Multics Technical Bulletin MTB-236

Tol Distributlion
Fromt Jerry Stern
Dates 11711775

Subjectt An Extension to the Multics Conditlon Mechanlsm

Introduction

This MT8 proposes an extenslon to the Multics conditlon mechanlisna
that rsould allow a program to exercise a useful new form of
control over the signalling of condltions. This change s
appropriately described as a generallzatlion of the existing
craniout mechanism, We shall show that such a feature |s
extremely useful for solving problems faced by procedures that
cannot safely permit an unexpected conditlon to pass control to a
handler defined earlier In the stack.

Que to the relative obscurjity of many of the "finer polnts™ of
the Multics condlition signalllng schemes an overview of
slgnalilng 1ls first presented.s This Is followed by a cdlscusslon
of the problem that the new feature ls Intended to solve. Nexty
the currentiy avajilable solutions to this oproblem are examined
and shown to be |Inadequate. After thls, the proposed extenslon
ls described and 1[ts advantages noted. Followlng this,
implementation considerations are discussed.

Quervien 9f Signaliing

In thils sectlon we discuss the mechanlcs of signalllng as [t
currently existse. The knowledgeable reader may sklp thls
section. No attempt will be made to discuss the varjous aspects
of slgnalling at a unifora level of detalt. Rather, we shall
concentrate on those detalls that are relevant to the subject of
the sectlons to comes and amlt those that are not. The crawfout
mechanlismes In particular, wiilt be of special Interest.

It is assumed that the resder understands the baslc facts about
condition handtingy, le.e. how handlers are establlshed and how
they are used. The onlty paolnt worth mentloning here is that a
handler ls associated with a particular stack frame. When a
procedure establilshes a handler for a speclfied condltion, an
entry Is added to a conditlion lilst stored In the stack frame for

Multics Project |Internal working documentation. Not to be
reproduced or dlistr ibuted outside the Mulitics Project.

-1-



MTB-236 Multlcs Technlcal Bulletin

the procedure actlvation. Thls entry contains the condition name
and a pointer to the handier procedure.

Conditlons are dlvided 1Into two categorles according to thelr
orlgln. A software conditlon orlginates by means of a direct
cali to the modute named *“slgnal_"., For example, the signaltllng
of the *“command_error™ conditlon ls initlated by com_err_ caltling
signal_. A hardware condition orlginates by means of a harduware
fauit, e.g. "zerodivide™. HWhen the fault Ils taken, the “machine
conditlons®™ (l.e. the processor state) are safe-stored In ring 0.
Controi is then transferred to the approprlate fault handlling
module In ring 0. Thls module determines It the fault should be
mapped into a condition and signalled In the ring iIn which the
fault occurrede If Soy a procedure named "slgnaiter™ ls Invoked
that manufactures a stack frame on top of the stack for the
faulting ring. The machine conditlons are copied into this
frame. A transfer ls then made to the slgnal_ procedure that
executes In the faulting ¢lng and appears to have been caliled
irom the manutactured stack frame.

As Just described, both software and hardware condltlons
eventually result In a call to signal_. It ls this module that
actualiy lmpiements the slgnalilng mechanlsme Beglnning at the
top of the stack, signal_ examines the conditlon Ilst of each
stack frame. It looks first for the partlcular condltlon name
speclfled as one of ]lts arguments. If no handler [s defined for
that condition, it then looks for the ™any_other™ condlitlon.
Either way, It a handier ls found, that handler ls invoked by
signal_. Otherwlse, slgnal_ skips to the next frame down the
stack and contlnues the search.

All handlers called by slgnal_ have a standard argument list.
Among the arguments Is a pointer fto the machlne condltions
structure. This opointer wlili normalily be nuil for sotfttware
conditlons. Also included In the arguments s the “contlnue™
flag. This fitag ls initially set off. If 1t remalns off when a
handler returns to signal_, then signat_ will return to 1lts
caller. If 1ts calier ls slgnaltier, an attempt wiil be made to
restart execution from the polnt of the orlglnal hardware fault.
This 1s alt done by bisck maglic and wili not be pursued here. If
the contilnue flag 1Is turned on by a handiery, then when the
handier returns, signal_ wlll continue |]ts search towards the
bottom of the stack Invoking other handlers as they are found.

It the bottom of the stack Is reached (elther because no handler
was found or because all handlers found set the contlnue filag)
one of two actjions ls performed. If thls Is really the absolute
bottom of the logical process stack, l.es NHho outer ring stack
segment exlsts on which we c¢an contlinue signalilngy then the
slituatlon iIs hopeless and the process iIs terminateds If, on the
other handy, the bottom stack frame Is threaded to another frame
on an outer ring stacky then a crawlout Is performed.

-2-



Mul tics Technlcal Buttetin MTB-236

A crawliout is designed to exit a rlng as gracefully as posslible
and to arrange for slignalling to contlnue on the outer ring
stacke Once an exit i{s made to the outer ring, It 1Is not
possible to return to the lnner ring due to the nature of the
ring protectlon mechanism. Therefore, a crawlout s Inherently
one-wayy, Jl.e. restarting from ¢the point of orlgln of the
condltlon becomes impossible.

The crawlout mechanism s conceptually slmpley, altthough the
detajlis are a bit messy. The first step of a crawtout [nvolves
“unwinding the stack™. Baslically, thls amounts to searchlng the
stack from top to bottom a second time looking for 8 speclal type
of handler for the “cleanup®™ condlftion. Each cleanup handler
found 1s Invoked. (1) The next step of a crawlout Is to
manufacture a stack frame on top of the outer ring stack on which
we want signalilng to contlnue. This frame 1Is known as the
“slgnal caller frame™. The machine condlitlons and other
arguments to signal_ are copled Into this trame. Finally, the
last step of the crawlout s a speclal (ALM-asslisted) transter to
a procedure executing Iin the outer ring that appears to have been
called from the signal caller frame. Thls procedure |s none
other than signal_ Itself which proceeds to signal the orlglnal
condition on the new stack. The slgnal caltler frame Ils cleverly
set up se that If signal_ ever returns (as it might [f a handier
returns with the continue flag off), the call to slgnal_ ls
repeated. This Is necessary since, as mentioned above, a return
to the lnner ring is not possibie.

I1he Probilem
Let us define a *“critical operation™ to be an operation that
should not be Interrupted by an unexpected condition. An

operation may be termed critical for a varlety of reasons. For
exampley, the operation may require locking a resource that shouid
not stay locked Indefinitely. Alternatively, the operation amay
require wunusual modlfticatlons to the normal process environaent,
€«ge masking lps signalsy changlng standard I/70 swltches, eftc.
The danger here ls that contro! may pass to some handler deflned
earlier In the stack that cannot (and should not) be assumed to
understand the critlcal nature of the Interrupted operatlon.
Consequentiy, this handler may benlgnly commit somé grlevous
error due to its necessary lgnorance of the sltuation.

It becomes apparent thaty, In view of the dangers, condltions
occurring during a critical operatlon must be Intercepted by the
procedure performing (or Jjnltlating) the operation. We shall

(1) This same mechanlsm for unwindlng the stack J[s also used
whenaver a non-local goto ls executed.

e -3— }L Do



MTB-236 Multics Technlcal Buttetln

calt this procedure the “critlcal procedure™. B8y hypothesis, the
conditlon Is unexpected and hence cannot be “handied™ In the
conventional sense, le.e. there 1S nothing the critical procedure
or any handler establlshed by It can do that wouild sately allow
the critical operatlon to be restarted. Therefore, the only
recourse ls to restore the environment to the state that existed
before the critical operatlon began. Or if this Is not entirely
possibley then at least the environmaent must be restored to some
“secure”™ state. Having done thisy It would then presumably be
safe to allow signalling to contlnue. However, there ls stilt a
danger that some handier wmlght return, thereby causing the
critical operatlion to be resumed from the polnt of origin of the
condltione. This 1Is clearly unacceptable once the speclal
environment has been restored to normal, l.e. locks unlocked,
masks unmasked, eftca. It the crlticalt operation s to be
restarted, then It must be restarted from the beginning and not
from the middle.

Jefore proceeding to discuss the avajilable remedies to this
problem, let us first shon that this Is, Indeedy, a reat problenm
by glving a real exampie. The message segment facllilty provides
one such examplie. The central procedure of this facitity, called
“mseg_", Is a critical procedure responslible for the locking and
unlocking of message segments. Clearly, a message segment should
not be permitted to remaln locked Indefiniteily slnce various
system services depend on shared message segments. Some message
segment operations are perforuned entireiy by mseg_, while other
operations are performed by subroutlines cal led by msseg_. In all
caseSy however, mseg. nmust ensure that the message segmen?t ls
locked before the operation beglns and unlocked when the
operation completes. It an operation 1Is Interrupted by a
condjition, then mseg_ must ensure that the message Ssegment ls
salvaged and unlocked before controil Is relinquished.

It Is In this last duty that mseg_ falls miserably. The approach
taken by wmseg_ ls to estabilsh a cteanup handler to do the
salvaging and unlocking. In effect, mseg_. 1Is counting on the
fact that lt Is an lnner rlng procedure. It Is ailso counting on
the fact that none of the proceduras In the chaln of callis from
the message_segment_ (or mallbox_) gate to mseg_ establilsh any
handlers. OGlven these clrcumstancesy, a crawlout [s lnevitable
whenever a condition Is signalledy and hence the cleanup handler
estabilished by mseg_ wlil, In fact, be Invoked before any harms
can be done.

Unfortunately, mseg_ 1Is not always an I[Inner ring procedure.
Certaln system processess e.gs Backupy run In the same ring as
mseg_ and hence no inwerd call Is ever made. In these processes,
If a conditlon occurs during a message segment operatlon, no
crawiout will occur. Instead, it 1ls I|lkely that the default
handler establiished by the process overseer witl be Invoked. The
normal action taken by the default handler 1ls to come to command

-l‘-



Multics Technlcal Bulletin MTB-236

tevel, thereby teaving the message segment locked Indefinitely!?

The ring problem affllcting mseg_ Is by no means an essentlal
aspect ot the critlcal operation prablem. Any ordinary user
procedure can perform a c¢riltlcal aperation involving a locked
data base. However, the case of mseg_ ls especially [nteresting
because ot the approach taken fto solve the problem. This
approach wrongly depends upon the occurrence of a craniout.
Wheny in facty a cramwlout does occur, however, the approach works
quite nilcely. As we shaill see latery, this Idea has considerable
merjit.

Avallable Solutlens

Clearlyy In order te prevent condltlens from “escaplng*, a
critical procedure must establlsh an any_other handler to
Iintercept all unexpected conditlions. As dlscussed earlier, this
handler can do nothing that would permit the critical operation
to be safely resumed. It must therefore restore the environment
to a "secure"™ state. The question ls what to do next. We would
like to continue signatiing because, If nothing else, thls Is the
best way of communlcating preclseliy what has gone wWrong to some
higher authorlity. As already polnted out, however, thls lIs
unacceptable due to the fact that some other handlier may declde
to return to signal_ with the contlinue flag off, Thls would
cause the critlcal operation to be resumed after the necessary
environment has been undone. He must also conslider the
possibiilty that the condltion may not have occurred within the
critical procedure ltself. It may, Instead, have occurred withlin
some subroutine called by the crltical procedure. The critlcal
procedure [s not necessarlly In a poslition to restore the
subroutine environment. Therefore, 11t |s preferabie that the
subroutine be given a chance to do thils using the normal cleanup
mechanism.

One possible approach s to attempt to return to the caller of
the critical procedure [n 8 normal manner. This c¢ould be
accomplished by executing a non-local goto from the any_other
handler to an approprlilata location In the criltical procedure.
Happllyy this wouid have the desired effect of Invoking ail
cleanup handlers deflned [n the stack above the critical
procedure. However, this approach Is only raasonabile if there ls
some way to Indicate to the calier of the critlcal procedure that
the operation was abortedy e.gs by setting an appropriate error
code. Already we can see that this approach 1Is non-general.
There may be no error code or other method of Indicatling an
error. Thils ls because arror codes and the |lke are designed for
antlcipated errors, of which there may be none. (The condition
mechanlsmy on the other hand, Is designed for unanticlpated
errors; but we can’t seem to use It here.) Of course, we could
inslst that attl critical procedures have error code arguments for

G-



MTB-236 Multlcs Technlcal Bulletlin

this purpose alone [f none other.

Let us assume that an error code argument exists. 0Does this then
present a reasonable solution? Unfortunately,y, lt does not. It
for all possible conditlonsy we Simply set the error code to sonme
universal values e« gs "unexpected_condition®, we have lost all
traces of what went wrong. We could try to be fanclery, l.e. map
each different conditlon into a different error codes, but thlis
imposes an unreasonable burden. Perhaps some system-provided
utillty procedure could do the mapping. Stilly, thls would not
account for user-defined condlitions. More lmportantiy, no matter
what error code Is returned, we have lost the machlne conditjons
(and other [nformation transmitted by signal_) which are vital to
diagnosing the trouble. This Is not merely a matter of providing
debugging informatlione. Sometimes the user, playing the ultimate
handler, must himselft take actlon based on I[nformatlon
communicated by signal_ (and printed by default_error_handier_).
For exampley, |t a record_quota_overfliow condlitlon Is signalled,
the user must know wmhich segment was belng referenced so as to
determine the diraectory that [s out of quota.

It would seem that what se need Is a way to allow signalting to
continue without the danger of restarting the critical operatlon.
There isy In tftacty, a rather underhanded method that will
accomplish this feat. Flrst, the any_other handier must copy the
machlne conditlons and other arguments to signal_ (avaltabie from
find_condition_Iinfo_) 1Into statlc storage or space reserved in
the stack frame of the critical procedure. Then the handler can
execute a non-local goto to a speclal ftocatlon In the critlical
procedure. At this {ocatlon the necessary environaent
restoration can be done and the any_other handler reverted
followed by a calt to signal_. This call wlilt use the stored
arguments to the orlglnal call to signal_, thus faithfully
resignalling the condition. The call to signal_ can be embedded
In a 1oop so that 1t It ever returns, {t will simply be repeated.

As already admlttedy, thls solutlon [Is a hacke It uses the
signalliing mechanism In a manner that was not Iintended. As a
resulty, the condltion wlll appear to have originated at the
speclal location In the crltlical procedure where the call to
signai_ is made. But the machine conditions and other slgnal_
data wiilly, In fact, apply to the true orlgin of the condltlon.
This minor Inconslstency 1s not so terrlbie. What really makes
this a hack s that [t requires too much knowiedge of the
slgnallling wmechanlisme. The technique would probably not even
occur to the average programmer. Indeedy, It did not occur to the
author untll caretfully studying the signaltlng mechanism. Nor
did It occur to several other experlenced Multiclans to whom the
author posed the problem. But even lf the technlique were widely
known, 1t would still be wundesirable because It forces the
programmer to concern himself with detalis that are irrelevant to
the problem. Nevertheless, desplte thls drawback, the technlque

P -6-



Muitics Technlcal Butiletin MTB-236

does produce the desired effect.

Proposed Solutian

The clever reader wliil already have noticed that the technlque
just described Is essentlaliy equivalent to a crawloute In both
casesy, the arguments to signal_ are copled Into a new stack
frame, the stack s unwound, and a transfer lIs made that results
in signal_ belng calted anew. Therefore, it 1Is praeaposed that the
crawliout mechanlsm be generatlzed In such a way that lt can be
utilized to soive the problem at hand.

The key to generallzing the crawlout mechanism is to define an
appropriate abstraction that the programmer can understand
wlthout jirrelevant detailis. If we view the coltlection ot stack
segments from different rings as a single logical stack, we note
that there are implitlclt boundarles that exist between adjacent
stack frames In different rings. In the course ot signailfing a
conditlon, lf one ot these boundaries Is encountered, 2 crawlout
must be performed across the boundary. A simple extenslon to
this scheme ls to allow new boundaries to be defined expliclitiy.
We shalil call these boundarlies *“condltlion walis™.

6lven this new tool, it 1Is retatively easy for a critical
procedure to protect against unexpected conditions. Essentially,
all that s necessary ls to first establlsh a conditlon wall and
then to estabiish a cleanup handler to do the necessary tlidying
up. Any conditlon that reaches the conditlon wall wlill cause a
crawiout to occury thereby lnvoklng all cleanup handlers deflined
above the condition wall in the stack. Note that the condlition
wall ls created Immedlateiy below the stack frame of the critical
procedure. Thls altonws all outstanding procedure actlvations to
be cleaned up unjiformiy using the standard cleanup mechanisme, It
Is not necessary for the crlitlcal procedure ltself to be cleaned
up by an any_other handler (uhich always seemed rather
Inelegant).

ilmpliementation

Implementatlon of the conditlion wall feature ls falrily simple. A
neW procedure, "establish_condlition_wali_*"y, must be provided.
Thlis procedure wili simply turn on a blt In the stack frame of
1ts caller Indicatlng the exlstence of a conditlon wall, The
slgnatl_ program must be changed to check this bit at the same
polnt It now checks for lmplliclt condition wafls, l.e. the jump
to a stack frame on an outer ring stacka. In efther case, the
operatlion of the crawlout [s baslcally the same with one notabile
axception.

When a regular [nter-ring crawlout |s performed, slgnal ™pushes™

-7- ¥ R



MTB-236 Multlics Technical Bulletin

the signal catier frame onto the top of the outer ring stacke.
Wwhen an Intra-ring crawlout ls pertformed, however, the new top of
stacky i.e. the condition wall, lIs In the middle of the stack,
On top of the stack Is the frame for the actlvatlon of signal_
that 1Is executing the cranlout. Needless to say, thls ls a
delicate operation and some care must be exercised to nmnake |{?t
Wworke. He cannot simply bulld the signal caltler frame In place,
lees immediately above the condltlon waltl, unless we know there
is enough room. Untortunately, there Is no room. Any of the
frames above the condltlion wall may contaln data that 1s part of
the arguments to signal_. In other words, we mlight Inadvertently
overwrite the very data we°re ftrying to copy Into the signal
caller frame. Therefore, the recommended approach Is to bhave
slgnal_ extend [ts own stack ftrame and bujllid the signatl caller
frame In thls space. Then, at the last noment, the slgnal catler
trame can "sliide™ down the stack into position.

This technique need not be speclial to Intra-ring crawlouts onlye.
It can be used for atil crawlouts. In fact, we can even use this
technique to fix what might be consldered a bug In the current
crawlout Implementation. This bug derives from the fact that
signal_ unwinds the stack before building the signal cattler
frame. In unninding the stacky a cieanup handler mlght be
Invoked that could inadvertently destroy the arguments to signal_
before we have copled tham. For example, imaglne a program that
allocates a structure and establishes a cleanup handler to free
Ite A pointer to this structure may be passed as an argument to
sighal_« Thusy In the event of a crawlout, the structure witl be
treed before signal_ coples Ite One might conslder thls to be a
programming errore atthough understanding why and how this Is an
error is probably beyond the grasp of the average programmer. In
any cases the problem |s eliminated 1f signal_ first bullds the
slgnal callier frame in lts own stack framey, then unwinds the
stacky, and then moves the slgnal caller frame Into place.

The slgnal caller frame has a speclal crawlout ftag turned on.
This flag Is copled by ftlnd_condltion_Iinfo_ Into the *cond_info™
structure that It returns. In order to distingulsh the two
different types of crawlouts, a sacond flag, call it
“exptltlcit_crawiout™, should also be kept both In the stack frame
and the cond_Info structure. If nowhere else, thls flag must be
checked by defaul t_error_handler_ In order to print an
appropriate crawliout message.

‘nnnclusmn

The proposed conditlion walil teature solves In an etegant and
approprliate manner a general problem for which no adequate
sofution currentiy exlsts. Good programming practice ls
encouraged by this feature In contrast to the kludgery now
necessltated by its absence. The proposed feature Ils economical

RER o 4 -8=-



Mulitics Technicat -Bulletin MTB-236

"‘ In the sense fthat |t makes use of an existing system mechanism
with onily a few minor changes.



