bit
offset of o a~vway, the Sort will
operate correctly although speed of
execution may be affected.

The formats for <posltion> and the values for
<w> and are consistent with those shown
ln Hultlcs PL/I listings or used by debug.

specifies descendlng order for ranking uslng
this key fleld. This element may be omitted;
the default ls ascending order for t~ls key
fleld.

Page 13

sort sort

OATATYPE ENCODING ANO SEHANTICS OF SIZE

Encoding I Semantics of <s1ze>
o f I < where < s 1 z e > .:: n ,

<datatype>I Unlt Ra~ge Space Occupied

----------------------------------- -----------
Character strlng

(Mu I Hes ASCII)

Blt strlng

Fixed binary

Floating blnary

Fixed decimal
(leading slgn)

Floating· decimal

char

blt

bln

float bln

dee

f I oat dee

9 blt 1 - 4095 n characters
character

1 blt 1 - 4095 n blts

1 b 1 t

1 blt

CJ bit
dJ.git

9 bit
digit

1 - 71

1 - 63

1 - 59

1 - 59

Al 1gned:
1.!n.!

36 .! n .!
Un a 11 gned a

A 11 gned:
1 ~ n ~

36 .! n ~
Unaligned I

351 one word
711 two word

n + 1 bl ts

271 one word
631 two wor~

n + 9 bl t~~

n + 1 dlglts

n + 2 digits

--~------------------------
In addltlon to the forms shown for <datatype> ln the table

above, the folloMlng variants are also per~lttedl

The fol towing alternate spe•lings may be used:

char I character blnlblnary decldeclmal

The word "fixed" may be used (or omitted). For example:

flxed blnlbin f l x e d dee I de c

The woras may be written In any seQuence. For example•

float blnlbln float

Page 1 't

sort sort

EXAMPLES OF KEY DESCRIPTIONS

char<10>, 0<18) Character string, Multics ASCII code, length
ten characters; starts at blt 18 of word o.

char(8), 1, descendlng

character(4), 2, dsc

blt(lf>), 0(2)

bln(17l, 2

bln<1?>, 2(18)

bin(1}, 2(0)

b.i.n(1), 2

bin(36), 2

dec(6), Q(q)

float dec(q), 0(9)

Character strlng, Multics ASCII code, length
eight characters; stal""ts at blt O of wora 1;
ranking ls descending.

Character string, Multics ASCII code, length
four characters; starts at blt O of word 2;
ranking ls descending.

i:Ht string, lens;th 16 bits; starts at bit 2
of word o.

Fixed blnary, precision 11; since
offset ls specified, ls aligned
occupies one word <eouivalent to
2 .. ,.

no bit
and tr.us

'"bin(35),

Fixed binary, precision 17; since a blt
offset ls specified, ls unaligned and
occupies 18 bits; stal""ts at bit 18 of word 2
(l.e., ls ln the tow order half of word 2).

Fixed binary, precision 1; unaligned and thus
occupies 2 bits; stal""ts at bit O of word 2.

Flxed binary, precision 1; aligned and thus
occupies one word (eQulvalent to "bln<3Sl,
2").

Fixed binary, precision 36; since no blt
offset ls speclfled and precision ls greater
than 35 and word offset ls even, ls aligned
and occupies two words (eQulvatent to
••bln(71), 2••).

Fixed decimal,
starts at bit
digits including
end of word 1).

9 blt dlglt, precision 6;
q of word O and occupies 7
sign (that ls, through the

Floating decimal, 9 blt digit, preclslon g;
starts at blt g of word 0 and occupies 11
digits including exponent and sign (that ls,
through the end of word 2>.

Page 1 S

sort sort

EX I TS ST ATE MEN T

An Exits statement speclf les the exit procedures to be used
during execution of the Sort. The format of an Exits statement
ist

exltst C<exit_descrlptlon>J •••

The Exlts statement consists of a set of one or more
<exlt_aescrlptlon>s. Exit descriptions may be speclfled in any
order.

An exit description ls the specification of one exit point
~nd the user suppl led exit procedure to be catted at that exit
point. The format of an <exit_descrlptlon> ls:

<exlt_name> <user_name>

wheret

1. <exlt_name>

2. user _name

ls the keyword naming the exlt point at which
the user supplied eKit procedure ls to be
called. Exlt names may be chosen from the
fol lowing IJ.stl

lnout_flle
output_flle
input_record
output_record
compare

ls the name of the entry oolnt of the user
supplied procedure. This parameter has the
same syntax and semantics as a command name.
That isl

User_name can be either a segment name (e.g.,
segment» or a segment name and an entry point
name <e.g., segment$entry_po1ntl. In trese
cases, the user•s current search rules are
3pplled to find the procedure. (If some
segment ls already k~own by the specified
reference name, that segment ls used.)

User_name can also be a pathname; that ls,
can specify a dlrecto~y hierarchy location,
either relative <to the user•s c~rrent

~orklng directory) or absolute. In this
case, the search rules are not applied and
the pathname ls used to flnd the procedure.

Page 16

sort sort

(If some other segment ls atready known bV
the speclfled reference name, that segment ls
terminated first.>

WRITING EXIT PROCEOU~ES

The exlt points to be used during an execution of the Sort
and the names of the correspondlng user supplied exit procedures
are speclfleo ln the Ex!ts statement as described above. The
speclflcatlons for wrltlng exlt procedures <PL/I declare and call
statements) ana the functional reQulrements imposed upon exlt
procedures are given ln the description of t~e sort_ subroutine
in Section II of MPM Subroutines.

Page 17

sort sort

sort -lnput_file sort.in -output_flle =.out -console_lnput
Input.
key& char<10J, o;
•

In thls example, the arguments of the command state that
there ls one input fife, whose pathname ls sort.in; the output
flle pathname ls sort.out; the Sort Oescrlptlon ls lnout vla the
user•s terminal; and by defautt tne work fl les are contained in
the user's process directory.

The Sort Oescrlptlon states that there ls one key, a
character string of len~th 10 characters, starting at word O bit
O of the record. There ~re no exits specified.

sort -temp_dlr >udd>pool -sort_desc sd

In this example the arguments of the command state that the
work flies are contained ln the directory >udd>pool; and the
Sort Description ls contained ln the segment named sd.

Assume that the segment sd contains:

keys:
exits&

flxea bln(35) o, char(6) 1;
lnput_flle user$input,
output_flJe user$output;

The Sort Oescrlptlon states that there are two keys. The
maJor key ls an aligned flxed binary field of precision 35,
contained ln word o of the record. The minor key ls a character
string of length 8, contained ln words 1 and 2 of the record.

There are two exits, an 1nput_flte procedure exit and an
output_flle procedure exit. The lnput_flle exit procedure entrv
oolnt ls named userilnput; the output_file exlt procedure entry
point ls named YSer$output. These exlts must be soeclfled
because the command did not specify elther an input flle or an
output flle.

sort -lf sort_ln -of -replace -td CwdJ -sd sort_desc

In thls example t~e arguments of the command state t~at the
input flle ls named sort_ln; the output file ls to replace the
input file; work flies are contained in the user•s current
working directory; and the Sort Oescrlptlon is contained ln the
segment sort_desc.

Page 18

sort sort

sort -lnput_descrlptlon "tape_ansl_ vot_1 -name a" -lf b \
-output_descrlptlon "vflle_ c -e~tend" -cl

In this example there are two input flies. The first input
file ls specified by an attach aescrlotlon for the I/O module
tape_ansi_ wlth the attach argument 11 vo1_1 -name a"'. The second
input flle ls specified by the pathname b, and thus must be a
sequential or indexed file ln the storage system. The output
file ls specified by an attach aescriptlon for the I/O mooule
vflle_ with the attach argument "'b -extend•. for the l/O module
vflle_, this means that the pat~name ls c and the flle ls to be
extended; that ls, output records from the Sort wilt be written
at the end of the file c <lf lt already exists).

<A\ foltowed by a line feed ls used to continue the command
arguments onto the second line.,

The Sort Description (not shown) will be read via the user•s
term.l.na I.

sort -Ids "record_stream_ -target vfile_ a" -of b -cl

In this example assume that the input file ls an
unstructured file in the storage system, with the pathname a.
The input file has been speclfled by an attach descrlotlon using
the I/O module record_stream_, which wilt transform the record
I/O operations re.Quested by the Sort lnto the approorlate strea111
IIO operations for the tdrget flle a.

sort -ids "svn_ user_sw1tchname" -of b -cl

In thls example the input flte ls attached using the I/O
module syn_ to the I/O swltch user_swltchname, which must be
attached and closed.
liaJD~ I merge

The merge command provides a generallzed flle merging
capability, which ls specialized for execution by user suoplled
parameters. The basic function of the Merge ls to reac one or
more input flies of records whlch are in order according to the
values of one or more kev fields~ merge <col!ate) those records
according to the values of those key flelas, and write a single
flle of ordered <or "ranked"') records. The Merqe has tne
fol lowJng general capabllltlesa

(ENO)

Page 1 q

merge merge

Input and output files may be on any storage medium and in
any file organization;

Very large flies, such as multlsegment flies, can be merged;

Multiple key fields and most PL/I string and numeric data
types may be speclfled;

Exlts to user supplied subroutines are permitted at several
points during tne merging process.

In addition to arguments to the merge command, other
information ls necessary to specialize the Merge for a particular
execution. This lnforMatlon, cal led the Merge Oescrlptlon, can
be suppl led either through the user•s terminal or ln a se~ment.

The description given here of the merge command ls
sufficient for situations ~here the Merge ls free standing; that
ls, where no user supplied procedures are executed. <User
suppl led procedures are called· "exlt procedures".> Additional
information ls necessary for executing the merge command with
exit procedures, and ls contained in t~e descrlotlon of the
merge_ subroutine in the Hui tics Programmers• Manual,
Subroutines, Section II.

INPUT ANO OUTPUT

The user speclfles the input and outout flies. The Merge
reads the input flies and wrltes the output flte. Each lnput or
output flle may be stored on any medium and ln any flle
organlzatlon supported by an I/O module through lox_. The I/O
module may be one of the Muftlcs system I/O modules <such as
tape_ansl_l, or one supplied by a speclflc 1nstatlatlon. or one
written by a user. An lnput or output file ls specified elther
by a pathname or by ~n 'attach description.

In al I cdses, records may be elther fixed length or variable
I en gth.

KEY FIELOS

The user can spacify the key f lelds to be usea ln ranklng
records. Key fields are described In the Keys statement of the
Merge Oescrlptlon. Up to 20 key fields may be specified. Any
PL/I string or numeric data type - exceot complex or plctured -
may be specified for a given key field. Ranking may be

(ENOl

Page 20

merge merge

ascending, descending, or mixed. for a character string f 1eld,
the collating sequence ls that of the Hultlcs standard character
set. The records of each Input fiJe must be in order according
to those key f lelds.

Alternatively, the user can speclfv a user supplied compare
procedure, which ls then used to rank ~ecords. The records of
each lnput flle must be ln order accordlng to the algorltrm of
that procedure.

The orlglnat order of records wlth e~ual keys ls preserved
<FIFO order). Original lnput order ls defined as foltowss

1. If two eQual records come from different input fifes, then
the record from the flle whlch ls specified earlier ln the
command Jlne ls flrst.

2. If two equal records come from the sa•e input flle, then the
record which ls earlier ln the f lie ls first.

EXITS

The Merge provides exits to user s~oolled procedures at
specific points during the merging process. Exlt procedures are
named ln the Exits statement of the Merge Oescriptlon. The
fol lowing exit points are provldedl

output_record

compare

To perform special
record, such as
atterlng records to
or summarizing data
summary record.

processing for each output
deleting, Inserting, or
be output from the Merge;
by accumulating lt lnto a

To compare two records; that ls, to rank them
for the merging process.

(ENO)

Page 21

merge merge

merge lnput_specs output_spec control_args

where&

1. Input _specs indicates that the user ls specifying the
lnput flies. Up to 10 Input fltes mav be
~peclfied. Each input file soeclfication
(each input_spec> mav be suoolled ln one of
the following forms&

-lnout_f ile pathname
-if pathname If an Input flle ls ln the Multics

storage system and Its file organlzatlon
ls either sequential or indexed, then lt
may be soeclfled by lts pathname. The
f lie may be either a single segment or a
multisegment flle. The star convention
can not ·be used.

An Input file specified by a pathname
~ill be attached uslng the attach
descrlptlon "vflle_ pathname".

-lnout_descriotion "at tach_desc"
-las "attach_desc" If an input file ls not in the Hu1tlcs

storage system or lts flle organization
ls neither sequential nor indexed, then
lt must be specified by an attach
description. Tha attach des~rlotlon
must be Quoted. The target I/O module
specified via the attach description
must support the sequentlal_lnput
opening mode and the lox_ entry point
read_record.

2• output_spec

Pathnames and attach descrlptlons can be
lntermlxed in the lnput_specs argument.

indicates that the user ls speclfying the
output flle. Only one output flle can be
soeclfled. The output file speclficatlon
Coutput_spec) may be suplied ln one of the
fol lo~ing forms:

-output_flte pathname
-of pathname If the output flte is in the Hultlcs

(ENO)

Page 22

merge merge

storage system a~d lts f lie organlzatlon
ls sequentlal, then It may be soeclfled
by Its pathname. The file may b~ elther
a single segment or a multisegment f lie.

The equals convention may be usea. If
1 t ls, 1t ls appl led to tl"le pat t-name of
the f lrst lnput fl I e and tl"le f .i.rst l rout
f lie must be speclfled by a pat"'name,
not by an attach description.

An output flle speclfl~d by a pathname
wlll be attached using the attach
description "vflle_ pathname". Thus lf
the file does not exlst, lt wilt be
created. If lt does exist, It wll• be
overwrltter.

-output_descrlptlon "attach_desc"
-ods "attach_desc" If the output flJe ls not ln the Multics

storage system or its file organization
ls not seQuentlat, then lt must be
specifiea by an attach descrlotlon. The
attach description must be Quoted. The
target I/O module specified via the
attach description must support the
seQuentlal_outout opening mode and the
lox_ entry pclnt Mrlte_record.

3. control_args

-console_lnput
-cl

must be chosen from the followlngr

indicates that tha Merge Oescrlotlon ls
read vla the I/O switch use~_lnput

(whlch normally ls the user's terminal).

-merge_desc md_path
-md md_path lndlcates that the user ls specifying

the pathname of the segment containing
the Merge Description.

Either the -console_lnput or the -merge_aesc
argument - but not both - must be specif led.
See the heading Merge Description below.

<ENO)

Page 23

merge merge

NOTES

Arguments can a~pear in anv order, but a pathn~m• or attacn
description must immedlately follow its kevword.

The Merge Oescriotlon pathname (md_pathl ls the name of a
segment.

Any pathname may be relative <to the user•s current working
directory) or absolute.

(ENO)

Page 24

merge merc;e

The Merge Oescrlptlon contains addltlonal lnformatlon to
specialize the Merge for a particular execution. The information
supplied mav bet

Keys -

Exits -

Oescrlptlon of one or more key fields used for
ranking records.

Specif !cation of which exit points are to be used
and the names of the corresponding user supplied
.exl t procedures.

A Merge Description ls reQulred. As a mlnlmum, the user
must specify how records are to be ranked, either by descrlblng
key flelds ln the Keys statement or by naming a compare exit
procedure in the Exits statement. Other information In the Merge
Oescrlptlon ls optional.

The Merge Oescrlptlon may be supplied as a segment or read
via the I/O s•itch user_lnput <normally the user•s termlnal).

If the Merge Oescrlptlon ls supplied ln a segment, its
pathname ls specif led ln the -merge_desc argument.

If the Herge Oescrlptlon ls read via the user•s termlnat,
the -console_lnput argument ls used. The Merge . prints "Input:"
via the I/O switch user_output and walts for input. The user
then types the Merge Description. To terminate the Merse
Descrlptlon, the user types a line consisting of a Period (..... ,
fol lowed by a line feea. <Thls llne ls not part of the Merge
Description.)

SYNTAX OF THE MERGE DESCRIPTION

A Merge Oescrlotlon consists of a set of statements. Each
statement must begin with a function keyword. The function
keyword ls followed by the function keyword delimiter colon
("I"). The statement Itself consists of one or more parameters,
separated by parameter delimiters. The parameter dellmiters are
spaces, commas (","), or <1n certain soeclf ic cases as speclfled
below) parentheses C"l" and ")"). E~ch st~tement must end wlth
the statement delimiter semicolon<";").

In the descriptions below, certain notational conventions
are used. A word enclosed between the less than and greater than
symbols (11 <11 and ''>") ls a notational variable, which must be

<ENO)

Page 2s

merge merge

replacea by an actual word or phrase of the Merge Oescrlptlon
language. A word not enclosed between < and > ls an actual word
of the Merge Oesc~lptlon language. A phrase enclosed between
brackets C"C" and "l") ls optional. A ohrase enclosed between
braces ("{"and"}") and followe~ by an elflpsls (" ••• "l ls
reaulred, and may be repeated one or more tlmes.

KEYS STATEMENT

The Keys statement specifies key f lelds used to rank the
records of the input flies. The format of the Keys statement ls:

keysl C<key_descrlptlon>J· ••• ;

The Keys statement consists of a series ·of one or more
<key_descrlptlon>s. The key descrlptlons are speclfled in order,
the first describing the maJor key and the last descrlblng the
most minor key. Up to 20 key descriptions ~ay be supplied.

A key description ls the speclflcatlon of a single key
flela. The format of a <key_descrlptlon> 1st

<datatype> (<size>) <posltlon> CdescendlngJ

where•

1. <datatype>

2• <size>

ls the data type of the key fleld. This
element ls required. See the table below for
the encoding of <datatvpe>.

ls the slze of the key field.
is required.

This element

For string data types, <slze> is the length
(characters or bits) of the field. The
length ls the exact a~ount of space occupied
by the f leld.

For arlthmetlc data types, <size> ls the
precision (blnary o~ declmal dlgltsl of the
field. Scale factor, lf any, must not be
wrltten <lt ls not reQulred by the Merge).
The space occupled ls determined by the
precision in comblnatlon with the data type
and the alignment. (Alignment ls specified
via <posltlon>.l For an aligned binary fleld
(fixed or floating), the space occupied is

<ENO)

Page 2&

merge

3. <positlon>

<w>

<w> ()

4. descending
asc

merge

increased lf necessary to an integral number
of words.

<size> must be a decimal Integer. The unlt
depends on the data type. See the tabte
bet ow for the semantics of <size>. <The
rules used are the same as those used· by
Multics PL/I.,

ls the offset of the Deglnnlng of the key
field, relative to the beginning of the
record. Consider the record as being aligned
on a word boundary, as wilt be the case for a
~uttlcs PL/I structure. This element ls
reQulred. There are two f ormatsl

where <w> ls the word offset. Words
are numbered from O for the first word
of the record. This format specif les to
the Merge that the kev field ls aligned
on a word or (1 f <w> 1 s even l on a
double word boundary.

where <w> ls the word portion of the
offset and ls the bit portion of the
offset; that ls, the bit offset within
the word. ·Bits al"'e numbered from o to
3 s. This format 1mp11 es that t re key
field is not aligned on a word boundary.
If the kev field ls aligned on a word
boundary but the user specifies a blt
offset of 0 anyway, the Merge wilt
operate correctlv although speed of
execution may be affected.

The formats for <posltlon> and the vatues for
<w> and are consistent wlth those shown
ln MuJtlcs Pl/I Jlstlngs or used by debug.

speclf ies descending order for ranking using
thls kev field. This element may be omitted;
the default ls ascending order for t~ls key
field.

CENDl

Page 27

merge

OATATYPE ENCODING ANO SEMANTICS Of SIZE

Encoding I Semantics of <size>
of I (where <size>·= nl

merge

<datatype>I Unlt Range Space Occuoled

------------------~---~~~~

Character string char 9 bl t 1 - 4095 n characters
<Multics ASCII) character

Blt str lng bit 1 bit 1 - 4095 n bl ts

Flxed b.l.narv bln 1 blt 1 - 71 Allgnedl
1 .! n .s. 35: one wore

36 .s. n .s. 71l tl•O wore
Unatlgnedl n + 1 bl ts

Floating blnarv f I oat bln 1 b 1 t 1 - 63 Allgnedl
1 .! n .s. 271 one wore

36 .s. n .s. 631 two~rc
Una I lgnedl n + 9 . s

Fixed dee ima I dee 9 bl t 1 - 59 n + 1 dlglts
<leading slgn) dlglt

Floating decimal float dee 9 b 1 t 1 - 59 n + z digits
digit

--------------------------------- ----
In addltlon to the forms shown for <datatyoe> ln the table

above, the fot lowing variants are also oer~lttedl

The following alternate spelllngs mav be usedl

char I char deter blnlblnarv decl decimal

The word "fixed" may be used (or omitted). For example•

fixed binlbln fixed decldec

The words mav be written ln any seQuence. For examplel

<ENO)

Page 28

merge merge

float blnlb!n float

(ENO)

Page 29

merge merge

EXAMPLES OF KEY DESCRIPTIONS

char<10>, O{t8) Chardcter strlng, Multlcs ASCII code, length
ten characters; starts at blt 16 of word o.

char(8), o, descending

character(4), o, dsc

blt{:lb), 0(2)

bln<17>, 2

bln(17), 2(18>

bln<1l, 2(Q)

bln<1l, 2

bln(36)., 2

dec(6), 0(9)

Character strlng, Multics ASCII code, length
eight characters; starts at blt O of word o;
ranklng is descendlng.

Character strlng, Muttlcs ASCII code, length
four characters; starts at bit O of word o;
ranking ls descendlng.

tllt strlng, length 16 bits; starts at bit 2
of word o.

Fixed blnary, preclslon 11; since
offset ls speclfled, ls aligned
occupies one word (eQuivalent to
2").

no bit
and thus

.. bin(35),

Fixed binary, precision
offset ls specif led,
occupies 18 bits; starts
(J.e., ls ln the 10 ... order

11; since a blt
ls unallgned and

at bit 18 of word 2
half of word . 2t.

Fixed binary, preclslon 1; unaligned and thus
occupies 2 bits; starts at bit O of word 2.

Fixed binary, precision 1; aligned and thus
occupies one word (eQulvalent to "bln(35),
2").

Fixed blnary, precision 36; since no blt
offset ls speclfled and precision ls greater
than 35 and word offset ls even, ls aligned
and occuples two words (eQulvalent to
'"bln(71), 2 ..).

Fixed decimal, 9
starts at bit
dlglts Including
end of word 1).

blt dlglt, preclslon 6;
g of word 0 and occuoles 7
sign <that ls, through the

float dec(9), Q(9) Floating decimal, 9 blt digit, precls!on g;
starts at blt 9 of .,.ord 0 and occuoles 11

(ENO)

Page 30

merge merge

digits lnclud!ng exponent and slgn <that ls,
through the end of word 2)~

(ENO)

Page 31

merge merse

EXITS STATEMENT

An Exlts statement speclfles the exit procedures to be used
during execution of the Merge. The format of an Exits statement
i SI

e >< l t s I · C < e· x l t _ d es c r i pt 1 on> } • • • ;

The Exits statement consists of a set of one or more
<exit_descrlptlon>s. Exit descrlptlons may be speclfled ln any
order.

An exit description ls the speclflcatlon of one exlt polnt
ano the user supptied exlt procedure to be cal led at that exit
oolnt. The format of an <exlt_descrlptlon> lsl

<exlt_name> <user_name>

where:

1• <exit_name>

2· user_name

ls the keyword naming the exit polnt at whlch
the user supplied exit Procedure is to be
called. Exit names mav be chosen from the
following lists

output_,.. ec or d
compare

is the name of the entry polnt of the user
suppl led procedure. This parameter has the
~ame syntax and semantics as a command name.
That ls&

User_name can be either a segment name <e.g.,
segment> or a segment name and an entry oclnt
name <e.g., segment$entrv_polntl. In ttese
cases, the user•s current search rules are
applied to flnd the procedure. <If some
segment is already known by the speclfled
reference name, t~at segment ls used.)

User_name can also be a pathname; that ls,
can specify a dlrecto~y hierarchy focatlon,
either relative (ta the user•s current
~orklng directory) or absolute. In this
case, the search riJ I es are not app I ied and

<ENOl

Page 32

merge merge

the pathname ls used to find the procedure.
(If some other segment ls already known by
the specified reference name• that segment ls
terminated flrst.)

WRITING EXIT PROCEDURES

The exit polnts to be used durlng an execution of the Merge
and the names of the corresponalng user s~ootled exlt procedures
are speclfled ln the Exits statement as described above. Tne
soeclflcatlons for writing exlt procedures (PL/I declare and call
statements) and the functlonat reQulrements lmoosed upon exit
procedures are glven In the description of the merge_ subroutine
In Section II of MPH Subroutines.

<ENO)

Page 33

merge merge

merge -lf merge.1n_1 -lf merge.1n_2 •output_file =.out ·cl
Input.
keyl char(1Q), o;
•

In thls example, the arguments of the command state that
there are two input flies, whose pathnames are merge.1n_1 and
merge.in_2; the o~tput flle pathname ls merge.out; and the
Herge Oescrlpt!on is input vla the user•s termlnal.

The Merge Oescription states that there ls one key, a
character string of length 10 characters, starting at word O blt
0 of the record. There are no exlts specif led.

merge -lnput_flle ln_1 -lf in_2 -of 0Jt_1 -merge_desc md

In this example, the arguments of the command state that the
lnput fites are named ln_1 and in_2; the output file ls named
out_1; and the Merge Oescrlption ls contained in the segment
named md.

Assume that the segment md contains•

keys& fixed blnC35> o, char(8) 1;
exltsi output_record user$output;

The Merge Description states that there are two keys. The
maJor key ls an ailgned fixed binary field of precision 35,
contained in word O of the record. The minor key ls a character
string of length 8, contained in words 1 and 2 of the record.

There ls one exit, an output_record procedure exit; the
output_record exit procedure entry point ls named user$output.

merge -lnput_descrlption "tape_ansl_ vo•_1 -name a" -lf b \
-output_descrlption "vflle_ c ·extend" -cl

In this example, there are two input flies. The first
flle is specified by an attach description for the I/O
tape_ans1_ with the attach argument "vol_i -name a". The
input file ls specified by the pathname b, and thus must
seQuentlal or Indexed file in tre storage system. The
flle ls specified by an attach description for the I/O
vfile_ with the attach argument "c •extend". for the I/O

(ENO)

Page 34

Input
module
second

be a
output
module
module

merge merge

vflle_, this means that the pathname ls c and the file ls to be
extended; that ls, output records from the Merge wilt be written
at the end of the f lie c (lf lt already exlsts).

<A\ foltowed by a tlne feed ls used to continue the command
arguments onto the second line.)

The Merge Oescrlptlon (not st-ownl wl 1 f be read from the
user•s terminal.

merge -lds .. record_stream_ -target vf!le_ a"' \
-lds "syn_ user_swltchname" -of c -console_lnout

In this example, assume that t~e flrst lnput flle ls an
unstructured file ln the storage system, with the Patt-name a.
This input fife has been speclfled by an attach description using
the I/O module record_stream_, which will transform ·the record
I/O operations reQuested by the Merge into the appropriate stream
I/O operations for the target file a. The second input file ls
attached uslng the I/O module syn_ to the I/O switch
user_swltchname, which must be attached and closed.
liam.e• sort_

The sort_ subroutine provides a generalized file sorting
capability, which Is specialized for execution by user supplied
parameters. The basic function of sort_ ls to read one or more
input flies of records which are not ordered, sort those records
according to the values of one or more key flelds, and write a
single output f !le of ordered (or "ranked~> records. The sort_
subroutine ha~ the fol lowing general capaollltlest

Input and output flies may be on anv storage medium ana ln
any file organization;

Very large flies, such as multlsegment flies, can be sorted;

Hultlple kev f lelos and most PL/I strlng and numerlc aata
types may be speclfled;

Exits to user supplied subroutlnes are permitted at several
points during the sortlng process.

The arguments to the sort_ subroutine include one or more
pointers to additional information necessary to specialize sort_
for execution. This aadltlonal lnformatlon ls called the Sort
Oescrlptlon.

CENO>

Page 35

sort_ sort

INPUT ANO OUTPUT

The user can soeclfy the input and output fltes. In thls
environment, the Sort reads the lnput flies and writes the output
file. Each input or output file may be stored on any medlu" and
In any file organization supported by an I/O module through lox_.
The I/O module mav be one of the Hultlcs system I/O modules <such
as tape_ansl_>, or one supplied by a speclfic lnstal latlon, or
one written by a user. An input or output flle ls speclfled
either by a pathname or by an attac~ description.

Alternatively, the user can supply elther an input_flte
procedure or an outpJt_flle procedure (or 30th>. An lnpu1_flte
procedure ls responsible for reading Input and releasing recoras
to the Sort. An output_f1te procedure ls responsible for
re tr l ev .L ng records (ranked by the Sort) from the Sort and wr 1t1 n g
output.

In al I cases, racords may be either fixed tength or variable
I ength.

KEY FIELDS

The user can specify the key fields to be used in ranking
records. Key f lelds are described ln the Keys statement - or in
the keys structure of the Sort Oescrlptlon. Up to 20 key
fields may be specified. Any PL/I string or numeric data type
except complex or Pictured - may be specified for a given key
field. Ranking may oe ascending, descendlng, or mixed. For a
character strlng key field, the col fating seQuence ls that of the
Multics standard character set.

Alternatlvely, the user can supply a compare procedure,
which ls then used to rank records.

The or lg lna I l nout order of records
ore served <FIFO order>. Orlgina I Input
fol lowst

with eQual keys ls
order ls deflned as

1. If two equal records come from different Input flies, then
the record from the flle which ls specified earlier ln the
llst of input fl les <In the lnput_soecs subroutine argument>
.is first.

2. If two equal records come from the same lnout file, then the
record which ls earlier in the file ls first.

CENOl

Page 36

sort_ sort_

EXITS

The Sort provides exits to user s~pplled procedures at
specif le points during the sorting process. Exit procedures are
named in the Exits statement - or ln the exits and io_exlts
structures - of the Sort Oescrlptlon. The followlng exlt points
are provided&

lnput_file

output_flle

To obtain input records and release them one
by one to the sorting process.

To retrieve ranked records one by one from
the sorting process and output them.

input_record To perform special processing for each input
record. such as deleting, inserting, or
altering records to be input to the Sort.

output_record To perform special processing for each output
record, such as deleting, lnsertlng, or
altering records to oe output from the Sort;
or summarizing data by accumulating lt into a
summary record.

compare To compare two records; that ls, to ran~ them
for the sorting process.

Details of exit procedures are glven oelow under the heading
Writing Exit Procedures.

(ENO)

Page 37

sort sort_

dcl sort_ entry((•)cnar(•), char(•), (•)ptr, char(•),
char(•), float bin(27l, fixed bln(35ll;

call sort_

where I

1. lnput_specs

<lnout_specs, output_spec, sort_desc, temp_dir,
user_out_s"' flle_slze, codel;

ls an array contalnlng the speclflcations of
the input flies. Up to 10 lnput flies may be
specified. The array extent soecifies the
number of input flies. <Input)

Input file I ls specified
element lnput_specs<Jl, in
fol lowing forms I

in the array
one of the

-input_flle pathname
-lf pathname If an input flle ls ln the Multics

storage system and lts file organization
ls either sequential or indexed, then it
may be specified by lts pathname. The
file may be either a slngte segment or a
multlsegment file. The star convention
can not be used.

An input file specified by a Pathname
will be attached using the attach
descrlotlon "vflle_ pathname•.

-input_descrlptlon attach_desc
-ids attach_desc If an input file ls not in the Multics

storage system or its file organization
ls neither seQuentlal nor indexed, then
lt must be specified by an attach
description. The target I/o module
specified via the attach descrlotlon
must support the seQuential_lnput
openlng mode and the lox_ ertry oolnt
read_record.

Pathnames and attach descriptions can be
intermixed in the lnput_specs array.

If the user ls supplying an lnput_f1te exit
procedure, then lnput_specs<1>, the first

(ENO)

Page 38

sort_

output_spec

sort_

input flle speclflcatlon, must be"" Cthe
array extent should be 1t and the lnput_flle
exlt procedure must be named ln the lo_exits
structure of the Sort Oescrlptlon.

ls the spec1f1cat1on of
Only one output file
<Input)

the output flle.
may be soeclfled.

The output file may be soeclfled in one of
the following forms:

-output_flle pathname
-of pathname If the output flle ls ln the Multics

-output_fl le -replace
-of -rp

storage system and lts f lte organization
ls sequentlal, then lt may be specified
by lts pathname. The flle may be either
a single segment or a muttlsegment file.

The equals convention can be
lt ls, lt ls aoolled to the
the first input file and the
file must be specified by a
not by an attach description.

used. If
oatl"name of
first ll"put

patrname,

An output flle soecifled by a pathname
wlll be attached using the attach
description "vflle_ pathname". Thus if
the file does not exist, lt will be
created. If ltdoesexist, itwlllbe
overwr.i'tten.

The output file ls to replace the first
input file. That Input file wil I be
overwritten during the merge orase of
the Sort. If -reolace ls used, the
first input flle 111ust be speclfled by a
pathname, not by an attact descrlotlon.

-output_descriptlon attach_desc
-ods attach_desc If the output file ls not ln the Multics

storage system or ~ts file organ!zatlon
ls not seQuential, then !t must be
speclfled by an attach descrlotlon. The
target I/O module soeclf!ed via the

(ENO)

Page 39

sort

J. sort _desc

temp_dlr

5. user_out_sw

attach de.cr!pt!on must support
seQuentlal_output ooenlng mode and
lox_ entry point wrlte_record.

-----sort_

the
the

If the user ls suoolylng an output_flle
orocedure, then the outout_soec argument
be"" and the outout_flle exit procedure
be named ln the lo_exlts structure of
Sort Oescrlotlon.

exlt
must
must

the

ls an array of pointers
Descrlptlon. See the
~escrlotlon below. (Inout)

to the
head ln g

Sort
Sort

ls the pathname of the directory which wilt
contain the Sort•s work flies. <Input)

If this argumert ls ... , then work flies wl 11
be contained ln the user•s process directory.

Thls argument should be used when the process
directory will not be large enough to contain
the work flies. The get_wdlr_ function may
be used to obtain the name of the user•s
current working directory.

speclfles the destlnatlon of both the summary
report ano dlagnostlc messa~es for errors
detected ln the arguments to sort_ or ln the
Sort Descrlotlon. <Input)

This argument may have the following values&

.....

'"-bf"

sw!tchname

= wrlte the summary report and
dlagnostlc messages vla the I/O
switch user_output.

= do not write the summary report
and dlagnostlc messages. If any
errors are diagnosed, sort_ wlt I
return with the status code
bad_arg but lnformatlon about
the number and nature of the
errors ls not avallabte.

= write the summary reoort and
dlagnostlc messages vla t~e IIO
switch named swltchname. The

(ENO)

Page 40

~

sort

6. f1 I e_slze

7. code

NOTES

sort_

swltch must be attached and open
for stream output.

ls the total amount of data to be sorted, ln
mllllons of bytes. If thls argument is zero,
the default assumption ls approximately one
mllllon bytes (flte_slze = 1.0). <Input)

Thls argument ls intended for use when some
or alJ of the Input flies are not ln the
~torage system (that ls, are not speclf led by
oathnames) or when an lnput_flle exit
procedure ls used. In these cases the Sort
cannot determine the amount of input data.
<The Sort does compute the total amount of
input data which ls' ln the storage svstem,t
uslng segment bit counts.> The fite_size
argument may also be used when al I of tre
Input flies are in the storage system but
records are to be inserted or deleted ttrough
ln lnput_record exlt procedure.

The file_slze argu11ent ls used for
optlmizatlon of performance; the actual
amount of data can be conslderably larger
"ithout preventing the Sort from completing.
The maximum amount of data which can be
sorted is <In bytes> approxim$telv 60 mil lion
tlmes the square root of flte_slze.

ls a standard Hut tics status code returnee ov
sort_. Possible val~es are listed below
under the heading Status Codes. (Output)

The temporarv dlrectorv pathname <temp_dir argument) ls the
name of a directory.

Any pathname may be re1at1ve (to the us~r·s current working
directory) or absolute.

STATUS CODES

The following status codes may be returned by sort_ <at I
codes are ln error_table_) 1

(ENO)

Page 41

sort

0

bad_arg

fatal_error

out_of_seQuence

sort_

Normal return <no errors).

One or more arguments specified to sort_,
including those ln the Sort Oescrlptio~, was
invalid or inconsistent. The Sort wll 1 '"'ave
previously written dlagnostlc messages as
jJrected by the user_out_sw argument. The
sorting process ltself has not been started.

The Sort has encountered a fatal er~or during
the sorting orocess. The Sort will rave
oreviously generated a specific error message
and signalled the sub_error_ condition vla
the sub_err_ subroutine.

The call to sort_ ls not ln the seQuence
reoulred by the Sort; that ls, sort_ has
been called after lnltlatlon of the Sort but
before terminatlon of that Invocation.

(END)

Page 42

sort

The Sort
speclailze the
Descrlptlon ls
The information

Keys -

Exlts -

sort_

Oescrlptlon contains additional lnformatlon to
Sort for a particular execution. The Sort
specif led vla the sort_desc argument to sort_.

specified may bel

Oescrlption of one or more key fields used for
ranking records.

Soeclf icatlon of which exlt points are to be used
ana the names of the corresponding user supplied
exit procedures.

A Sort Oescrlotlon ls reQulred. As a minimum, the user
specify how records are to be ranked, either by descrlblng
fields ln the Keys statement or by ~amlng a compare
orocedure ln the Exits statement. Other information ln the
Oescrlptlon ls optional.

must
key

exit
Sort

The Sort Description may be supplied to sort_ ln elt~er of
two forms, calJed source form and internal form.

The source form of the Sort Oescrlptlon ls wrlt+en exactly
as soeclfled for the sort command <see the Multics Programmers•
Manual, Commands and Active Functions, Section III), and ls
stored as an ASCII segment; that ls, ~s an unstructured flle in
the Multics storage system. If source form ls used, then the
sort_desc argument to sort_ must have an array extent of 1 and
the one pointer must be a pointer to the segment. (The segment
must contain only the Sort Descrlptlon.) The source form is
useful when the user Mrltes the Sort Oescr1otlon and supplies it
to the procedure which cat Is sort_.

The lnternaJ form of the Sort Oescrlptlon is a set of one to
three structures. The sort_desc argument must have an 3rrav
extent of 3, and the three pointers are pointers to the t~ree
structures. Any of the structures can be oITTltted; In that case
the corresponding pointer must be nul I. The Pointers must be
speclfled ln the array in the follo~lng order:

addr(keys)
addr(exits>
addr (l o_exl ts)

where the three structures (keys, eKits, and
defined below. The internal form ls useful when
calling sort_ constructs the Sort Description.

(ENO)

Page 43

lo_exlts> are
the proceaure

sort sort

KEYS STRUCTURE

The keys structure ls used when the caller describes key
flelds. The Sort•s standard compare routl~e wlli then be used to
rank records. If the caller describes keys, then the compare
exlt must not be speclfled.

If the caller does not describe keys, then the corresponding
oolnter ln the array sort_desc must be nut t and the compare exit
must be specified ln the exits structure. The user supplled
compare routine wll I tnen be used to rank records.

The keys structure lsl

de I 1 keys,
2 version fixed bln lnlt(1),
2 number fixed bin,
2 key_desc(user_keys_number refer(keys.number)),

3 datatyoe char(6),
3 slze fixed bln(24),
3 word_offset f lxed bln(18),
3 bit_offset flxed bln(&),
3 desc char(3);

where&

1· version is the version number of the structure <must
be 1).

2. number

3. key_desc

'+• datatype

5. s.ize

ls the number of key fields, estabtlshed by
the va•ue of user_keys_number.

ls an array of key descriptions. Each key
jescrlotion ls one ele•ent of the array. The
key descriptions must be specif led ln order,
the ~aJor key f lrst and the most minor key
I as t.

is the data type of the key f leld. See the
table below for the encoding of datatype.
The value must be left Justlfled wlthln
datatype.

ls the size of the key fletd, ln units which
depend on the data tyoe.

For string data types, size ls the exact
length <characters or,blts) of the field.

IENO)

Page 44

sort_

&. word_offset

7. blt_offset

8. desc

sort_

For arithmetic data types, slze ls the
precision (binary or declmal diglts> of the
fleld. The space occupied ls determined by
precision ln comblnatlon wlth the oata type.
The space occupied ls not adjusted for an
allgned field. For example, for an aligned
flxed blnary field of one word, s.ize must be
speclfled as 35; for an aligneo floating
binary field of two words, slze must be
speclf ied as &3. See the table below for the
semantics of slze.

J.s the word portion of the offset of the
beginning of the key f le1d, relative to the
beglnnlng of the record. Consider the record
as being aligned on a word boundary, as wit I
be the case for a Multics PL/I structure.
Words are numbered fro~ O for the flrst ~ord
of the record.

ls the bit portion of the offset of the key
f letd; that ls, the bit offset within the
word in which tre kev f leld begins. q1ts are
numbered from o to 35. <If the fleld ls
aligned on a word boundary, then blt_of fset
ls Q.)

indicates whether ranklng for this key fleld
ls to be ascending or descending. Possible
values ares

•••• = use ascending ranking.

use descending ranking.

<ENO)

Page 45

sort_ sort_

OATATYPE ENCODING ANO SEMANTICS OF SIZE

Encoding
of

jatatype

S em an tl c s o f
C where size =

Unl t Ral"\ge

slze
n)

Space Occupied

--~- -~--~~--

Character strlng
(Multics ASCII)

Blt string

Flxed blnary

Floating binary

Fixed decimal
<leading s.i.gn)

F I oat l n g de c i mat

char

bit

bln

flbln

dee

f Idec

9 bit 1 - 4095 n characters
character

1 blt 1 - 4095 n blts

1 blt

1 bit

9 blt
digit

9 bl t
digit

1 - 71

1 - 63

1 - 59

1 - 59

n + 1 bits

n + 9 bJ.ts

n + 1 dlglts

n + Z digits

---------------------------------------~- ·--~--- -------·-----

<ENO)

Page 46

sort_ sort_

EXITS STRUCTURE

The exits structure ls•

dcl 1 exlts,
1 version
2 compare

flxea bin inlt(1),
entry,

2 lnput_record
2 output_record

entry,
entry;

where a

1• version

2• compare

3. input_record

4. output_record

IO_EXITS STRUCTURE

ls the version number of the structure (must
be 1>.

speclf les the entry point of a user suoplled
compare exit procedur-e. If the caller
describes key fields <supplies a keys
structure>, then this exit must not be
spec l fled.

specifies the entry point of a user suoolied
lnput_record exlt procedure. This exlt can
be specified whether or not the lnout_file
exit ls specified.

specifies the entry point of a user suoplied
output_record exit procedure. This exit can
be specified whether or- ~ot the outout_flle
exit ls specified.

The io_exlts structure isl

de I 1 i o_ex its,
2 version

where:

2 lnput_flle
2 output _f ii e

1• version

,fixed bin lnlt(1,,
entry,
en try;

ls the version number of the structure <must
be H.

(ENO)

Page 47

sort_

lnout_flle

3. output_ f 11 e

ENTRY VARIABLES

speclfles the entry point of
lnout_f lle exit procedure.
names Input flies, then thls
speclfled.

sort_

a user supolled
If the caller

exit must not be

specifies the entry oolnt of a user suppl led
output_flle exit procedure. If the caller
names the output flle, then thls exit must
not be specified.

In the exits and lo_exits structures, each exit polnt ls
specified vla an entry varlable. The entry varlable must be set
(either lnltlalized or assigned) by a user procedure, normaffy
the procedure which calls sort_. The entry varlable can ldentlfy
either an Internal entry point (that ls, an internal procedure)
or an external entry point of the procedure which sets the entry
variable; or lt can identify an external entry polnt of another
user procedure.

If none of the exlts declared ln either the exits or
lo_exits structure ls to be used, then that structure can be
omitted and the corresponding pointer ln the array sort_desc must
be null. If the structure ls included but an exlt speclfled ln
lt ls not to be used, then the corresponding entry variable must
be set to sort_$noe)lt, which ls declaredl

dcl sort_$noexlt entry external;

An exit point may not be attered after the calJ to sort_.
Any change to the entry variable thereafte~ will have no effect.
However, certain entry points can be disabled, as speclfled ln
the descrlotlons of the lndlvldual exlt procedures below.

(ENO)

Page 48

sort_ sort

A user suppllea exlt proceaure ls called by the Sort to
perform a speclf led function. The user procedure must perform
that function, and then must return to the Sort. The user exlt
procedure may perform addltlonal functions desired by the user.

Certain exit procedures replace the corresponding standard
routine of the Sort. Other exit procedures supplement the normal
functions of the Sort. This ls specified for each !ndlvldual
exit procedure below.

The fol lowing exlt points are provldedl

input_flle
output_flle
compare
!nput_record
output _recoro

All exit points may be active during the same lnvocatlon of
the Sort.

The entry point names of all user supolled exit procedures
are defined by the user. Specific names are shown below o~ly for
convenience ln discussion.

<ENO)

Page 49

sort sort_

INPUT_FILE EXIT PROCEDURE

An lnput_flle exlt orocedure replaces the standard lnput
readlng function of the Sort. The Sort cal Is the inout_flle exit
procedure onty once durlng an execution of the Sort.

An lnput_flle exlt procedure must oerform the fol lowing
functions For each record which ls input by the user to the
sorting process, the lnput_flJe exit procedure must make one call
to the entry sort_$release (described later). After the
lnput_flle exit procedure has released the last Input record to
the Sort, lt must return to the Sort.

Usage

lnput_fllel oroc<code);

dcl coae fixed bln(35) parameter;

where code is a standard Hultlcs status code <ln error_table_>
which must be returned by the lnput_file exit procedure. If the
value ls not Ot then the Sort normally prints the corresponding
message and returns to lts caller with the status code
fatal_error. <Output)

CENO)

Page 50

sort_ sort_

OUTPUT_FILE EXIT PROCEDURE

An output_flle exit procedure reolaces the standard output
wrltlng function of the Sort. The Sort cal Is the output_file
exit procedure only once during an execution of the Sort.

An output_flle exit procedure must perform the fol lowing
functions• For each record which ls to be retrleved ln ranked
order from the Sort, the output_f ile exit procedure must make one
cal I to the ·entry point sort_Sreturn (described later). If
sort_Sreturn ls cal led but there are no more records to be
retrieved from the sorting process, then sort_$return returns
with the status code end_of_lnfo. The output_file exit orocedure
then must return to the Sort. If the user desires, the
output_flle exit procedure mav terminate r-etrlevaf at anv tlme
prior to receiving the end_of_info status, but it must still
return to the Sort. (The entry sort_$return may return status
codes other than end_of_lnfo ln case of err-or.)

Usage

output_fllel proc(code);

dcl code fixed bln(35) parameter;

standard Multics status code
returned by the outout_file

then the Sort normally prints
returns to lts caller with

(Output>

where code is a
which must be
value ls not Ot
message and
fatal_error.

(ENO)

Page 51

(in error_table_)
procedure. If the
the corresponding

the status code

sort_ sort_

COMPARE EXIT PROCEDURE

A compare exit procedure replaces the standard record
comparison procedure of the Sort. The Sort calls tne compare
exit proceaure each time the sorting process ls ready to rank t"o
records; that ls, to determlne which of the two ls f lrst ln the
sorted order.

A compare exlt procedure must oerform the fol lowing
function& The compare exlt procedure recelves as arguments a
polnter to each of the two records. The compare exlt procedure
must determine which of the two records ls f lrst - or that they
are eQual in rank - and must return a corresponding return value
to the Sort. The compare exlt procedure ls lnvoked as a
function.

Usage

compare& proc(rec_ptr_1, rec_ptr_2) returns(flxed bin(1))~

de I (rec_ptr _1
rec_ptr_2

dcl result

• • •

ptr,
ptrl parameter;
f lxed bln< 1);

returnCresult);
end compare;

where I

1. rec_ptr_1

2. rec_ptr_2

3. resu~ t

is a pointer to a douote word aligned buffer
contalning the first record of the oalr to be
compared. Thls record ls always the first of
the two accordlng to the orlglnal input
order. Unputl

·ls a pointer to a douole word aligned buffer
containig the second record of the palr to be
compared. (Input)

ls the result of the comparison. <Output)

Possible values are&

O = the t"o records rank equa1.

C ENO)

Page 52

sort sort

-1 : the record painted to by rec_ptr_1 ranks
first.

+1 : the record pointed to by rec_ptr_2 ranks
first.

If a compare exit procedure reQul~es the length of either
record, it ls available ln the ~ord preceding that record in the
form:

c:tcl rec_len fixed bin<21> aligned;

A compare exit procedure cannot alte~ either the content or
the length of either record.

(ENO)

Page 53

sort_

INPUT_RECORD EXIT PROCEDURE

An lnput_record exlt procedure m~v be
Sort•s standard input_flle procedure or
lnput_fife eKlt procedure ls used, and
lnout_f lie process. The Sort calls the
procedures

sort_

used whetrer the
a user supo•led

supplements that
input_record exlt

1• Each time the lnput_flle process releases a record to the
Sort, and before that record ls entered into the sorting
process;

z. Once more after the last input record has been released to
the Sort <end of input);

3. Addltlonallv, each time the input_record exit procedure
returns wlth an action of insert.

The Sort gives the lnput_record exlt procedure access to the
current record, the record about to be entered lnto the sorting
process.

An lnPut_record exit procedure need
processing. If l t does not, then the
current record lnto the sorting process.

not perform anv
Sort wlll accept the

An input_record exlt procedure
functions, which are accomplished
returned when the lnout_record exit
Sorta

may perform the foltowlng
vla the values of arguments
procedure returns to the

Accept the current record. This ls accomp~lshed by setting
action = o.

Delete the current record. This ls accomplished by setting
action : 1.

Insert one or more records before the current record. (At
the Jast caf I to the lnput_record eKlt procedure, records
may be inserted at the end of lnput.t This ls accomplished
by setting rec_ptr to point to the record to be inserted,
setting rec_Jen appropriately, and setting action = 3.

Alter the current record, before it ls entered into the
sorting process. Thls ls accomplished by altering the
record Pointed to by rec_ptr or setting rec_ptr to point to
another record, setting rec_len appropriately, and setting
act 1 on = O.

<ENO>

Page 54

sort sort

Close the exlt polnt so that the lnput_record exlt oroceoure
wl•I not be called agaln during this e~ecution of the Sort.
Thls ls accomplished by setting close_e><it_sw = "1'".

The lnput_record exit procedure must return to the Sort each
time it ls called.

Usage

lnput_recordl proc(rec_ptr, rec_len. action, close_exlt_sw):

dct (rec_ptr
rec_len
action
ctose_exlt_sw

ptr,
fixed bln<21>,
flxed bln,
blt<1>) parameter;

wheres

1. rec_ptr

2. rec_ I en

3. action

points to a double word aligned buffer
containing the current record. The
lnput_record exit procedure may alter the
contents of the record or may change the
pointer to point to another record. For the
actions of accept and insert, the Sort will
use the value of rec_ptr returned to It by
the lnput_record exit orocedure.
(Input/Output)

At the last cal I to the lnput_record exit
procedure (end of Input), there ls no current
record and rec_ptr = nu I I ().

is the length of the current record ln bytes.
The input_record exit procedure may change
the length of the record. For the actions of
accept and insert, the Sort wltl use the
value of rec_len retu~ned to it by the
lnput_record exlt procedure. <Input/Output>

lndlcates the action to be taken uoon return
to the Sort. <Input/Output)

Arguments referred to below are the values
returned to the Sort oy the lnput_record exit
procedure.

<ENO)

Page 55

sort_

4. cfose_exlt_sw

sort_

Possible values of action area

a = accept the current record. The record
pointed to by rec_ptr, whose lenst~ ls
given by rec_ten, ls entered into the
sorting process.

Each time the lnput_record exit procedure
is called, the Sort sets action to tnls
value.

1 = delete the current record. The current
record ls not entered Into the sorting
process.

3 = insert a record. The record pointed to
by rec_ptr, whose length ls given by
rec_len, ls entered into the sorting
process. The Sort cat Is the input_record
exlt procedure again, so that the current
record may be accepted or deleted or an
additional record may be inserted. At
thls next call to the lnput_record exit
procedure, the current record remains the
same.

At the last cal I to the lnput_record exit
procedure (end of Input), lf tne input_record
exit procedure inserts records then they are
appended at the end of input. Any other
value for action means do not append any
records, and the input_record exlt wlll not
be taken again.

lndlcates whether the exit ls to be ctosed
hereafter. (Input/Output l

Possible values area

"O" = keep this exit ooen. Each time the

"1" =

lnput_record procedure ls cat led, the
Sort sets close_exlt_sw to this value.

close
ca I I
again
(even

this exlt. The Sort wi f I not
the lnput_record exlt procedure
during thls execution of the Sort
if the action ls insert>.

(ENO)

Page 56

sort_ sort_

OUTPUT_RECORD EXIT PROCEDURE

An output_record exit procedure may be
Sort•s standard output_file procedure or
output_flle exlt orocedure ls used, and
output_flle process. The Sort calls the
procedure I

used whether the
a user suoolied

supplements that
output_record exit

1· Each time lt has determined the next record In ranked order
from the mergln~ process;

2. Once more after the last record has been obtained from the
merging process (end of output);

3· Addltlonally, edch time the output_record exit proceaure
returns with an action of Insert.

The Sort gives the output_record exit procedure access to
tlllo recordsl

1. Th~ output recorj, about to be written to the output f lie.
(If an outout_flle exit procedure has been specified by the
user, this ls the record about to be returned to that exit
procedure.>

2• The next record, the record teavlng the merging process.

An output_record exit procedure need not
processing. If it does not, then the output record
for the output flle.

oerf orm any
ls accepted

An output_record exit procedure may oerform the following
functions, which are accomplished vla the values of arguments
returned when the input_record exlt procedure returns to the
Sorta

Accept the oJtput record. This ls accomplished by setting
action = o.
Delete the output record. This ls accomplished by settln~
act ion = 1.

Delete the record leaving the merge. Thls ls accomplished
by setting action = 2·

Insert one or more records after the output record. (At the
first call to the output_record exit p~ocedure, records may
be inserted at the beglnnlng of output. At the last call to

(ENO)

Page 57

sort_ sort_

the output_record exlt procedure, records may be Inserted at
the end of output.a Thls ls accomptished by setting
rec_ptr_2 to polnt to the record to be inserted, setting
rec_ten_2 appropriately, and setting action= 3.

Alter the output record, before it ls written to the output
file. Thls ls accomplished by altering the record pointed
to by rec_ptr_1 or settlng rec_ptr_1 to point to another
record, setting rec_len_1 appropriately, and settln~ action
= c to accept <or action= 3 to Insert).

Summarize data Into the flrst record of a sequence of
records with eQual keys, and delete the succeeding records
of the seQuence. This may be accomplished as follows: At
the first ca 11 to the output_record exit procedure, set
eQua I key checking on (eQuaJ_key_s" = "1 ">. At subsequent
calls to the output_record exit procedure, if the output
record and the record leaving the merge have eQual keys
(eQual_key = 0), then accumulate data into the output record
and delete the record leaving the •erge (action = 2>. If
the two records have uneQual keys (equat_key ~ o>, then
accept the output record <action= Q).

Summarize data into the last record of a seQuence with equal
keys, and delete t~e preceding records of the sequence.
Thls may be accomplished as follo"sl At the flrst cal I to
the output_record exlt procedure, set eQual key checking on.
At subseQuent calfs, lf the two records.have equal keys then
accumulate data into a work area and delete the output
record (action = it. If the t"o records have uneQual keys.
then alter the output record using the accumulated data and
accept that record <actlon = Q).

SeQuence check tne output file. This
setting seq_check_sw = "1"• If the
collate properlv with the output file,
keys ln the position specified to
seQ_check_sw = "O"•

ls accomptlshed
output rcord will
or does not have

the Sort, then

by
not
lts
set

Close the exlt point so tnat the output_record exit
procedure wil I not be called again durlng thls execution of
the Sort. This ls accomplished by setting ctose_exlt_sw =
"1 ".

The output_record exit procedure must return to the Sort
each tlme it ls cal led.

(ENO)

Page 58

sort

Usage

sort

output_recordl proc(rec_ptr_1, rec_len_1, rec_ptr_z, rec_len_z,
action, equal_kev, equal_kev_sw,
seq_check_sw, close_exlt_sw);

de I <rec_ptr _1
rec_ten_1
rec_ptr_z
rec_f en_2
action
equal_kev
equal_key_sw
s e q_ ch ec k _ s"'
close_exlt_sw

ptr,
flxed bln<2U,
ptr,
flxeo bln<21),
f lxed bln,
f lxed bin< 1),
blt<1>,
blt(1),
blt<1> > parameter;

where I

1. rec_ptr _1

2. rec_t en_1

3. rec_ptr_2

polnts to a double word aligned buffer
containing the o~tput record. The
output_record exit procedure may alter the
contents of this record or mav change the
pointer to point to another record. The Sort
uses the value of rec_ptr_1 returneo to it by
the output_record exit procedure as specified
oelow ln the descrlptlon of the action
argument. <Input/Output)

At the first call to the output_record exit
procedure (beginning of output), there ls ~o

output record and rec_ptr_1 =null<>.

ls the tength of the output record ln bytes.
The output_record exlt procedure may change
the length of this record. The Sort uses the
value of rec_len_1 returned to lt by the
output_record exit procedure as soecifled
below in the description of the action
argument. <Input/Output)

points to a double word aligned buffer
containing the record leaving the merge. The
output_record exit procedure may not alter
the contents of thls record. for all actions
except Insert, the Sort wil I ignore the value
of rec_ptr_2 returned to it by the
output_record exlt procedure. If the action
ls Insert, then the output_record exlt

<ENO)

Page 59

sort_

4. rec_Jen_2

5. action

sort

procedure must ch~nge rec_ptr_2 to point to
the record to be lnsertej. <Input/Output)

At the last cal I to the output_record exlt
procedure tend of outp~t), there ls no record
leaving the merge and rec_ptr_2 =null().

is the length of the record leaving the
merge. The output_record exit procedure may
not change the length of this record. For
aJ I actlons except insert, the Sort wi 11
Ignore the value of rec_len_2 returned to it
by the output_record exit procedure. If the
dctlon ls Insert, then the output_record exit
procedure must set rec_len_2 to the len~th of
the record to be Inserted. (Input/Output)

indicates the action to be taken upon return
to the Sort. <Input/Output>

Possible values of action area

a = accept the output record. The output
record ls "rltten to the output f lte.
The Sort uses the returned values of
rec_ptr_1 and rec_len_1 to identify the
record to be written. At the next call
to the output_record exit procedure, the
record leaving the merge becomes the new
output record, and a new record leaving
the merge has been obtained.

Each tlme the output_record exlt
oroceoure ls catted, the Sort sets action
to this value.

1 = delete the output record. No record ls
written to the output file. The Sort
ignores the returned values of rec_ptr_1
~nd rec_len_1. At the next call to the
output_record exlt procedure, the record
leaving the merge becomes the new output
record, and a ne" record leavlng the
merge has been obtalned.

2 = defete the record leaving the merge.
(This action should be used for
summarization into the output record.)

(ENO)

Page 60

sort_

6. equa I _key

sort_

No record ls written to t~e output flle.
At the next call to the output_record
exlt procedure, the output record remains
the same, and a new record leavlng the
merge has been obtained. The Sort uses
the returned valJes of rec_ptr_1 and
rec_len_1 to identlfv the output record
for that next cal I to the output_record
exlt procedure.

3 = Insert a record after the output record.
The output record ls written to the
output f lie. The Sort uses the returned
values of rec_ptr_1 and rec_len_1 to
identify the record to be written. The
Sort calls the output_record exlt
procedure agaln, so that the Inserted
record may be accepted or an additional
record may be Inserted. At thls next
call to the output_record exlt procedure,
the Inserted record becomes the new
output record, and the record leaving the
merge remains the same. The Sort uses
the returned valJes of rec_ptr_2 and
rec_len_2 to ldentlfy the Inserted
record.

At the fast call to the output_record exlt
procedure ~end of output), lf the
output_record exlt procedure Inserts records
then they are appended at the end of output.
Any other value for action means do not
append any records, and the output_record
exlt w111 not be taken agaln.

1ndlcates whether the output record and the
record leaving the ~erge have eQual keys.
<Input>

Possible values ares

0 : the two records rank equal.

!.1 = the two records do not rank eQual. At
the f !rs t and last ca I Is to the
output _record exit procedure (beglnnlng
of J.nput and end Of J.nput), only one
record ls present and the Sort sets

CENO)

Page 61

sort

7. eQual_key_sw

8. seQ_check_sw

sort_

eQual_key to this value.

If the user suppl led key descriptions, then
the value of equat_key ls determined only by
those key fields; the original input order
of the two records ls ~~t used to resolve key
eQuality. If the use~ supplied a compare
exit procedure, then the Sort uses the result
of that comoare exlt procedure to set the
value of eQual_key. Un either case, if the
two records rank equat then rec_ptr_1 points
to the record which ls first according to the
original lnput order of the two records.)

indicates whether or not equal key checking
ls to be performed. <Input/Output)

possible values are&

"O" = do not check for equal keys. At the
first call to the output_record exit
procedure (beginning of output), the
Sort sets equal_key_sw to this value.

"1" = check for equal keys before the
cal I to the outout_record
procedure.

next
exit

Sl~ce equal key checking takes time, the user
should set equat_key_sw = ui" only when
reQulred for actions such as suMmarlzation.

indicates whether or not sequence checking ls
to be performed. (lnp~t/Output)

Possible values ares

''O" = do not sequence check.

"1" = sequence check. At the first calt to
the output_record exit procedure
(beginning of output), the Sort sets
seq_check_s• to this value.

SeQuence checking means comparlng the output
record to the record o~eviously written to
the output flle. Cif the user specified an
output_flle exit procedure, the output record

CENOt

Page 62

sort

9. close_exlt_sw

sort_

ls compared to the record previously returned
to that exlt procedure.> SeQuence checklng
ls performed after the output_record exit
procedure returns to the Sort, and only lf a
record 1s to be written to the output flle
(that ls, only lf the actlon ls accept or
insert). If the user suppl led key
descriptions, tr.en the Sort•s key comparlson
routine ls used. If the user suoplled a
co111pare exit orocedu,..e, then that exit
procedure ls called.

If the output record ls out of sequence with
the prevlous record, then t~e status coae
fatal_error is retur~ed to the caller of
sort_; see the entry sort_ above. <If the
user speclfled an outp~t_flle exit procedure,
then the status code data_seQ_error ls
returned to that exlt procedure; see the
entry sort_$return below.>

Alt records wrl tten to the
Including Inserted records, can
checked.

output f 11 e ,
be sequence

lndlcates whether the axlt ls to be closed
hereafter. (Input/Output>

Possible values area

"o" = keep this exit open. Each tlme the
output_record exlt procedure ls cal led,
the Sort sets close_exlt_sw to tnls
value.

"1" =close this exit. The Sort wll I not
call the output_record exlt procedure
again durln~ thls execution of the Sort
<even if the actlo~ 1~ Insert}.

<ENO>

Page 6 3

sort_ sort_

RECORD POINTERS

Slnce the Sort aligns each record ln a buffer on a double
word boundary, if an exit procedure applies a based declaration
of the record to the polnter(s) then correct alignment ls
ensured.

ORIGINAL INPUT ORDER (FIFO)

For the compare and output_record exlt procedures, rec_otr_1
always polnts to the record whose orlglna1 Input order was orlor
to the record pointed to by rec_ptr_2. If a compare exit
procedure returns wlth an eQuat ranking for the two records, then
this original lnput order ls preserved. Orlglnal input order has
been defined earlier under the heading Key Fields.

(ENO)

Page 64

sort_ sort_

En.1t:.XI sort_$releasa

The entry "sort_Srelease" ls used each time the caller
releases a record to the sorting process. Cal Is to
sort_$release are made from a user sOpplled lnput_flle procedure.
The caller specifies the location and length of the record. The
Sort accepts the record and stores lt ln Its own work area.

dcl sort_$release entry(ptr, fixed bln<21>, fixed bln<3s>>;

call sort_$release (buff_ptr, rec_len, code>;

wheres

buff_ptr

2. rec_ I en

3· code

ls a pointer to a
containing the record.

b v t e a J 1 gn ea
<Input)

ls the length of the record in
(lnpu t)

buffer

bytes.

ls a standard Hultlcs status coae returned b'f
the Sort. Possible values are listed below
under the heading Status Codes. <Output)

The Sort aligns each record on a double word boundary ln a
work area.

The following status codes mav be returned by the
sort_Srelease entry point <a•• codes are in error_table_)I

0

out_of _sequence

Normal return <no error).

The call to sort_$release ls not ln the
seQuence required by the Sort; e.g.,
sort_$retease has been called before sort_.

(ENO)

Page 65

sort_

fatal_error

long_record

short_record

sort_

The Sort has encounterd a fatal error during
the sorting process. The Sort wit I ~ave
previously generated a speclflc error message
and signalled the sub_error_ condition vla
the sub_err_ subroutine.

Thls lnput record ls longer than the
supported. The record ls ignored
Sort, and the caller Tiay continue to
records to the Sort.

maximum
by the

retease

This lnput record ls shorter than the minl~um
reoulred to contain the key fields. T~e

record ls ignored by the Sort, and the caller
may continue to retease records to the Sort.

(ENO)

Page 66

sort_ sort

En1c~• sort_$return

The sort_$return entry ls used each time the caller
retrieves a record, In ranked order, from tne Sort. Cal Is to
sort_$return are made from a user supplied output_flle procedure.
Upon return from sort_$return, the caller ls given the location
and length of the record.

If sort_$return ls called but there are no more records to
be retrieved, then sort_treturn returns to the caller wlth the
status code end_ot_lnfo.

dct sort_$return entry(ptr, fixed bin<21>, fixed bln<35));

call sort_$return (buf f_ptr, rec_Jen, code>;

wheres

1. buff_ptr

2. rec_Jen

3. code

is a pointer to a douole word aligned buffer
containing the record. <Output>

ls the length of the record ln
<Output)

bytes.

ls a stanoard Huf tics status code returned by
the Sort. Possible values are listed betow
under the heading Status Codes. <output>

The Sort atlgns each record on a double word boundary ln a
work area. Thus if the caller applies a based decJaratlon of the
recora to the pointer then correct alignment ls ensured.

The following status codes mav be returneo by the
sort_$return entry point <atJ codes are ln error_table_):

0 Normal return <not end of lnformatlon, no
error> •

(ENO)

Page 67

sort_

end_of_1nfo

out_of_seQuence

fatal_error

data_loss

data_galn

data_sea_error

!::l.a.m.e I merge_

There are no more
from the Sort.
data indlcatlon.
the ca I I er.

sort_

records to be retrleved
Thls ls the normal end of

No record ls returned to

The cal I to sort _$return ls not ln the
seQuence reQuired by the Sort; e.g.,
sort_$return has been cat led before
sort_irelease.

The Sort has encountered a fatal error during
the sorting process. The Sort wll I have
previously generated a specific error message
and signalled the sub_error_ condltlon via
the sub_err_ subroutine.

Ena of data has been reached, but the number
of records previously returned ls less than
the number of records released to the Sort.
No record ls returned to the caller.

The number of records returned Clncludlng
this record) ls now larger than the number of
records released to the Sort. The curre~t
record ls returned to the caller, and the
caller may continue to retrleve records from
the Sort.

A ranking error has occurred ln the records
returned to the caller (as determined by the
key f lei ds of the record). The current
record ls returned to the caller, and the
caller may continue to reauest records from
the Sort.

The merge_ subroutine provides a generalized file merging
capability, which ls speclallzed for execution by user supplied
oarameters. The baslc function of merge_ ls to read one or more
input flies of records which are ln order according to the values
of one or more key fields, merge (coll ate> those records
according to the values of those key fields, and wrlte a single
output flle of ordered (or "ranked", records. The merge_
subroutine has the following general capabilltles&

Input ana output flies may be on any storage medlum and ln
any file organlzatlon;

(ENO)

Page &8

merge_ merge_

Very large flies, such as multlsegme~t flies, can be merged;

Multiple key fields and most PL/I strlng and numeric data
types may be speclfled;

Exlts to user supplled subroutines are oermltted at several
points during the merging process.

The arguments to the merge_ subroutine Include one or more
pointers to additional information necessary to speclallze merge_
for executlqn. This additional lnf ormatlon ls cal led the Merge
OescrlPtlon.

INPUT ANO OUTPUT

The user specifies the input and output flies. The Merge
reads the l~put fl las and write~ the output flle. Each Input or
output file may be stored on any medium and ln anv flle
organization supported by an I/O module through lox_. The I/O
module may be one of the Multics system I/O modules <such as
tape_ansl_), or one suppl led by a specific installation, or one
written by a user. An input or output flle ls speclfled either
by a pathname or by an attach descrlotlon.

In all cases, records may be either fixed length or variable
length.

KEY FIELDS

The user can specify the key fields to be used in ranking
records. Kev fief ds are described ln the Keys statement - or in
the keys structure of the Merge Description. Up to 20 key
fielos may be soecifled. Any PL/I string or numeric data tyoe
except complex or pictured - may be specified for a given key
field. Ranking may be ascending, descending, or mixea. For a
character string key fletd, the collating sequence is that of the
Hui tics standard character set. The re:ords of each input flle
must be In order according to those key fletds.

Alternatively, the user can supply a compare procedure,
which ls then used to rank records. The ~ecord~ of each Input
f 11 e must be in order according to the a I gori thm of that
procedure.

The original input
preserved (FIFO order>.

order of records with eQual keys ls
Orlglnat input o~der ls defined as

<END)

merge_ merge_

follows:

1• If two eQual records come from different input flies, then
the record from the file which ls specified earlier in the
tlst of input flies <ln the lnput_specs subroutine argument)
ls f lrst.

2. If two eQual records come from the same input flle, then the
record which ls earlier in the file ls first.

EXITS

The Merge provides exits to user supplied procedures at
specific points during the merging process. Exit procedures are
named ln the Exits statement - or in the eKlts structure - of the
Merge OescrlPtlon. The following exlt points are provided&

?utout_record

compare

To perform special processing for each output
record, such as deleting, inserting, or
altering records to be output from the Merge;
.or summarizing data by accumulating it into a
summary record.

To compare two records; that is, to rank them
for the merging process.

Details of exit procedures are given oelow under the heading
Writing Exit Procedures.

<ENO)

Page 70

merge_ 111erge_

dcl merge_ entry((•)char(+), char<•>, (•)ptr,
c~ar(+), fixed bln(35>>;

cat I merge_

wheres

1. input _specs

(input_specs, output_spec, merge_desc,
user_out_sw, code>;

ls an array containing the speciflcatlons of
the input flies. Up to 10 input flies may be
specif led. The array extent speclfles the
number of input flies. <Input>

Input file I ls specified
element input_specs(J), ln
folloMlng forms•

in the array
one of the

-lnput_fll~ pathname
-lf pathname If an lnput file ls ln the Multics

storage system and lts file organl2atlon
ls either seQuential or lndexeo, t~en lt
may be speclfled by lts pathname. The
flte may be elthe~ a single segment or a
multlsegment f lie. The star convention
can not be used.

An lnput f lie soeclfled by a Pathname
will be attached using the attach
descrlotlon "vflle_ pathname".

-lnput_descrlptlon attach_desc
-ids attach_desc

output_spec

If an input file ls not ln the Multics
storage system or lts file organization
ls neither seQue~tlal nor indexed, then
it must be specified by an attach
description. The target I/o module
speclfled via the attach descrlptlon
must support the seQuentlal_lnout
opening mode and the lox_ entry point
read_record.

Pathnames and attach descriptions can be
intermixed in the lnput_specs array.

ls the
Only

specification of
one output file

<ENO)

Page 71

the output flle.
may be soeclflea.

rner ge_ merge_

<Input)

The output file may be soeclfied in one of
the following forms&

-output_flle pathname
-of pathname If the output file ls in the Multics

storage system a~d its file organization
is seQuential, then it may be soecified
by Its patrname. The file may be either
a single segment or a multisegment file.

The eQuals convention can be used. If
lt ls, lt ls aoolled to the pathname of
the flrst input f 1 le and the flrst input
file must be specified by a patrname,
not by an attach description.

An output file speclfled by a pathname
will be attached uslng the attach
descrlptlor "vflle_ pathname". Thus if
the fl le does not exist, 1t wl 11 be
created. If lt does exist, lt wlll be
overwr l t ten.

-output_descrlotlon attach_desc
-oas attach_desc

merge_desc

4. user_out_sw

If the output file ls not in the Multics
storage system or its file organization
is not seQuentlal, then it must be
specified by an attach descrlptlon. The
target I/O module speclfled vlc the
attach description must support the
seQuential_output opening mode and the
lox_ entry point wrlte_record.

ls an array of pointers
Jescrlption. See the
Oescrlotion below. Unput>

to the
heading

Merge
Merge

specifies the destination of both the summary
report ana diagnostic messages for errors
jetected ln the arguments to merge_ or in the
Merge Description. <Input>

This argument may have the following values&

(ENO)

Page 72

merge_

5. code

NOTES

··-

merge_

= wrlte the summary reoort and
dlagnostlc messages via t~e I/O
switch user_outout.

= do not wrlte the summary report
and diagnostic messages. If any
errors are dlagnosed, merge_
wlll return wlth t~e status code
bad~arg :>ut lnformatlon about
the number and nature of the
errors ls not avallable.

SMltchname = wrlte the summary report and
dlagnostlc messages via the I/O
swltch named swltchname. The
switch must be attachea and open
for stream output.

ls a standard Multlcs status code returned by
merge_. Possible values are listed below
under the heading Status Codes. (Output)

Any pathname may be relatlve (to the user•s current worklng
dlrectoryl or absolute.

STATUS CODES

The foltowlng status codes may be returned by merge_ <all
codes are in error_tabte_) s

0

fatal_error

Normal return (no errors•.

One or more arguments specif led to merge_,
lnctudlng those ln the Merge Oescrlotlor, was
lnvalid or lnconslstent. The Merge will ~ave
previously wrltten diagnostic messages as
directed by the user_out_sw argument. The
merging process itself has not been started.

a fatal error
The Merge wlll

speclflc error
the sub_ error_

subroutine.

The Merge has encountered
dur.Lng the merging process.
have previously generated a
message and slgna1 led
condltlon vla the sub_err_

<ENO)

Page 73

merge_

out_of_sequence

merge_

The call to merse_ ls not ln the sequence
reoulred by the Merge; that ls. merge_ has
been called after lnltlatlon of the Merse but
before termlnatlon of that lnvocatlon.

<ENO)

Page 74

merge_ merge_

The Herge Oescr1ption contains additional lnformatlon to
specialize the Her1e for a particular execution. The Merge
Oescrlptlon ls speclf led vla the merge_desc argument to merge_.
The information specified mav be:

Keys - Description of one or more key f lelds used for
ranking records.

Exits - Speclf lcatlon of whlch exit points are to be used
and the names of the corresponding user supplied
exl t procedures.

A Merge Oescrlptlon ls required. As a minimum. the user
must specify how records are to be ranked, either by describing
key fields ln the Keys statement or by naming a compare e.><lt
orocdure ln the Exits statement. Other inf ormatlon in the Merge
Oescrlptlon ls optional.

The Merge Description may be suppl led to merge_ ln either of
two forms, called source form and internal form.

The source form of the Merge Oescrlptlon ls written exactly
as specif led for the merge command (see the Multics Programmers•
Hanual, Commands and Active Functions, Section IIIl. and ls
stored as an ASCII segment; that ls, as an unstructured f lte in
the Multics storage system. If source for~ ls used, then the
merge_desc argument to merge_ must have an array extent of 1 and
the one Polnter must be a pointer to the segment. (The segment
must contain only the Merge Oescrlotlon.> The source form ls
useful "hen the user writes the Merge Descrlptlon and supplies lt
to the procedure which cal Is merge_.

The internal form of the Merge Description ls a set
or t"o structures. The merge_desc argument must have
extent of 2, and the two pointers are pointers to
structures. Any of the structures can be omitted; ln
the corresponding oolnter must be nut 1. The pointers
specified in the arr3y ln the following orders

addr(keysl
addr(exits>

of one
an array
the t il'IO

that case
must be

where the two structures (keys and exits) a~e defined below. The
internal form ls tJsef\11 when t"e procedure celllnq merge_
constructs the Merge Oescrlptlon.

(ENO)

Page 75

merge_ merge_

KEYS STRUCTURE

The keys structure ls used ~hen the caller describes key
flelas. The Merge•s standard compare routine wlll then be used
to rank records. If the calf er describes kevs, then the compare
exit must not be speclf ied.

If the ca~ler does not describe keys, then the corresponding
oolnter ln the array mer~e_desc must be nul I and the compare exit
must be specified ln the e~lts structure. The user supplied
compare routlne wll I then be used to rank records.

The keys structure ls•

de I 1 keys,
2 version fixed bin lnit(1),
2 number fixed bln,
2 key_desc<user_keys_number refer(keys.numberJ),

3 datatype char(6),
3 slze f lxed bln<24),
3 word_offset f lxed bln(18),
3 blt_offset fixed bln<&>,
3 desc char(3);

wheres

1. version is the version number of the structure <must
be 1t.

2. number

3. key_desc

4. datatype

5. slze

ls the number of key flelds, established by
the value of user_keys_number.

ls an array of key descriptions. Each key
jescrlptlon ls one ele•ent of the array. The
key descrlptlons must be specif led ln order,
the maJor key first and the most minor key
I ast.

ls the data type of the key field. See the
table below for the encod!ng of datatyoe.
The value must be left 1ustlfied within
datatype.

ls the size of the key field, in units which
depend on the data type.

For string data types, size ls the exact
tength (characters or Dlts> of the field.

(ENO)

Page 76

merge_

6. word_offset

7. blt_of f set

8. desc

merge_

Fpr arithmetic data tvpes, slze is the
precision (binary or declmal digits, of the
field. The space occupied ls oetermlned by
oreclslon in comblnatlon with the data tvoe.
The space occupled ls not adJusted for an
atlgned fleld. For example, for an aligned
flxed blnarv field of one word, size must be
specified as 35; for an aligned f loatlng
binary field of two words, size must be
specified as 63. See the table below for the
semantics of slze.

ls the word portion of the offset of the
beginning of the key fle1d, relative to the
beginning of the record. Cons~der the record
as being al lgned on a word boundary, as wl 11
oe the case for a Multics PL/I structure.
~ords are numbered from O for the first word
of the record.

ls the bit portion of the offset of the key
f leld; that ls, the bit offset within the
word in which the key f leld begins. Blts are
numbered from O to 35. (If the field ls
aligned on a word boundary, then blt_offset
ls O•)

indicates whether ranking for this key field
ls to be ascendlng or descendlng. Possible
11a1ues are•

.... = use ascending ranklng •

= use descending ranking.

(ENOl

Page 77

merge_ merge_

OATATVPE ENCODING ANO SEMANTICS OF SIZE

Encoding
of

datatype

Semantics of size
(11there slze = n)

Unlt Range Soace Occupied

--- --------------------
Character string

<Multics ASCII)

Blt strlng

Fixed binary

Floating bl nary

Fixed dee i ma I
<I eading slgn)

Floating decimal

char

bit

bln

fJbln

Jee

floec

9 blt 1 - 4095 n characters
character

1 bit 1 - 41l9S n bits

1 bit 1 - 71 n + 1 bl ts

1 blt 1 - 63 n + 9 bits

9 bit 1 - 59 n + 1 digits
dlglt

9 bit 1 - 59 n + 2 dlglts
dlglt

------------------------ ---------

<ENO)

Page 78

merge_ merge_

EXITS STRUCTURE

The exlts structure isl

dcl 1 exits,
1 version
2 compare
2 reserved

fixed bin init(1),
entry,

2 output_record
entry lnit<merge_Snoexit),
entry;

where a

1· version

2· compare

3. reserved

4. output_record

ENTRY VARIABLES

ls tne version number of the structure <must
be 1).

speclfies the entry polnt of a user supplied
c om Pare e >< 1 t pr o c ed u,.. e • I f the c a I I er
describes kev f lelds (supplies a keys
structure), then thls exit must not be
spec 1 fled.

1s reserved for future use.

specifies the ertry point of a user supolied
output_record exlt procedure.

In the exits structure, each exit point ls specified vla an
entry variable. The entry variable ~~st be set <either
lnitlallzed or assigned) by a user procedure, normally the
procedure "hlch cal Is merge_. The entry ~ariable can identify
either an internal entry point (that ls, an internal procedure)
or an external entry polnt of the procedure which sets the entry
variable; or it can identify an external entry polnt of another
user procedure.

If none of the exits declared in the exits structure ls
be used, then that structure can be omitted and
corresponding pointer ln the array merge_desc must be nul 1.

to
the
If

to
the structure ls included but an exit speci~led ln it ls not to
be used, then the corresponding entry variable must be set
merge_$noexlt, whlch is declaredl

dcl merge_$noexlt entry external;

(ENO)

Page 79

merge_ merge_

An exlt point may not be altered after the call to merge_.
Any change to the entry variable thereafter wlll have no effect.
However, certain entry points can be dlsabled, as speclf led in
the aescrlptlons of the individual exit procedures below.

(ENO)

Page 60

merge_ merge_

A user supplied exlt procedure ls cat led by the Mer~e to
perform a soeclf led function. The user orocedure must perform
that function, and then must return to the Merge. The user exlt
procedure may perform addltlonal functions deslred by the user.

Certain exlt procedures replace the corresponding standard
routlne of the Merge. Other exit procedures supotement the
normat functlons of the Merge. Thls ls speclfled for each
lndlvldual exlt procedure below.

The following exit polnts are provlde~I

output_record
compare

Alt exlt points mav be active during the same invocatlon of
the Merge.

The entry point names of all user supplied exit proced~res

are defined by the user. Specific names a~e shown below cnly for
convenience ln dlscusslon.

CENO)

Page 81

merge_ merge_

COMPARE EXIT PROCEDURE

A compare exit procedure replaces the standard record
comparison procedure of the Merge. The Merge calls the compare
exlt procedure each time the merging process is ready to rank two
records; that ls, to determine which of the two ls first ln the
merged order.

A compare exlt procedure must perform tre following
functions The compare exit procedure "'eceives as arguments a
pointer to each of the two records. The compare exit procedure
must determine which of the two records ls first - or that they
are eQual in rank - and must return a corresoonding return value
to the Merge. The compare exlt procedure ls Invoked as a
function.

Usage

compares proc<rec_otr_1, rec_ptr_2> returns(flxed bln<1>>;

dcl <rec_ptr_1
rec_ptr_2

dcl result

• • •

ptr,
p tr) parameter;
fixed bln<1>;

return(resultl;
end compare;

wheres

1 • rec_ptr _1

2· rec_ptr _z

3. result

ls a pointer to a double word aligned buffer
containing the first record of the pair to be
compared. This record ls always the first of
the two accordlr.g to the original input
order. <Input>

ls a pointer to a double word aligned buffer
contalnlg the second record of the pair to be
compared. (Input t

ls the result of the comparison. (Outout>

PosslbJe vatues are:

O = the two records ~ank eQual.

(ENOt

Page 62

merge_ merge_

-1 = the record pointed to by rec_ptr_1 ranks
flrst.

+1 = the record polnted to by rec_ptr_2 ranks
first.

If a compare exit proceaure reQuires the length of elther
record, lt is available ln the word preceding that record ln the
form I

dcl rec_len fixeo blnf21> aligned;

A compare exit procedure cannot alter elther the content or
the length of either record.

(ENO)

Page 83

merge_ merge_

OUTPUT_RECORD EXIT PROCEDURE

An output_record exlt procedure supplements the standard
output writing function of the Merge. The Merge calls the
output_record exit procedures

1. Each time lt has determined the next record in ranked order
from the merging process;

z. Once more after the last record has been obtained from the
merging process (end of output>;

3. Aadltionally, each ti~e the output_record exit procedure
returns with an action of insert.

The Merge gives the output_record exit procedure access to
two records:

1. The output record, about to be written to the outout flte.

2. The next record, the record leaving the merging process.

An output_record exlt procedure need not perform any
processing. If lt does not, then the output record ls accepted
for the output f ite. ~

An outout_record exit procedure may perform the following
functions, which are accomplished via the values of arguments
returnea when the output_record exit procedure returns to the
Merge I

Accept the output record. This ls accomplished by setting
action = o.

Oelete the outp~t record. Thls ls accomplished by setting
action = 1·

Delete the record leaving the merge.
by setting actlon = 2.

Thls ls accomplished

Insert one or more records after the output record. (At the
first cal I to the output_record exit procedure, records may
be lnserted at the beginning of output. At the last call to
the output_record exlt procedure, records may be inserted at
the end of output.) This ls accomplished by setting
rec_ptr_2 to polnt to the record to be inserted, setting
rec_len_2 aooroorlately, and setting action = 3.

(ENO)

Page 84

merge_ merge_

Alter the output record, before lt ls written to the output
file. This ls accomplished by altering the record pointed
to by rec_ptr_1 or setting rec_ptr_1 to polnt to another
record, settlng rec_len_1 approprlately, and setting action
= O to accept (or action= 3 to Insert).

Su~marlze data lnto the first record of a seQuence of
records with equal keys, and delete the succeeding records
of the sequence. Thlsmaybeaccompllshed.asfollows: At
the first call to the output_record exit procedure, set
equal key checking on (eQual_key_sw = "1°). At subsequent
calls to the output_record exit procedure, lf the output
record and the recqrd leaving the merge have eQual kevs
(eQual_key = o>, then accumulate data lnto the output record
and delete the record leavlg the merge <action = 2>. If the
two records have uneQual keys (eQual_key ~ o>, then accept
the output record (action= Ql.

Summarize data into the last record of a sequence with eQual
keys, and d~lete the preceding records of the seQuence.
Thl s may be accomp Ii shed as f o II ows s At the flrst ca If to
the output_record exlt procedure, set eQual key checklng on.
At subseQuent calls, if the two records have eQual keys then
accumulate dati into a work area and delete the output
record (action= 1>. If the two records have uneQual keys,
then alter the output record using the accumulated data and
accept that record (action= 0).

SeQuence check the output flle. This ls accomplished by
setting seq_check_sw = "1". If the output record wlll not
collate properlv with the output file, or does not have lts
keys ln the position specified to the Merge, then set
seQ_check_sw = "O".

Close the
procedure
the Merge.
··1 •••

eKit polnt so that the output_record exlt
wil I not be cal led again during thls execution of
This is accomplished by setting close_exlt_sw =

The output_recora exit procedure must return to the Merge
each time It ls cal led.

Usage

output_recordl proc<rec_ptr_1, rec_len_1, rec_ptr_2, rec_len_z,
action, equal_key, eQual_key_sw,
seQ_check_sw, cJose_exit_sw>;

(ENO)

Page 85

merge_

de I < rec_ptr _1
rec_len_1
rec_ptr_2
rec_ I en_2

ptr,
fixed blnC2U,
ptr,

merge_

act l on
eQual_key
eQual_key_sw
seQ_check_iM
close_exlt_sw

fixed bln<21>,
fixed bln,
f l>ced bJ.nC 1),
bJ.tC1>,
blt(1),
blt(1)) parameter;

where I

1. rec_ptr_1

2· rec_len_1

3. rec_ptr_2

oolnts to a double word aligned buffer
contalnlng the output record. The
output_record exlt procedure may alter the
contents of this record or may change the
pointer to point to another record. The
Merge uses the vatue of rec_ptr_1 returned to
it by the output_record exit procedure as
specified beJow in the descrlPtlon of the
action argument. <Input/Output>

At the first call to the output_record exlt
procedure (beglnnlng of output), there ls no
output record and rec_ptr_1 =null().

ls the length of the o~tput record in bytes.
The output_record exlt procedure may change
the length of t~is record. The merge uses
the value of rec_len_1 returned to lt by the
output_record exit procedure as specified
below in the descrlptlon of the action
argument. <Input/Output)

points to a double word aligned bulfer
containing the record teavlng the merge. The
outout_record exit procedure may not alter
the contents of this record. For all actions
except Insert, the Merge wU I ignore the
'alue of reo_ptr_Z returned to It bv the
output_record exlt procedure. If the action
ls insert, then the output_record exlt
procedure must change rec_ptr_2 to oolnt to
the record to be lnser-ted. Unout/Outputl

At the tast call to the output_record exit
procedure Cend of outpyt), there ls no record
leaving the merse and rec_ptr_2 = nut1<>.

CENO)

Page 86

merge_

'+• rec_len_z

S. act ion

merge_

ls the length of the record leaving the
merge. The output_record exit procedure may
not change the length of this record. for
all actions except Jnsert, the Merge wll I
ignore the value of rec_len_z returned to it
by the output_record exit procedure. If the
actlon ls lnsert, then the output_record exit
procedure must set rec_len_2 to the lensth of
the recoro to be inserted. <Input/Outout)

indicates the action to be taken upon return
to the Merge. <Input/Output>

Possible values of action arel

a = accept the output record. The output
record ls written to the output file.
The Merge uses the returned values of
rec_ptr_1 and rec_len_1 to ldentlfv the
record to be wrl tten. At the next ca 11
to the output_record exit procedure, the
record leaving the merge becomes the new
output record, and a new record leaving
the merge has been obtained.

Each time the output_record
procedure ls cal led, the Merge
actlon to this value.

exit
sets

1 = delete the output record. No record ls
wrltten to the output file. The Merge
ignores the retur~ed values of rec_ptr_1
and rec_1en_1. At the next call to the
output_record exlt p~ocedure, the record
leaving the merge becomes the new output
record, and a new record leavlng the
merge has been obtalned.

2 = delete the record leavlng the rrerge.
(This action should be used for
summarization Into the output record.)
No record ls written to the output flle.
At the next calf to the output_record
exit procedure, the output record remains
the same, and a new record leaving the
merge has been obtained. The Merge uses
the returned values of rec_ptr_1 and
rec_len_1 to ldentlfy the output record

(ENO)

Page 87

merge_

f>- equa I _key

merge_

for that next caJ I to the output_record
exit procedure.

3 = insert a record after the output record.
The output record ls written to the
output file. The Merge uses the returned
values of rec_otr_1 and rec_len_1 to
ldentlfy the record to be written. The
Merge calls the output_record exit
procedure again, so that the inserted
record may be accepted or an addltlonal
record may be inserted. At this next
call to the output_record exit procedyre,
the inserted record becomes the new
output record, and the record leaving the
merge remains the same. The Merge uses
the returned values of rec_pt_z and
rec_len_2 to identify the inserted
record.

At the last cal I to the output_record exit
procedure (end of output), 1 f the
ootput_record exlt procedure Inserts records
then they are appended at the end of output.
Any other value for action means do not
append any records, and the output_record
exlt wlll not be taken again.

ind!cates whether the output record and the
record leaving the merge have equal keys.
<Input)

Possible values area

o = the two records rank eQuat.

!1 = the two records do not rank equal. At
the flrst and tast cal Is to the
output_record exit procedure, (beglnnlng
of output and end of output>, only one
record ls present and the Merge sets
eQuat_key to this value.

If the user suppl led key descriptions, then
the value of eQual_key ls determined only by
those key fields; the original input order
of the two records ls ~~1 used to resolve key
equality. If the user suppl led a compare

(ENO}

Page 88

merge_

7. eQual_key_sw

8. seQ_check_sw

merge_

exit procedure, then the Merge uses the
result of that compare exlt procedure to set
the value of equal_kev. <In elther case, lf
the t~o records rank eQual then rec_ptr_1
polnts to the record whlch is first according
to the or1glna1 input order of the two
records.>

indicates whether or not eQual key checking
ls to be performed. <Input/Output>

Possible values are:

no" = ao not check for equal keys. At the
first call to the output_record exit
procedure (beginning of output), the
Merge sets equal_key_sw to this value.

"1" = check for eQual keys before the
ca I J to the output_record
procedure.

next
exlt

Since equal key checking takes time, the user
should set equal_ke~_sw = "1" only when
reQulred for actions such as summarlzatlon.

indicates whether or not sequence checking ls
to be performed. (Input/Output)

Possible values area

•• O.. - do not s e Q u enc e c heck •

••1 .. = seQuence check. At the first call to
the output_record exit procedure
(beginning of out out), the Merge sets
seq_check_sw to this value.

SeQuence checking means comparing the outout
record to the record prev!ously written to
the output fl le. SeQuence checkirg ls
performed after the output_record exit
procedure returns to the He~ge, and only lf a
record ls to be written to the output file
(that ls, only !f the action ls accept or
insert). If the user suoolleo kev
descr!ptlons, then the Herge•s key comparison
routine ls used. If the user suoollea a

<ENO)

Page 8<3

merge_

9. close_exlt_s~

merge_

compare exlt procedure, then that exlt
procedure ls called.

If the output record ls out of seQuence wlth
the prevlous record, then the status code
fataf_error ls returned to the caller of
merge_; see the entrv merge_ above.

Alt records "rltten to the
lncluQlng lnserted records, can
checked.

output flle,
be seQuence

indicates whether the exlt ls to be closed
hereafter. (Input/Output)

Possible values ares

"o" = keep this exlt open. Each tlme the
output_record exit procedure ls cal fed,
the Merge sets close_exlt_sw to this
value.

close
ca I I
again
Merge

th ls ex 1 t. The Merge w 1 J I not
the output_record exlt procedure
during thls execution of the
(even if the action ls insert).

<ENO)

Page qo

•

merge_ merge_

RECORD POINTERS

Since the Merge aligns each record in a buffer on a double
woro boundary, if an exit procedure apptles a based declaration
of the record to the pointer(s) then correct alignment ls
ensured.

ORIGINAL INPUT ORDER (FIFO)

For the compare and output_record exit procedures, rec_otr_1
always points to the record whose original. input order was prlor
to the record pointed to by rec_ptr_2. If a compare exlt
procedure returns with an equal ranking for the two records, then
this original input order ls preserved. Jrlglnal inout order has
been defined earlier under the heading Kev Fields.
tiil~I sort

The sort command ls described in the Multics Programmers•
Manual, Commands and Active Functions, Section III. Thls
description incJudes only additional optional control arguments
which are not described in MPM Commands.

sort inout_specs output_specs control_args

where a

3. controt_args

-time

can be chosen from the following (in aodltlon
to those control arguments speclfled in MPM
Commands)&

prints timing information for the Sorta
System load thmu)
Merge order
String size

and for each phase of the Sorta
Elapsed time
Rea I CPU time
Virtual cpu time
Page taut ts
Paging device faults
Comparisons executed

(Tlmes are given !n seconds.)

<ENO>

Page 91

Sort/Merge PLM

-mer ge_order m

-strlng_size i.

-debug

Sort /Mer ~e PLH

specifies that the merge order ls to be
m• The· argument m must be 'a decimal
integer. This a~gument ls meaningful
only if al I input flies are ln the
Storage System, so that the total input
file size can be obtained by the Sort.

specifies that the string size (as
produced during the presort• ls to be ~
bytes. The argument ~ must be a decimal
integer, and must be less than the
system maximum segment size. The actual
size of any string may differ some"hat
from~' since the length of the last
record inserted into the string may not
exactly match the space available.

Merge order and strlng size cannot both be
specif led.

specifies that temporary flies will be left
lnitlated (but truncated to zero length)
after completlo~ of the Sort. Thls argument
ls Intended for ~se with performance
measurement and analysis tools which print
reference names, such as sample_refs.

If this argument ls o~ltted, temporary flies
wllf be deleted after comoletlor of the Sort.

If -debug ls specified, deletion of temporary
flies must be done expllcltly by the user.
Some temporary flies are ln the process
directory; the work fifes are in the
dlrectory specif led by the -temp_dlr
argument. The names of all temoorary flies
are generated unlQuely for each lnvocatlon of
the Sort, and always contain the strlng
••sort_ ...

(ENO)

Page 92

•

Sort/Merge PLM Sort/Mer!;e PLM

ti.am~ I merge

The merge command ls described in the Multics Programmers•
Manual, Commands and Active Functions, Section III. Thls
descriptlon includes onlv addltlorat optional control arguments
which are not described ln MPM Commands.

merge lnput_specs output_specs co~trot_args

where•

3. control_args

-tlrne

-debug

can be chosen from the fol lowing <in 'addition
to those control arguments speclfled ln MPM
Commands) I

orlnts tlmlng information for the Mergel
System load (hmu>

and for each phase of the Merge:
Elapsed tlme
Real cpu time
Virtual cou tlme
Page f aul ts
Pa g ln g de v 1 c e f au I ts
Comparisons executed

<Tlmes are given ln seconds.)

sPeclfies that temporary flies wlll be
left initiated (but truncated to zero
length) after completion of the Merge.
This argument ls intended for use with
performance measurement and analysis
tools which orlnt reference names, such
as samole_refs.

If thls argument ls omitted, temporary
flies wilt be deleted after completion
of the Merge.

If -debug ls specified, deletion of
temporary flies ~ust be done exoJlcittv
by the user. At I temoorarv f i I es are in
the process directory. The names of at I
temporarv flies are generated unlQuely
for each lnvocatlon of the Merge, and
al~ays contain the string "sort_".

(ENO)

Page 93

Sort/Merge PU1 Sort/Mer ~e PU1

li.a.mJl I sort

The sort_ subroutine ls descrioed ln the Multics
Programmers• Manual, Subroutines, Section II. Thls description
includes only additional entry points "hich are not described in
HPM Subroutln(i!S•

Eo.!cx: sort_$1nitlate

The sort_$inltiate entry point ls used "hen the Sort ls
.. driven .. by lts cal lar. The Sort ls said to be driven lf the
caller supplies a procedure which calls (or directtv performs>
the input file processlng and outout flle processing procedures.
Such a arlver must have the follo"lng general formi

call sort_tlnltlate<arguments);

call inout_flle_oroc(code);

call sort_icommence<code>;

call output_file_proc(code);

call sort_Jterminate<code>;

where:

sort_$lnltlate ls the procedure of the Sort which
be called first (it "initiates"
Sort>.

must
the

2· input_flfe_proc

3. sort_icommence

4. outout_flle_proc

ls an lnout_flle procedure, as specified
in the descrlotlon of the sort_
subroutine ln MP~ Subroutines. Instead
of calling an lno~t_flle procedure, the
driver may perform the necessary
functions directly.

is the procedure of the Sort which must
be called when the lnout_flle orocedure
has comoleted releasing records to the
sort lng process < l t "commences.. the
merging processt. See the entry
sort_Scommence below.

!s an output_flle procedure, as
speclf!ed !n the description of the
sort_ subroutine In MPH Subroutines.

Page 94

•

Sort/Merge PU1

5. sort_Stermlnate

Sort/Mer se PLM

Instead of cal ling an outout_f!le
procedure, the driver may oerform the
necessary functlons dlrectly.

ls the procedure of the Sort which must
be called when the output_file orocedure
nas completed retrlevlng recoros from
the Sort <it "terminates" the sorting
process>. See the entry sort_$terminate
be I ow.

The entry Points sort_$1nitiate, sort_$commence, and
sort_$termlnate are specif lea I ly designed to be used by COBOL
ob)ect programs. They support the ANSI COBOL Sort/Merge Mod~le,
L~vel Z (the SORT, RELEASE, and RETURN statements).

Normally, when called as a command <sort) or as a subroutine
(sort_), the Sort itself contains the driver to perform the five
calls listed above.

dcl sort_$ln1tlate entry(char(•), ptr, ptr,
char(•), float bln(27), fixed bin(35t);

call sort_$inltlate<temp_dlr, keys_ptr, exlts_ptr,
user_out_sw, flle_size, code);

wheres

1. temp_dlr

2· keys_ptr

ls the pathname of the directory which wit I
contain the Sort•s work flies. If this
argument ls , then work flies will be
contained in the user•s process directory.

Thls argument should be used when the process
dlrectory wllt not be targe enough to contaln
the 111ork flies. The get_dlr_ functlor mav be
used to obtaln the name of the user•s current
working directory. <Input)

ls a polnter to the keys structure, which
describes the key fields to be used for
ranking records. Thls structure ls ide~tical
to that specif led under the heaolng Kevs
Structure ln the description of the sort_
subroutine ln MPH Subroutines, Section II.
If the user ls supplying a compare exlt

Page 95

Sort/Merge PLM

3 • ex i ts _p tr

4. user_out_sw

5. flle_slze

Sort /Merge PLM

procedure, then keys_ptr must be null and the
compare procedure must be speclf ied in the
aKits structure. <Input)

ls a pointer to the eKlts structure, whlch
speclf les whlch eKlt points are to be used
and gives the entrv polnt names of the
corresponding user supplied exit procedures.
This structure ls ldentlcal to that specified
under the heading Exits Structure in the
description of the sort_ subroutine ln MP11
Subroutines, Section II. If no exlts are to
be used, then exlts_ptr must be null. If the
compare exlt ls specif led, then keys must not
be described. <Input)

speclfles the destination of both the. Sort's
summary report and dlagnostlc messages for
errors detected ln the arguments to
sort_$inltlate. <Input>

Th.i.s

••••

"-b , ..

argument may have the following values•

= write the summary report and
dlagnostlc messages vla the I/O
switch user_output.

= do not write the summary report
and dlagnostlc messages. If any
errors are diagnosed,
sort_$lnltlate wlll return with
the status code bad_arg but
information about the number and
nature of the errors ls not
aval lab1e.

switchname = write the summary report and
dlagnostlc messages via the I/O
switch na~ed swltchname. This
switch must be attached and open
for stream output.

ls the total amount of data to be sorted, ln
ml t I ions of bytes. If th ls argument ls zero,
the default assumption ls approxlmatety one
million bytes (flle_slze = 1.0). <Input)

The flle_slze
optlmlzatlon of

Page 96

a r gum en t J. s
performance;

used
the

for
actual

• ------
Sort/Merge PLM

6. code

Sort/Mer~e PLM

a•ount of data can be conslderably larger
without preventing the Sort from completing.
The maximum amount of data which can be
sorted ls Cln bytes) approximately 60 mil lion
times the SQuare root of flte_slze.

ls a standard Multics status code returned by
sort_$lnltlate. Possible values are listed
below unoer the headlng Status Codes.
(Output)

Entry variables in the exits structure should be set
(either inltlal-lzed or assigned) by the pr3cedure which cal Is the
sort_lnltiate entry polnt.

In order that the Sort can be terminated prooerlv ln case of
an abnormal exit, the cleanup procedure of the caller of
sort_illnltlate must Include a call to the entry point
sort_$termlnate.

The following status codes may be returned by sort_Slnltlate
(al I codes are ln error_table_)a

0

bad_arg

f atal..;error

Normal return <no errors).

One or more argu~ents specified to
sort_$lnitlate, including the keys and exlts
structures, was lnvalld or Inconsistent. The
Sort wlll have previously wrltten diagnostic
messages as directed by the user_out_sw
argument. The sorting process itself has not
been startea.

The Sort has encountered a fatal error. The
Sort will have previously generated a
specific error message and signalled the
sub_error_ condltlon vla the sub_err_
sub r o u t 1 n e •

Page q1

Sort/Merge PLM

out_of_sequence

--~--.,..--

Sort/Merge PLM

The call to sort_Slnltlate ls not ln the
seQuence required ov the Sort; e.g.,
sort_$ln1tlate has been called after
lnltlatlon of the Sort but before normal
t er ml n at 1 on o f that l nv o cat 1 on v 1 a a ca I I to
sort_ltermlnate.

Page 98

.. ------
Sort/Merge PLH Sort/Merge PLM

----·----
Ellie~• sort_!commence

The sort_$commence entry polnt must be cat led after the
driver of the Sort has completed lts input_fi le procedure. See
the entry point sort_Sinltlate above. The call to sort_$commence
informs the Sort that end of Input has been reached. Upon return
from sort_$commence, the driver can Degin its output_file
procedure.

dcl sort_Scommence entry(flxed bln(35l);

call sort_Scommence(code>;

where code ls a standard Multics status code returned by
sort_$commence. Possible values are listed below under the
heading Status Codes. (Output)

The following status codes may be returned by sort_$commence
<al I codes are ln error_tabte_ll

0

fatal_error

out_of_seQuence

Normal return <no errors).

The Sort has encountered a fatal error during
the sorting process. The Sort will have
previously geneiated a speclflc error message
and slgnalled t~e sub_error_ condltlon via
the sub_err_ subroutine.

The ca I I to sort_Scom•ence ls not
sequence required DY the Sort;
sort_Scommence has been called
sort_Slnltlate.

Page 99

in the
e.g.,

before

...

Sort/Merge PLM Sort/Merse PLH

·-------
fo!c~• sort_Stermln~te

The sort_ltermlnate entry point must be called after the
driver of the Sort h~s completed its output_file procedure. See
the entry point sort_Slnltlate aoove. The call to
sort_itermlnate lnfor~s the Sort that the current execution of
the Sort ls complete. Upon return from sort_Stermlnate, the
caller can initiate another execution of the Sort.

dcl sort_Stermlnate entry<f ixed b1n{35));

call sort_StermlnateCcode>;

where code ls a stanJard Mutttics system status code returned by
sort_Stermlnate. Possible values are I isted below under the
heacJlng Status Codes. (Output>

The following status codes m~v be re turned by
sort_Stermlnate Cal I codes are ln error_taole_)I

out_of_seauence

Normal return <no errors>.

The call to sort_$termlnate ls not ln the
sequence reQuired oy the Sort; e.g.,
sort_$termlnate ~as been called before
sort_$lnltlate.

<ENO)

Page 100

..
...

