MULTICS TECHNICAL BULLETIN MTB - 234 paye 1

To: Distribution
From: Robert S, Coren
Date: 11/041775

Subject: New Strategy for Conversion of Terminal Output

INIRQDUCTION

The parts of the ring zero typewriter DIM concerned with
character conversion == i.e.s, the subroutines tty_read and
tty_write -- have remained largely unchanged in design for a long
time. The process of character conversion on Multics is currently
very slow and inefficients, in particular taking no advantage of
£1s. The problem 1i1s especially acute with respect to output.
since there 1s in general about & times as much terminal output
as terminal input; accordingly tty_write is a major bottleneck in
riny zero. This MTB describes a proposed redesign of tty_write
which will speed it up considerably without any loss of function.
Similar changes are planned for tty_read at a later date.

IHE_CURRENI_MEIHQR_QE_QUIBUI_CONVERSLIQWN

In tty_write as currently implemented, each character of
user-supplied data s individually examined and looked up in
various taobles to determine what should ope placed in output
puffers to be sent to the 355 and thence to the terminal. Even in
“"rawo"” modes where the wuser's data s passed on with no
conversions, each character is nonetheless copied individually,
with the count of characters being incrementea one at a4 time.
when either the end of the user's data is reached or the maximum
number of ring-zero ouffers . the wuser is allowed to have is
filled, conversion stops and, it appropriate, the data so far
converted is shipped to the 355.

This mechanism has the obvious advantage of simplicity: it
is particularly easy to keep track of how many of the wuser's
characters have been transmitted and how much buffer space is
being used. Howavers, this aavantage is more than offset by the
toss of efficiency 1in processing characters one at a time., In
adgitions, the tables Juysed for the conversion are kept, by
terminal types in a ring zero data base (tty_ctl), and pointers

Aultics Project internal working documentation. Not to be
reprocuced or distributed outside the Multics Project.

MULTICS TECHNICAL SBULLETIN MTB = 234 page ¢

to them are derived by tty_write every time it is called. In this
setups no method is available for the user to substitute fhis/her
own translation tables. Stitl worse, the same table is used both
for determining whether a character 1is '"special'" (requires
escaping or the addition of delays) and for converting from ASCII
to some "foreign" code (such as EBCDIC), this situation makes it
virtually impossible to avoid- - looking up and dning something
about every character input to tty_write.

E30R03cD _NEY_UETIHAD

The new design is predicated on the assumption that the vast
majority of <characters sent to the user's terminal are
"uninteresting” -- 1. e.r they are to be shipped as they are,
they oo not reguire delayss and each one advances the carriage by
cne position. A block of such characters can clearly be copied
into tty_buf all at once with a single EIS instruction, or at
least i1n buffer-sized chunks. The only problem is identifying the
Limits of such a blocks, and making the necessary additicns and
substituticns when an "interesting” character i1s encountered.
Wholesale translation (e. g.» ASCII to EBCDIC) is & separate
issues and can also be dealt with economically using EIS.

The tunctions of tty_write <can be logically divided into
four gphases:

1. Prelicioacy_convecrsion (specifically the translation of
of lowercase letters to uppercase for a Teletype model 33
or terminals in "capo'" mode.

2. Formatting- 1eCar substitution of escape sequences.
insertion of new=line characters in long Ulines.,
canonicalization and optimiziation of white space, etc.-

5. Traonslatigns, as from ASCII to EBCDIC?

4. pulfer_allocation_and_copying of characters into buffers
in tty_buf, whence they will be read by the 355.

In the current tty_write, these four phases are executed more or
less simultaneously on each character; in particular., phases 2
and 3 (formatting and translation) are not distinguisheds, and are
driven oy the same table. The new design executes each phase over
the entire input string (or as much of it as will be transmitted
at once) before passing on to the next phase. In most casess of
course, either phase 1 or phase 3 or both can be omitted; in
"rawo" mode, tty_write can and does proceed directly to phase 4,

MULTICS TECHNICAL BULLETIN MTB - 234 page 3

Each phase is provided with an "input pointer” to the
location where the previous phase left the data in its latest
form. This pointer points either to the user's original input or
to either of two ouffers in tty_write's automatic storages as
descriped later.

The only serious disadvantage - to this scheme is that the
deterrination »5f how many of the user's characters are actually
to be shipped must be made in advance of conversions, and this
determination must attempt to take into account the procability
that the final output will contain more characters than the user
supplied. There is no ideal solution to this problem, but one has
been ageveloped which ensures that the program will behave
correctly in all casess, and in jgeneral will bhave the same effect
as tocay (in terms of the number of calls required to output a
given string., the pressure put on tty_buf, etce.). This solution
is Jdescrioed later in this document.

Extensive use has been made in this design of three EIS
instructiom § move with translation (mvt), test character and
translate (tct), and scan with mask (scm). PL/I builtin functions
such as translate do not completely meet our reguirements,
therefore an ALM subroutine, tty_util_», is supplieds containing
entry points to perform the necessary functions,

The remaining sections of this MT3 contain the following:

1. A more detailed description of the four. phases of
conversion mentioned aboves

2. A discussion of space allocation and character counting’

5. A description of the data structures used for conversion
and translations, 3s well as an indication of the groposed
method for allowing the wuser to substitute his own
versions of the relevant tables’

4. A mouule description of tty_util_.

Preliminary_Conyversign

Certain terminals require uppercase-only output’ similarly.,
a wuser can specify (by entering "capo" mode) that all lowercase
letters are to oe converted to uppercase fuor output. These cases
are treated identically Ly tty_write: an wvt (move with
translation) instruction is used to copy the user's data into an

MULTICS ToCHNICAL SULLETIN MTB - 234 page &

automatic buffers, wusing a translation table which substitutes
uppercase ASCI1 for lowercase. If the user is in "edited"” mode.,
this is all that needs to be done for this phases if not.,
however, each letter which was originally wuppercase must be
preceded by an escape character ("\"), Therefore, in "“edited”
modes, the translation table also replaces each wuppercase letter
with the same character wWwith its high~order bit (the "400(8)"
Lit) turned on. After the mvt is completed, an scm (scan with
mask) instruction is executed to find the first character with
the "400" bit ons; if one is found, all characters to the left of
it are copied to a second internal buffer, an escape is inserted
after the copied characters, and the high-order bit of the found
character is turned off. The scm is repeated on the remainder of
the characters in the first buffer until all characters have been
copiec to the second buftfer with escapes inserted as neeced. If
no characters with the high-order bit on are found in the entire
strings, no copying is done.

Eormattipg

The search for, and <correct handling of, "interesting”
characters is the most crucial of tty_write's functionss and the
one to which most aof the time spent in tty_write is devoted. The
identification of "interesting'" characters is facilitated by the
use of the tct (test character and translate) instruction under
control of a table containing zero entries for all
"uninteresting'” characters and various indicators identifying the
different kinds of "interesting" ones: carriage movement
characters., ribbon shifts, and characters requiring the
substitution of escape seqguences,

The formatting phase of tty_write calls tty_util_$find_char
to find the first “interestinyg'" character in the string,
tty_util_sfind_char returns a tally of "uninteresting”™ characters
skipped over., the indicator value for the character it stopped
ats, and an updated pointer to the character at which to start the
next scan. {(See the module description of tty_util_ Llater in
this document.) tty_write <caopies the uninteresting characters
into an internal buffer (whichever one does not contain the
source string) and examines the indicator. If it designates an
escape seqgquence, the sequence is inserted in the buffer. For a
new=-line, vertical tabs, or form-feed character, a special table
1s indexed to find the appropriate representation of the
character., and another table is searched to find the correct
numb2r of delays to be inserted depending on column position,
terminal types, and baud rate. For "white space' (horizontal tab.,
nackspace, carriaye return, or two or more blanks) tty_write
simply <calculates and remembers what column position to end up
in, this information will either be used to insert appropriate

MULTICS TECHNICAL BULLETIN MT3 - 234 paje 5

carriayge motion <characters before the next graphic to be_
inserted, or discarded if the next character involves vartical
carriage motion, This process is repeated until all the source

characters are used up. If it happens that the first call to
tty_util_3find_char returns an indicator of zero and has wused up
the entire source strings no characters are moved by this phase.

The subroutine tty_util_3find_char uses a tct instruction to
find interesting characters, but it must do other things as well.
In the first places, for the instruction to notice tnat a
character nas either or both of its high-order bits ons, a table
of 512 entries would be neededs, of which 384 would be identicaly’
secondly, a sinygle bptank between two printing graphics 1is not
interesting tn tty_writes, but two or more consecutive blanks are
considered "white spaces'" as is any combination of olank and one
or more other carriage movement characters. To cover the first
cases, tty_util_bfind_char performs two scm instructions to find
the earliest character (if any) which does not fit in seven pits.
For the <case of multiple blankss it is clearly ungesirable to
nave & non-zery indicator in the tct table for blank, ana thus
tforce the tect to stop on all blanks, test to see if the next
cnaracter is a blank, and then proceed if it is not. Insteads, the
tct is preceded by an scd (scan <character double) instruction
which looks for two successive blanks. Tne tally and pointer
returned to tty_write reflect the earliest point in the source
string at whicnh either the tcts, the scds or either of the two
scm's founa anything interesting.

It will e seen from the module description of
tty_uwtil_sfind_char Llater in this MT@ that a "white space'
tncicator implies that the pointer points to the beginning of a
clock of white spacer which tty_write then examines until it
finds the end of the block. Therefore it the first interesting
character found by tty_util_3%find_char is a carriage movement
character, it must check to see if the immediately preceding
character is a blanks, in which case it returns a pointer to the
plank rather than tne character following it.

Another responsioility of the formatting phase is the
counting of output Llines and watching for full pages. In the ola
tty_write, page length is respected only for ARDS-like screen
terminals; when the maximum line count is reacheds, tty_write
stops processing characters and sets a flay in the fixed control
block (fct) associated with the terminal. This flag gets
transmitted to the 355, which then understands that, when the
output 1s completeds, it must not ask for nore output for that
channel until it receives a form-feed character as input. The new
design extenas the concept of pagye Llength to atl terminals
capable of receiving or transmitting a form-feed, and removes all
knowledye of the end-of~page condition from the 355, In addition,

MULTICS TECHNICAL BULLETIN MTw - 234 page 6

tty_write no longer stops processing characters when the Line
count reaches maximums instead, the formatting phase inserts a
warning string (such as "EOP") and & sentinel <character at the
end of the paye, and the copying phase (see below) later removes
each sentinel and turns on a flag in the buffer that ends the
page. When dn355 (the program that actually sends the buffers to
the 355) sees this flages 1fvt@ases-trqnsmission, and now sets the
flag in the fctl block. when it receives input for a channel with
the end-of-page flag on, it scans this input for a form-feed; if
it findgs ones it replaces it with a PAD character (177(3)), turns
off the fctl flags ano starts up output for the <channel again.
(1) B

The translation phase is wvery similar to tne preliminary
convarsion phase described earlier. An mvt instruction is used to
copy the entira string from wherever it was left by the preceding
phase to an automatic buffer, transtating it from ASCII to the
appropriate output <code in. the process. (At present the only
output codes other than ASCII known to Multics are ESBCDIC and IBM
Correspondence.) This does not complete the process for a
terminal which requires case-shift tharacters (which currently
inctudes all terminals for which translation 1is done);, the
insertion of case-shift characters is done in a similar manner to
the insertion of escapes before <capital letters as described
under "Preliminary Conversion." The translation table causes the
high-order bit of each uppercase character to be turned on (in
this context the term wuppercase refers not only to capital
letters obut to all characters for which the shift key must ©Dpe
depressed while typing) and the "200(8)" bit of each lowercase
character to be turned on; characters which may be in either case
(such as space) contain no extra bits. After translations, an scm
is done to find the first character in the opposite case to the
one in which the terminal was at the start of the outputs atl
characters to the left of it are copieds, an appropriate shift
character is inserted after the copied characters, and another
scm is used to find the next change of case. If all the output
characters are in the same cases NO:.copying is done. Note that it
is not necessary to turn off the-high-order bits of the uppercase
characterss, since these bits will be ignored by the remainder of
the tty DIM and ultimately thrown away by the 3S55.

e e e e ar m = e m e e e e e e e YR T e R e e T R e S eR e e M G e MR R =R e R e AR W A S Em w7 e G e A e e e e

(1) A mode may be added in future which would allow a wuser to
specify tnat when a page i1s full the tty DIM should automatically
output a form-feed rather than waiting for one to be input. On a
hard-copy terminals, this mode would probably make more sense than
the current method. ‘

MULTICS TECHNICAL BULLETIN MT3 - 234 paygye 7

guffar_Allogatigon_and_CQpyingy

The final phase of tty_write consists of allocating buffers
in tty_buf and copying the final output 1into these buffers. A
buffer in tty_ouf is 1o words long, of which the first contains a
forward pointers, flagss and a tally; each pbuffer therefore holds
up to 60 characters. Thus one buffer is _allocated by tty_write
for every 60 characters of final cutput, and the characters are
copied in 60-character chunks. If an end-of-page sentinel is
encountereds the end-of-page flag 1is turned on in the current
puffer, and the buffer is not filled past the sentinel. If output
already processed for the particular channel has not yet been
sents, a chain of buffers for that channel will already exist~ if
the last buffer in this chain is not full, and does not have its
end-of-page flag on, it will be filled pefore further buffers are
sllocated. The newly~-allocated buffers will be threaded onto the
ci{z crain., finally, if the "sena_output” flag in the fctl block
is ons indicating that an355 and the 355 itself are prepared to
handle output for the channel, tty_write calls dn355%3i0_commanc
to cause a mailbox to pe sent to the 355 telling it that output
1S on the way. '

because the input string undergoes wholesale modification at
several points, it 1s necessary to decide how many of the user's
cneracters to process oefore actually doing anything. Certain
canstraints wnicn exist in the present implementation will be
retaineg: no more than a certain fraction of available buffers in
tty_ouf are to be assigned to a single channel at any time; and
no output chain of more than a certain number of buffers 4ill be
ouitt, The particular numbers involved are, for the sake of
convenience and simplicitys, preset system-wide constants, The
current values, which appear reasonable., are 174 and 16
respectively, 1i.e.r, no channel is ever assigned more than 1/4 as
many buffers as are free at the time of assignment, and a maximum
of 16*6U = %960 characters will be processed by a single call to
tty_write.

The first determination made by tty_writes, then, is the
maximum number of buffers the caller is allowed to haver, which
is:

maxbuf = min(16, (buffers_Lleft/4) - buffers_assijnea)

The number of characters to process may then be expressed as

MULTICS TECHNICAL BULLETIN MTB - 234 page 8

nchars = min(chars_supplied, maxbufxchars_per_buffer)

It the terminal is in "rawo" moder, this 1is the number of
characters that will actually be shippeds, and nothing further
need be done, In general, howevers, the number of characters
actually output is somewhat ‘té?ger than the number supplieds
meters done at wvarious times :show an average growth ratio of
about 6:5. Accordingly, for non-raw outputs, tty_write will
multiply nchars as calculated agove by 0.3 to atlow for growth
(this actually allows for a.growth ratio of S:4, which gives us

some leeway) . As a result, the size of the output string can
4row by as much as 25% withouUt’ requiring more buffers than one
lLine 3is "supposed"” to have:.hpwever, the restriction to 1/4 of

the available buffers is a very conservative one, so if it
cccasionally proves necessary to allocate an "extra" buffer the
overall effect on available buffer space should not be
noticeable.

An augditional consideration arises from the use of internal
buffers in tty_uwrite. Because of the possipbility of more than one
intermediate copys, two such buffers are needed, and rather than
create twd seyments so as to allow weach buffer to grow
essentially without limit, it was decided to set aside fixed-size
buffers 1n tty_write's stack frame., The size chosen for each of
these buffers 1s the maximum allowable output chain size, i. e..,
960 characters.

Clearly growth ratios yreater thdn 5:4 can and will occur;
there are patholoyical cases such as an object or other non-ASCI1I
seygment bein; printey on a 2241 terminal, which involves a growth
ratio of wore than 5:1 (<upper_shift> ¢ <lower_shift> ann for
each 1nput character, plus added new-lines and d4c markers). Thus
despite precadtions we must be prepared for the possibility that
in the course of translation or formatting we will run out of
space in the internal bpuffer. when this happens, the number of
input characters to be handled is cut 1in half., and character
processing is started over from phase 1. This solution 1is
admittedly crudes, but the alternative i1s to keep track at all
times of the number of the user's characters which have been
processed, which in some cases (particularly the transformation
of white space) 1i1s non-trivial 1in the new scheme, it seems
inadvisable to incur this overhead on every call to tty_write in
order to avoid expense in a rare case. The problem will only
arise when attempting to pracess 768 user characters of which an
unusually large number have to be escaped;, considering that the
average output messaye is around 5J characters, the overall
expense of double processing in such a case is not likely to be
signiticant.

MULTICS TECHNICAL BULLETIN MTB - 234 page 9

If space in tty_buf is unusually tignts then an abnormal
character string which is not large enough to over flow the
internal ouffer sgpace might nonetheless require the allocation of
more buffers than are available. If tty_write finags that it s
about to allocdate th= last buffer, it will take the same action
as if it were about to overflow one of its internal ouffers, ia
2.sr, divide the numoer of input characters in half and start over.
This <circumstance 15 considered even Lless probable than the
overflowing of an internal buffers if it happens often it is
procably an indication that tty_buf is too small.

we coulds of courses reduce the frequency of overflow events
still further ©py decreasing the percentage of the theoretical
maximum number of characters that will actually be processed at
onces however., this would increase the probability that the
user's characters could not be handled in a single call., thereby
reguiring users to go blocked for output more often and
increasing the numter of calls to tty_write. The figures used in
this MTi3 are a preliminary estimate wvased on what seems
reasonables they can easily be adjusted if metering shows either
a high frequency of double processing or an excessive (i.e.»
sreatly increased) number of calls to tty_write.

RAIA_SIRUCTURES

This section describes the tables to be wused by tty_write
for translation and formattiny. Packed pointers to these tables
will pe kept in the control block (ctl) allocated for each Lline
when it dials ups the default tables are in tty_ctl on a
per-terminal-type wvasis as at presentr, and pointers to these
tables are copied from tty_ctl into the ctl block the first time
tty_write is called for any one dialup.

in a future modification, control oOperations will be
provided to allow a user to substitute his/her own version of one
or more o0f these tables. Macros (i1n mexp) may also be provided to
facitlitate the construction of such taoles. This capability.,
nowevers, introduces problems as long as the Answering Service
coes not wuse the secure (ring 1) messaye facility rather than
calling hes_3tty_write directly. wWrite calls from the Initializer
for a terminal using user-supplied translation tables would
reference pointers in the user's address space (not the
Initializer's), waich at cest would result in garbage being
Orinted on the user's terminal. (A possible alternative to using
the message facility is to have the Answering Service call a
special entry which uses the default tables for the terminal type
whether the user has supplied tanples or nots the output mijht be
gyarbled, but at leagst the taoles would pe accessible to the

MULTLICS TECHNICAL BULLETIN MTB - 2354 page 1U

Initi

typers
conta

table

alizer,)

Ih2 neader of tty_ctl contains an array, indexed by terminal
of retative offsets of default tables, The default table .
ins relative pointars to the conversion tables to be used by
default for the given terminal type. The format of the default

is as follows:

gct 1 device_defaults aligned based,
2 flags unal.,
3 shifter bit (1) 'unal.
3 upper_case_only bit (1) unal.,
3 pad bit (7)) wunal,

[AVEEAV RN LSRN A CRE A SR L VRN o V]

shifter
upper _case_only
celay_char

upper_case
lower _case

tct_ocffset

nvt_otfset

delay_char_char,(1) unal.,
upper_case char (1) unal,
lower_case char (1) unat.
tct_offset fixed bin (18).,
mvt_offset fixed bin (18).,
special_offsét fixed bin (138).,
delay_offset. (4) fixed bin (18);

is "1"b if the terminal requires case
shift characters.

is "1"b if the terminal handles only
capital letters.

is the ASCII form of the character used
for carriage movement delays.

isfthe uppercase shift character.
is.the lowercase shift character.

is the relative offset (in tty_ctl) of
the default table us ed by
tty_util_%$find_char for identifying
"special" characters.

is the relative offset of the table used
by tty_util_3smvt for translation, or U
if translation is not required for the
particular terminal type.

MULTICS TECHNICAL BULLETIN MTB - 234 page 11

special_offset is the relative offset of the default
version of the special_chars table
described below.

delay_offset 1is an array of offsets ot the
delay_tables (described below) to be
used for this terminal type at 110, 150,

300, and 1200 bps respectively.

Spegial_Characters _Table

The special characters table is used by the formatting phase

of tty_write. It has tne following format:
del 1 special_chars aliyned basedes

2 cmt (6) aliygned,
3 count fixed bin (&) unal.,
3 chars (3) char (1) unal.,

2 printer_on aligned.,
3 count fixed bin (&) unal,
3 chars (3) char (1) unal.,

2 printer_off aligned,
3 count fixed bin (8) unal,
3 chars (3) char (1) unal,

2 red_ribbon_shift aligned,
3 count fixed bin (&) unal.,
2 cnars (3) char (1) unal.

2 ovlack_ribobon_shift aligned,
3 count fixed bin (8) unal.,
3 chars (3) char (1) unal.,

2 end_of_page aligned.,
3 count fixed bin (3) unal.,
35 c¢chars (3) char (1) unal.,

2 escape_length fixed biny,

2 not_edited_escapes (10 refer (escape_length)).,
3 count fixed bin (3) unal.,
3 chars (3) char (1) unal.,

2 edited_escapes (10 reter (escape_length)),
3 count fixed bin (4) unal.,
3 chars (3) char (1) unal.,

Note: In each of the level l substructures in this structure

countes, which nas a value 0 <=
characters in the segquencer
the chars array 1s the sequence

i5 no sequence for the character

ageclaration,
the number of
elements of
zeros therec

count <= 3,

1tselfs If
in gquestion.

indicates
first count
count 1s

the

MULTICS TECHNICAL

cmt

new=-Line

carriage

backspace

horizontal

verticat

BULLETIN

MTis - 234 page 12

describes the character seguences to be

used for the six carriaye nmovement
characters, in this order: new-line,
carriaye returns, backspaces, horizontal
tabs vertical tabs, form-feed. If <count
is zero, the carriage movement function
in question i1s not available on the
terminal. In this case, the following

action is taken:
<invalid>

substitute appropriate
number of backspaces

return

substitute carriage
return and appropriate
number of blanks and/or
horizontal tabs

form-feed

printer_on

printer_off

red_ribbon_snift

black_ribbon_shift

end_of_page -

escape_length

tab substitute appropriate
number of blanks
tab, ignore character

The counts for carriage reurn and

backspace may not both be zero.

is the character
implement the
operation.

segquence to be used to
"orinter_on" control

is the character sequence to be useaq to

implement the "printer_off" control
operation.

is the character seqguence to be
substituted for a red ribbon-shift
character,

is the character seguence to be
substituted for a black ribbon-shift

character.,

1s the character sequenc2 to be printeag
to indicate that a page of output 1is
fultl,

is the number of output escape sequences
in each of the two escape arrays.

AJLTICS TECHNICAL BULLETIN MTB - 234 page 13

not_edited_escapes 1s an array of escape seguences to be

- substituted for particular characters if

the terminal is in ""edited"” mode. This

array 1is 1indexed according to the

incicator returned by
tty_util_%$find_char.

edited_escapes is an array of escape seqguences to be

used in "edited" mode. It is indexed 1in

the same fashion as not_editecd_escapes.

Pelay_lable

The delay table provides the number of delays to be used in
conjunction with carriage movement characters. It hadas the
following format:

dcl 1 delay based aligynedes

2 vert_nlL fixed bings
2 horz_nl fixed bin,
2 const_tab fixed bin,
2 var_tab fixed bin,
2 backspace fixed bin,
2 vt_ff fixed bin,
vert_ni is the number of uelay characters to be
output for all new-lines to allow for
the line-feed,
horz_nl is a factor used to determine the number
cf delays to be added for the carriage
return portion of a new-line, depending
on column position. Tne formula for
calculating the numoer of delay
characters to be output following a
new=line 1is:
ndelays = vert_nl + (horz_nl*columnl)/512
const_tab is the constant portion of the number of
delays associated with any horizontal
tab character.
var_tub is a factor useu to determine the number

of aagditional delays associated with a
horizontal tab depending on the number

MULTICS

TECHNICAL BULLETIN MT8 = 234 page 14

of columns traversed. The formula for
calculating tne number of delays to be
output following a horizontal tab is:

ndelays = const_tab + (var_tab*n_columns) /512

tackspace is the number of delays to be output

vt

following a backspace character, If it
is negativesr, it is the complement of the
number of delays to be output with the
first Dbackspace of a series only (or a4
single backspace), This is for terminals
such as the TermiNet 300 which need
delays to allow for hammer recovery in
case of overstrikess, but do not regquire
delays for the carriage motion
associated with the backspace itself.

_tr is the number of delays to be output

following a vertical tab or form-feed.

MULTICS TECHNICAL BULLETIN MTB - 234 page 15

MOOULE _QESCRIPTION QF tty_utit_

The entries in this module are used for translation and
formatting oF typewriter input and output. AlLL of them run 1in
tne caller's stack frame, and take as an argument a pointer to an
argument structure provided by the caller.

Entry: tty_util_3%$find_char

This entry uses a tct (test character and translate)
instruction to search a given string for "interestinyg'" characters
as Jefined by a4 translation table supplied by the caller.

Jdsage
declare tty_util_%$find_char entry {(ptr);
call tty_util_3$find_char (argptr);
where argptr is a pointer to the structure described
pelow. (Input) '
del 1 tct_aryg_structure based aligned,
2 stringp ptr.
2 stringt fixed bin,
2 tally fixed bin,
2 tablep ptr.
2 indicator fixed bin.,
2 workspace (3) fixed bins
stringp is a pointer to the string to be tested,
3 f indicator (see below) is 3 or 7., it
is wupdated to point to the first
"interesting'” character in the string-
otherwise, it is updated to point to the
character following the first
“"interesting" character. (Input/Qutput)
stringl : is the Llength in characters of the

string tc wve tested, If stringl 1s
greater than 2000, only the first 200U

MULTICS TECHNICAL BULLETIN MTB - 234 page 16

characters are tested. stringl is
decremented by the same number of
characters as stringp is advanced. If
the entire string 1is searched and

indicator is U, stringl 1is set to 0.
(Input/Qutput)

tally is the number of "uninteresting"”

' cp@racters passed over by the test.
(Qutput)

tablep is a pointer to an aligned packed array

of 123 fixed bin (8) values to be used
as a translation table. The elements
correspond to ASCII characters in the
normal collating sequences the value of

each element is zero i f the
corresponding character 1s
uninterestings, or else the vatue of the
indicator to e returneag if the
corresponding character 1s encountered,
(Input)

indicator is the result of the search. It may have

the following vatues:

) =- no special characters
1T == new-line
2 —-- carriaye return

W
(
{

"white spacer" 1. e., horizontal
tabos two or more consecutive
blankss, or a combination of one or
more blanks and a tab or backspace
character. stringp is set to point
to the first "white space"”
character.

4 -- backspace

5 -- vertical tab

6 ==~ form-feed

7 -~ character reguiring octal escape
8 == red ribbon shift

9 -- black ribbon shift

WULTICS TECHNICAL BULLETIN MTu = 234 page 17

other =-- a character reqgquiring a special
escape segquence. The indicator
value 1is the 1index 1into the
escape table of the seguence to
be useds, plus 16.

workspace is to be used by tty_util_ for temporary
storage if necessary.

/

Eofry: tty_util_3%mvt

This entry 1is used to translate a4 cnaracter string using an
mvt (move with translation) instruction.

usade
declare tty_util_smvt entry (ptr);
call tty_util_3mvt Cargptrd;
where argptr is a pointer to the mvt_aryg_structure
described below. (Input)
dcl 1 mvt_arg_structure basea aligned.,
2 stringp ptr.
2 stringl fixed ping
2 pad fixed bings
Z tablep ptres
2 targetp ptro.,
2 workspace (2) fixed vins
strinyp is a pointer to the character string to
pe translated. (Input)
stringl is the Ltength 1in characters of the
string pointed to vy stringp. (Input)
tablep is a pointer to an aligned <character
string of Length 128 to be used as a
translation table. (Input)
tarjety is a pointer to the place where the

translated string is to be placeds; 1t
must point to a character string of
length stringl or greater., (Input)

MULTICS TECHNICAL

Entry

chara
(scan

workspace

BULLETIN Ty - 234 page 18

is as above.

: tty_util_bdscm

Tnis entry

is used to search a character string for a

cter Wwith one of its two high-order bits on, using an scm

Wwith mask)

instruction.

declare tty_util_%scm entry (ptr);

cell tty_util_%$scm (argptr),

argptr

dct 1

stringp

stringl

tally

search_mask

points to the scm_arg_structure
described below. (Input)

scm_arg_structure based aligned.

(VIR AR L CRN) VAN)V}

stringp ptre

stringl tixed bin,

tally fixed bin,

search_mask bit (2) aligned.,
found_flag bit (1) aligned.,
workspace (4) fixed bin,

is a pointer to the string to be
scanned. If the scan succeeds, it is
updated to point to the character in
gquestion. (Input/Output)

is the length of the string pointed to
Dy stringp. It is decremented by as many
characters as stringp 1s advanced.
(Input/dutput)

is the number of characters passed over
during the scan (i. e., the number of
characters to the left of the character
founds or the length of the string if no
character is found). (Qutput)

is "10"b if the 400(0(8) bit is to be
searched for, or "01"b if the 200(8) bit
is to be searched for. (Input)

MULTICS TECHNICAL BULLETIN MTB - 234 page 19

found_flag is set to "1"b if a character with the
it specified by search_mask on is
found; otherwise it is set to "U"b.
(Qutput)

workspace is as above.

