
MULTICS TECHNICAL BULLETIN - 251 page 1 

To: Distribution 

From: Robert s. Coren 

Date: 01/22/76 

Subject: Canonicalization of Terminal Input 

In theory, ~erminal input to Multics is converted by the 
ring-zero typewriter DIM to "cal")onical form", i .. e., the physical 
appearance of a line uni<iuely defines.the form in which it will 
be stored. In addition, well-defined meanings are attached to 
input streams containing erase, kill, and escape characters. 

In actual fact, the current typewriter DIM does not meet the 
goals described in the preceding paragraph. The three basic types 
of canonicalization <column assignment, erase/kill, and escape) 
are each handled more or less correctly, but the current design 
does not lend itself to correct and consistent processing of 
combinations of canonicalization types .. The trouble is that the 
three types are handled more or less simultaneously. Thus the 
final input resulting from strings such as "\Ol7", "\016117", 
"i.Q.QQ", "N025", etc., is not predictable under the current 
implementation. 

A redesigned, more efficient version of tty_read is planned 
for Multics release 4.Q; in the course of the new design, 
canonicalization will be cleaned up and made consistent. The 
details of this new design will be discussed in a future MTB; the 
purpose of the present document is to set forth a complete 
description of the rules of canonicalization that the new 
tty_read will implement. It is proposed that the rules described 
here be adopted dS a standard for all situations in Multics where 
canonicalization is required. 

C.AtHH~ l-'Al. lL.611 Qt:L.RUl.f.S 

The three types of canonicalization named above must be 
performed separately in a defined order, to ensure consistency 
and predictability. In particular, the canonicalization process 

------------------------------------------------------Multics Project internal working documentation. Not to be 
reproduced or distributed outside the Multics Project. 



MULTICS TECHNICAL BULLETIN - 251 page 2 

is conceptually divided into the followihg steps: 

1. Jf the terminal is in "can" mode, perform 
column-assignment canonicalization on the typed input. 

2. If the terminal is in "erkl" mode, perform erase/kill 
canonicalization on the result of step 1. 

3. If the terminal is in "esc" mode, perform 
canonicalization on the result of step 2. 

escape 

Of course, the actual implementation does not necessarily have to 
perform the three steps in sequence, provided that the result is 
the same as would have been achieved by doing so. 

The three types of canonicaliiation are discussed in more 
detail below. If two or more of the rules listed below are 
applicable to a given input string, they are applied in the order 
in which they are presented here. 

COLUMN ASSIGNMENT 

lhis phase is concerned with determining which printing 
graphics, if any, appear in each physical column position. This 
is determined according to the following rules. 

1. lhe leftmost position of the carriage is considered to be 
column 1. 

2. Each printing graphic or space typed increases the column 
position by 1. 

3. Each backspace typed decreases the column position by 
unless the column position is 1. 

4. A carriage return sets the column position to 1. 

5. A horizontal tab increases the column position to the 
next tab stop; tab stops are defined to be at columns 11, 

Multics Project internal working documentation. Not to be 
reproduced or distributed outside the Multics Project. 



MULTICS TECHNICAL BULLETIN - 251 page 3 

21, 31, etc. 

6. A newline, form feed, or vertical tab sets the column 
position to 1 and advances the carriage vertically; thus 
no character typed after such a character can share a 
column position with a character typed before it. 

7. Characters on each line are sorted so that their 
associated column positions are monotone increasing. 

8. No carriage return characters may appear in the canonical 
string. 

9. A horizontal tab is preserved as typed unless a printing 
graphic appe~rs in one of the columns skipped by the tab, 
in which case the tab is replaced by an appropriate 
number of spaces. 

10. Backspaces appear in the canonical string only when two 
or more printing graphics share a column position. 

11. When two or more different printing 
column position, the characters are 
graphic with lowest numeric ASCII 
graphic with next lowest numeric ASCII 

graphics share a 
sorted as follows: 
code, backspace, 
code, etc. 

12. If the contents of a column position consist of two or 
more instances of the same printing graphic, that column 
i~ reduc~d to a single instance of the graphic. 

13. A line-ending character <newline, form feed, or vertical 
tab) immedjately follows the last printing graphic in the 
rightmost column position on the line. 

ERASE ANO KILL CHARACTERS 

The placement of erase/kill canonicalization after 
column-assignment canonicalization and before escape 
canonicalization is strategic in that it causes erase/kill 
processing to work by 'Qlumo QQ~itigo rather than by 'b~c~,1~L· 
This eliminates ambiyuity with respect to erase characters 
combined with escape sequences. (See the examples at the end of 
this document.> 



MULTICS TECHNICAL BULLETIN - 251 page 4 

The rules for erase and kill canonicalization are given 
below. 

14. An ~rase character alone in a column position results 1n 

the deletion of itself and of the contents of the 
preceding column position. 

15. An erase character alone in a column position and 
preceded by more than one blank column results in the 
deletion of ~11 immediately preceding blank columns, as 
well as of the erase character. 

16. An erase character sharing a column position with one or 
more printing graphics results in the deletion of the 
contents of that column position. 

1 7. A k i l l ch a r a c t er r es u l t 's in t he de let i on of i t s own 
column position and all column positions to,its left, 
unless it shares a column position with an erase 
character, in which c~se rule 16 applies <the kill 
character is erased>. 

1 8. I f the terminal j s in "esc" moc(e, an erase or k i l l 
character alone in a column immediatel.y preceded by an 
escape character alone in a column i s not processed as an 
erase or ki l l ch a r act er • 

Note that for rule· 18 to apply, the erase or kit l character must 
actually have been typed in the column immediately following the 
es cape ch a r act er. The re a son tor th i s i s that i t fa c i l i ta t es t he 
erasing of escape sequences, e.g., \001####. 

ESCAPE SEQUENCES 

lhe processing of escape sequences is performed according to 
the rules given below. 

19. An escape sequence consists of an escape character alone 
in its column position followed by one or more printing 
graphics each of which is alone in its column position. 
An escape sequence 'is replaced by a single character in 
the canonical string. 

20. An escape sequence consisting of two successive escape 
ch~racters is replaced by an escape character. 



MULTICS TECHNICAL BULLETIN - 251 page 5 

21. An escape sequence consisting of an escape character 
followed by an erase <or kill> character is replaced by 
an erase <or kill) character. 

22. An escape sequence consisting of an escape character 
followed by one, two, or three octal digits is replaced 
by the character whose AStII value is represented by the 
sequence of octal digits. 

23. An escape character followed 
results in the deletion of 
canonical string. 

by a 
both 

newline character 
characters from the 

24. Other escape sequences may be defined on d 

per-terminal-type basis, where such a sequence consists 
of an escape character and one character following. 

l I 

25. lf the character following an escape character does not 
result in an escape sequence as defined by rules 20-24, 
the escape and following characters are stored as they 
appear on the line. 

In the examples below, the following conventions are used: 

<NL> 

<CR> 

<BS> 

<HT> 

<SP> 

{nnn} 

\ 

@ 

- represents a newline 

represents a carriage return 

represents a backspace 

represents a horizontal tab 

represents a space 

represents a character whose ASCII value 
nnn <octal> 

is the escape character 

is the erase character 

is the kill character 

i s 

The examples in the first group illustrate how various typed 
sequences are canonicalized in terms of column position; these 
are followed by examples of erase, kill, and escape 



MULTICS TECHNICAL BULLETIN - 251 page 6 

canonicalization. In the second group, lines are shown as they 
appear physic~lly, with no consideration given to the precise 
sequence of keystrokes that might have produced them. 

COLUMN CANONICALIZATION EXAMPLES 

lyped: Nothing special about this line.<NL> 

Appearance: Nothing special about this line. 

Result: Nothing special about this line.<NL> 

1 y oe d: Extraneous white s<SP><BS>pace is ignored.<CR><SP><NL> 

App ea ran c e : E x t ran e o us w h i t e spa c e i s i g nor ed. 

Result: E)(traneous white space is ignored.<NL> 

lyped: lwo ways C2<BS>_> to overstrike.<CR> ___ <NL> 

Appearance! lW.Q ways <i> to overstrike. 

Result: l<BS> __ <BS>w_<~S>o ways C2<BS>_) to overstrike.<NL> 

Typed: Tab + backspace is<HT><BS>reduced to spaces.<NL> 

Appearance: Tab + backspace is reduced to spaces. 

Result: lab + backspace is<SP><SP><SP><SP>reduced to spaces.<Nl> 



., . 
MULllCS TECHNICAL l1ULLETIN - 251 page 7 

<See rule 9.> 

ERASE-KJLL AND ESCAPE EXAMPLES 

Appearance: abz#cde 

Result: abcde 

Appearance: ab #cde 

Result: abcde 

Appearance: Not@Never obn Sunday. 

Result: Never on Sunday. 

Appearance: ~QJi#W it's right. 

Result: f:'4Q.lill it's right. 

Appearance: ~Q~jw it's right. 

Result: ~Q~~ it's right. 

(Erase character is overstruck; see Rule 16.> 



MULllCS lECHNICAL BULLElIN - 251 page 8 

Appearance: dcl rrs char Ct> static initC"\017116"); 

Result: dcl rrs char (1) static init("{016}"); 

Appearance: \02J 

Result: {002}j 

<Overstruck 3 is not part of escape sequence.) 

Appearance: ~112 

Result: ~ 1 1 2 

COverstruck \ is not an escape character.> 

Appearance: a\##b 

Result: a\b 

(First # is not an erase character by rule 18: second #erases 
itself and preceding# by rule 14.> 

.E~~m121~_J£t (similar to t:xample 13) 

Appearance: a\@#b 

Result: a\b 



.. .. 

r-

MULTICS TECHNICAL BULLETIN - 251 page 9 

Appearance: aM@b 

Result: b 

CThe \ is erased by the overstruck #.) 

Appearance: a\\#b 

Result: a\ #b 

<Erase canonicalization does not recognize the # by rule 18; 
escape canonicalization recognizes \\ by rule 20, and attaches no 
special meaning to the #.) 

t. !.ll. !I! '2.i.i:_ 11 

Appearance: a\\##b 

Result: a\b 

(By rule 1 8, the 
the second # erases 
reduces \ \ to \. ) 

Appearance: a\\###b 

Result: a\b 

first ti 
i t se l f 

is not an erase character; by rule 14, 
and the preceding #; !b~D rule 20 

<The first # is not an erase: the next two are, erasing the 
second\ and the first#.) 



MULTICS TECHNICAL BULLETIN - 251 Pdge 10 

Appearance: a\\####b 

Result: ab 

CThe first # is not an erase, and must be erased before the two \ 
characters. EKamples 16-19 illustrate the difficulty of erasing a 
double\; the clearest method is probably to overstrike CaNNb>.> 

f!~mul~-ZD Con 2741-like terminal> 

Appearance: at<#b 

Result: a\b 

<Only the < is erased; t is translated to \.> 




