
MULTICS TECHNICAL BULLETIN MTB - 234

To: Di's tr i but ion

From: Robert s. Coren

Date: 11/04/75

Subject: New Strategy for Conversion of Terminal Output

fhe parts of the ring zero typewriter DIM concerned with
character conversion i.e., the subroutines tty_read and
tty_write -- have remained Largely unchan':)ed in design for a Long
time. The process of character conversion on Multics is currently
very slow and inefficient, in particular takiny no advantdJe of
EIS. The problem is especially acute with respect to output,
s1nce there is in general about 8 times as much terminal output
as ter~inal input; accordingly tty_write is a major bottleneck in
rinq zero. This MTLi describes a proposed redesign of tty_write
which will speed it up considerably without any Loss of function.
Similar changes are planned for tty_read at a later date.

In tty_write as currently implemented, each character of
user-supplied data is individually examined and looked up in
various tables to determine what should oe placed in output
ouffers to be sent t~ the 355 and thence to the terminal. Even in
"ra\,io'' rroJe, where the user's data is passed on with no
conversion, each character is nonetheless copied individually,
with the count of characters being incrementeo one at a time.
When either the end of the user's data is reacned or the maximum
number of ring-zero buffers, the user is dllowed to have is
fillej, conversion stops and, it appropriate, the data so far
converted is shipped to the 355.

Ti1is mechanism has the obvious advantage of simplicity: it
is ~articularly easy ta keep track of how many of tne user's
characters have been transmitted and how muc~ buffer space is
uein•,,; use.j. However, tt1is aavantage is more than offset by the
loss of efficiency in processing characters one at a time. In
addition, the tables used for the conversion are kept, by
terminal type, 1n a ring zero data base <tty_ctl), and pointers

Multics Project internal working documentation. Not to be
reproauced or distributed outside the Multics Project.

MULTICS TECHNICAL dULLETIN MTB - 234 page 2

to t 11 em d r e de r i v e d by t t y _ w r i t e eve rt t i me i t i s ca l l e d • In th i s
setuo, no meth:Jd is avai l~ble for the user to substitute his/her
•)~~n trdnslation tables. Still worse, the same table is used both
for determining whether a character is "special" (requires
escaping or the addition of delays) and for converting from ASCII
to some "forei·;ln" code (such as EIJCDIC); this situation makes it
virtually impossible to avoid· looking up and doing something
about every character input to tty_write.

The new design is predicated on the assumption that the vast
majority of characters sent to the user's terminal are
"uninteresting" i. e., they are to be shipped as they are,
they ao not require delays, and each one advances the carriage by
one position. A block of such characters can clearly be copied
into tty_buf all dt once with a single EIS instruction, or at
least in buffer-sized chunks. The only problem is identifying the
Limits of such a block, and making the necessary additions and
substitutions when an "interesting" character is encountered.
Wholesale translation Ce. g., ASCII to EBCDIC) is a separate
issue, and can also be dealt with economically using EIS.

The functions of tty_write can be logically divided into
four phasE>s:

1. fcelimiaacx_~oa~~c~i~o <specifically the translation of
of lowercase letters to uppercase for a Teletype model 33
or terminals in "capo" mode;

2. fQLW~ttiag, i.e., substitution of escape sequences,
insertion of new-Line characters in long Lines,
canonicalization and optimiziation of white space, etc.;

5. Icaosl~tiQQI as from ASCII to EBCDIC;

4. ~uf!~r-~11Q,i1i2D-~D~-'Q~Xicg of characters into buffers
in tty_buf, whence they will be read by the 355.

In the current tty_write, these four phases are executed more or
less simultaneously on each character; in particular, phases 2
and 3 (formatting and translation) are not distinguished, and are
driven oy the same table. The new design executes each phase over
the entire input string <or as much of it as will be transmitted
at once) before passing on to the next phase. In most cases, of
course, either phase 1 or phase 3 or both can be omitted; in
"rawo" mode, tty_write can and does proceed directly to phase 4.

MULTICS TECHNICAL BULLETIN MTB - 234 page 3

Each phase is provided with crn "input pointer" to the
Location where the previous phase left the data in its Latest
form. This pointer points either to the user's ori~inal input or
to either of two ouffers in tty_write's automatic storage, as
descrioed later.

Tne only serious disadvantage to this scheme is that the
deterrrination :>f how many of the user's characters are actually
to be shiµped must be made in advance of conversion, and this
determination must attempt to take into account the probability
that the final output will contain more characters than the user
supplied. There is no ideal solution to this problem, but one has
been oeveloped which ensures that the program will behave
correctly in all cases, and in general will have the same effect
as today Cin terms of the number of calls required to output a
given string, the pressure put on tty_buf, etc.>. This solution
is descrioed later in this document.

Extensive use has been made in this design of three EIS
instructiom: move with translation Cmvt), test character and
translate (tct), and scan with mask Cscm>. PL/I builtin functions
such as translate do not completely meet our requirements;
therefore an ALM subroutine, tty_util_, is supplied, containing

,,... entry points to perform the necessary functions.

The remaining sections of this MTB contain the following:

1. A more detai Led description of
conversion mentioned above:

the four. phases of

2. A discussion of space allocation and chara~ter counting;

3. A description of the data structures used for conversion
and translation, as well as an indication of the ~roposed
method for allowing the user to substitute his own
versions of the relevant tables:

4. A module description of tty_util_.

Certain terminals require uppercase-only output; similarly,
a user can S1)ecify (by entering "caµo" mode) that all lowercase
letters are to be converted to uµpercase for output. These cases
Jre treated identically by tty_write: an mvt (move with
translation> instruction is used to copy the user's data into an

MULrICS TECHNICAL tiULLETI~ MTO - 234 page 4

dut0mdtic buffer, using a translation table which substitutes
u P P ~ r c a s e A S C I I f o r l o w e r c a s e • l f t h e u s e r i s i n " e d i t e d " m o d e ,
this is all that needs to be done for this phasei if not,
however, each letter which was ori9inally uppercase must be
µreceded by an escape ch~racter ,<"\"). Therefore, in "'"edited"
~ode, the translation table also replaces each uppercase letter
with the same chdracter with .. its high-order bit Cthe "400(8)"
bit> turned on. After the mvt is completed, an scm (scan with
mdsk) instruction is executed to find the first character with
the "400" bit on; if one is found,· all characters to the left of
it are copied to a second internal buffer, an escape is inserted
after the copied characters, and the high-order bit of the found
character is turned off. The scm is repeated on the remainder of
the c hara c t er s i n the f i rs t bu f f.e r u n t i l a l l ch a r act er s h ave been
copiec to the second butter with escapes inserted as needed. If
no characters with the high-order bit on are found in the entire
string, no copyin9 is done.

fQt!!l.at.ting

The search for, and correct handling of, "interesting"
chdrdcters is the most crucial of ttt_~rite's functions, and the
one to which most of the time spent in tty_write is devoted. The
identification of "intP.resting" characters is facilitated by the
use of the tct (test character and translate) instruction under
control of a table containing zero entries for all
"uninteresting" characters and vafious indicators identifying the
different kinds of "interesting" ones: carriage movement
characters, ribbon shifts, ~nd characters requiring the
suostitution of esca~e sequences.

The formatting phase of tty_write calls tty_util_$find_char
t o f i n d t h e f i r s t " i n t er e s t i n y " c ha .r a c t e r i n t h e s t r i n g ;
tty_util_ifind_char returns a tally of "uninteresting" characters
skipped over, the indicator value for the character it stopped
at, and an updated pointer to the character at which to start the
next scan. (See the module description of tty_util_ later in
thi3 document.> tty_write cqpies the uninteresting characters
into an internal buffer <whichever one does not contain the
source string) and examines the indicator. If it designates an
escape sequence, the sequence is inserted in the buffer. For a
new-line, ~P.rtical tab, or form-feed chardcter, d special table
is indexed to find the appropriate representation of the
character, dnd another table is searched to find the correct
numb~r of delays to be ins~rted d~pending on column position,
terminal type, and baud rate. For "white space" <horizontal tab,
nacksµace, carriaye return, or two or more bldnks) tty_write
simply Cdlculates. and remembers what column position to end up
in: this information will either be used to insert appropriate

MULTICS TECHNICAL OULLETIN MTB - 234 page 5

carria~e motion characters before the next graphic to be
inserted, or discarded if the next character involves v~rtical'
carriaqe motion. This µrecess is repeated until all the source
characters are used up. If it happens that the first call to
tty_util_Sfind_char returns an indicator of zero and has used up
the entire source string, no characters are moved by this phase.

The subroutine tty_util_Sfind_char uses a tct instruction to
find interesting characters, but it must do other things dS well.
In the first place, for the instruction to notice that a
character has either or both of its high-order bits on, a table
of)12 entries would be needed, of which S84 would be identical;
secondly, a sinyle blank between two printing graphics is not
interesting to tty_write, but two or more consecutive blanks are
considered "white space," as is any combindtion of clank anJ one
or more other carria~e movement characters. To cover the first
case, tty_util_J.find_char 1.Jerforms two scm instructions to find
t~e edrtiest character Cit any> which does not fit in seven oits.
f.;r the casP of multiple blanks, ;tis clearly unaesirable to
~dve a non-zero indicator in the tct table for blank, and thus
force the tct to stop on all blanks, test to see if the next
cnaracter is a ulank, and then proceed it it is not. Instead, the
t ct i s pre c e d Pd by an s c d C scan ch a r a c t e r do u b le) i n s tr u c t i on
~hich looks for two successive blanks. Tne tally and pointer
returned to tty_write reflect the earliest point in the source
striny at which either the tct1 the scd, or either of the two
scm'~ found anything interesting.

It ~ill be seen from the module description of
tty_util_:J.find_char later in this 1'1T8 that a "white space"
i~cic3tor imolies that the pointer points to the begihning of a
clock 0f white space, which tty_write then examines until it
finds the end of the block. Therefore if the first interesting
character found by tty_util_Sfind_char is a carriage movement
character, it ~ust check to see it the immediately precediny
character is a blank, in which case it returns a pointer to the
blank rather than the character following it.

Another resµonsioi lity of the formattin~ ~hase is the
counting of output lines and watching tor full pa~es. In the old
tty_write, page len~th is respected only for ARDS-like screen
terminals; wh!'.'n the maximum line count is reached, tty_write
stops µrocessing characters and sets a flay in the fixed control
block (fctl) associated with the terminal. This flag gets
transmitted to the 355, which then unJerstands that, ~hen the
output is completed, it must not ask for more output for that
channel until it receives a form-feed ch,uacter as input. The new
design extenas the concept oi page lenyth to all terminals
capable of receivin~ or transmitting a form-feed, and removes all
knowled~e of the end-of-page condition from the 355. In addition,

MULTICS TECHNICAL 8ULLETI~ MT~ - 234 page 6

tty_write no longer stops processing characters when the line
count reaches maximum: instead, the formattinq phase inserts a
Wdrr1ir1<J strin'1 (such as "EOP") and· a sentinel character at the
end of the paqe, dnd the copying phase <see below) later removes
e d c h sent i n el and turns on a ,fl a g in the Lu t I er that ends t he
page. When dn355 (the prografl' that actually sends the buffers to
the 355) sees this flag, it'· t•ea.&es• tr~nsmission, and OQ:d sets the
flag in the fctl block. when it receives input for a channel with
the end-of-page flag on, it scan,s this·input for a form-feed: if
it finds one, it replaces it wi'th a PAD character {177(8)), turns
off the fctl flag, and starts up output for the channel again.
(1)

The transl at ion phase is, v_ery simi tar to tne preliminary
c o n v .~ r s i o n p h a s e d e s c r i b e d e a. r t · i e r • A n m v t i n s t r u c t i o n i s u s e d t o
copy the entire string from wherever it was left by the preceding
phase to an automatic ouffe.r, t~an~lating it from ASCII to the
appropriiJte output code in. _the process. (At present the only
output coJes other than ASCII ~nown'to Multics are EBCDIC and IBM
Correspondence.) This does not complete the process for a
terminal which requires case-ihi~t characters Cwhich currently
includes all terminals for which translation is done); the
i n s e r t i on of ca s e- s h i f t c h a r a c t .er s i s done i n a s i m il a r m an n e r t o
the insertion of escapes beior~ capital letters as described
under "Preliminary Conversion." The translation table causes the
high-order bit of each uµpercase character to be turned on (in
tnis context the term upperca~~ refers not only to capital
letters out to all characters for which the shift key must oe
depressc>d while typing) and· the "200(8)" bit of each lowercase
character to be turned on; characters which may be in either case
(such as space) contdin no extr~ bits. After translation, an scm
is done to finJ the first character in the opposite case to the
one in which the terminal was at the start of the output; all
characters to tne left of it are copied, an appropriate shift
c h a r a c t e r i s i n s er t e d a f t e r t he. c o·p:i e d ch d r d c t e r s , an d an o t h e r
scm is 0seJ to find the next change of case. If all the output
characters dre in the same case, no. copying is done. Note that it
is not necessary to turn off the high-order bits of the uppercase
chardcters, since these ~its ~ill be ignored by the remainder of
the tty DIM anJ ultimately thrown away by the 355.

(1) .ti, :nod e m .J y b e a d d e d i n f u tu re w 'h i c h w o u l d a l l o w a us e r t o
specify that when a page is full tne tty DIM should automatically
output a form-feed rather than waiting for one to be input. On a
hard-copy terminal, this mode would probably make more sense than
the current method.

MULTICS TECHNICAL BULLETIN MTS - 234 paye 7

The final phase of tty_write consists of dllocatin~ buffe.rs
in tty_buf and copying the final output into these buffers. A
buffer in tty_ouf is 1C> words long, of which the first contains a
forward pointer, flags, and a tally; each buffer therefore holds
up to 60 characters. Thus one buffer is _allocated by tty_write
for every 60 characters of fi~al output, and the characters are
copied in 60-character chunks. If an end-of-page sentinel is
encountered, the end-of-page flag is turned on in the current
buffer, and the buffer is not filled past the sentinel. If output
already processed for the particular channel has not yet been
sent, a chain of buffers for that channel will already exist: if
the last buffer in this chain is not full~ and does not have its
end-of-pa'::ie flag on, it will be filled before further buffers are
allocated. The newly-allocated buffers will be threaded onto the
cl~ c~ain. Finally, if the "sena_output" flag in the fctl block
is on, indicati;~ that an355 and the 355 itself are prepareu to
hanjle output for the channel, tty_write calls dn355iio_command
to cause a mailbox to De sent to. the j55 telling it that output
is on the way.

because the input string undergoes wholesale modification at
several points, it is necessary to decide how many of the user's
cnaracters to process oefore actually doing anything. Certain
co~straints whicn exist in the present implementation will be
retainea: no more than a certain fraction of available buffers in
tty_ouf are to be assigned to a single channel at any time; and
no output chain of more than a certain number of buffers will be
ouilt. The particular numbers involved are, for the sake of
convenience and simplicity, preset system-wide constants. The
current values, which appear reasonable, are 1/4 and 16
respectively; i.e., no channel is ever assigned more than 1/4 as
many buffers as dre free at the time of dssignment, and a maximum
of 16•6u = 9o0 characters wi LL be processed by a single call to
tty_write.

The first determination made. Dy tty_write, then, is the
maximum number of buffers the caller is allowed to have, which
i s :

mdxbuf = minC16, (buffers_left/4) - buffers_assi3nea)

The number of characters to process may thPn be expressed as

~ULTICS TECHNICAL BULLETIN MTS - 234 page 8

nchars = min(chars_supplied, ma~buf•chars_per_buffer)

It the terminal is in "rawo" mode, this is the number of
characters that will actual·lY be shipped, and nothing further
need be done. In genera~,. li.oweyer, the number of characters
actually output is somewhat· l~~ler than the number supplied;
meters Jone at various ti,me$ ·.;show an avera~e growth ratio of
about 6:5. Accordingly, for non-raw output, tty_write will
multiply nchars as calcul~t.ed a~ove by 0.8 to allow for growth
(this actually allows for a,g'rowt·h· ratio of 5:4, which gives us
some l e e w d y) • A s a re s u, l ~ , t he s i z e o f t he o u t put s t r i n g c an
~row by as much as 2S% without'requtring more buffers than one
l i n e i s " s u p Po s e d" to h ave; . h.o we v er , t h e re s t r i c t i on t o 1 I 4 o f
t h e a v a i l es b l e b u ff e r s i s a · v e r Y.' c o n s e r v a t i v e on e , s o i f i t
occasionally proves necessary to allocate an "extra" buffer the
overall effect on available buffer space should not be
noticeable.

An aaoitionC:.1l consideration arises from the use of internal
buffers in tty_write. Because of t~e possibility of more than one
intermediate copy, two such buffers are needed, and rather than
create two seyments so as to allow each buffer to grow
essentidlly without limit, it was decided to set aside fixed-size
buffers in tty_write's stack frame. The size chosen for each of
these buffers is the maximum allowable output chdin size, i. e.,
Q60 characters.

Clearly growth ratios yreater thdn 5:4 can and will occur:
there are µatholo~ical cases such as an object or other non-ASCII
se,Jment heinc.; printecJ on a 2741 terminal, which involves a ~ro•th
ratio of more than 5:1 (<upper_shift> t <lower_shift> DQD for
each input character, plus added new-lines and 4c markers>. Thus
despite precautions. we must be prepared for the possibility that
in the course uf transldtion or formatting we will run out of
space in the internal buffer. ~hen this happens, the number of
input characters to be hdndled is cut in half, and character
processin~ is started over from phase 1. This solution is
admittedly crude, but the alternative is to keep track at all
times of the number of the user's characters which have been
processed, which in some case~ (particularly the transformation
of white ~pace) is non-trivial in the new scheme; it seems
inadvisaule to incur this overhead on every call to tty_write in
order to ilvoid ex~ense i'n a rare case. The problem will only
arise when attempting to pra~ess 768 user characters of which an
unusually large numuer have to be escaped; considering that the
avera9e output message is. around Su characters, the overall
expense of rlouble processiri~ in ~uch a case is not likely to be
signi ti cant.

~ULTICS TECHNICAL BULLETIN MTB - 234 page 9

If space in tty_buf is unusually ti9nt1 then an abnormal
character string which is not large enough to overflow the
i n t e r n a l o u f f e r s 1) a c e m i g h t n o '' e t h e l e s s r e 4 u i re t h e a l l o c a t i o n o f
more buffers than are available. If tty_write finos that it is
about to allocdte thr~ last buffer, it will take the same action
as if it were about to overflow one of its internal ouffers, i.
e., diviJe the nurnoer of input characters in half and start over.
This circumstance is considered even less probable than the
overt lowin':l of an intl?rn3l Guffer: if it happens often it is
probably an in~ication that tty_buf is too small.

we coulJ, of course, reduce the frequency of overf lo~ events
still further by decreasing the percentage of the theoretical
maximum number of charJcters that will actually be processed at
once; however, this would increase the probability that the
user's characters could not be handled in a single call, thereby
requirir1.:l users to go blocked for output more often and
incre<.Jsin9 the nuTILer of calls to tty_write. The figures used in
this MTd are a preliminary estimate oased on what seems
reasonable; they can easily be adjusted if metering shows either
a high frequency of double processing or an excessive <i.e.,
:lreatly increased) number of calls to tty_write.

D.AiiL :iIE.UC.IURE~

This section describes the tables to be used by tty_write
for translation and formatting. Packed pointers to these tables
will oe kept in the control block <ctl> alloci.lted for each line
when it di~ls up; the default tables are in tty_ctl on a
per-terminal-type oasis as at present, and pointers to these
tables dre copieJ from tty_ctl into the ctl block the first time
tty_~rite is called for any one dialup.

1 n a f u t u re ~no rJ i f i ca t i on, cont r o l u p e r at i on s w i l l b e
provided to allow a user to substitute his/her own version of one
or more of these tables. Macrus (1n mexp) may also be provided to
facilitate the construction of such taoles. This capability,
nowever, introjuces problems as long as the Answering Service
does not use the secure Cring 1) messa~e facility rather than
calliny hcs_:ttty_write directly. Write calls from the Initializer
for a terminal using user-supplied translation tables would
reference pointers in the user's address space <not the
Initializer's), wnich at oest would result in garbage being
µrinted on the user's terminal. CA possible alternative to using
the message taci Lity is to have the Answer inc~ Service call a
special entry which uses the default tables for the terminal type
~hether the user has supplied tables or not; the output rni~ht be
Jarbled, but at leJst the taoles would oe accessible to the

~ULTlC~ TECHNICAL BULLETIN MTB - 2S4 page 1U

Initializer.)

r h !
type, of
contains
default
table is

header of tty_ctl contains an array, indexed by terminal
relative offsets of default tables. The default table
relative pointers to the conversion tables to be used by
for the given terminal type. The formdt of the default
as follows:

acl 1 device_defaults aligned based,

shifter

2 flags unal,
3 shifter bit (1) unal1
3 upper_case_only. bit (1) unal,
3 pad bit en, unal,

2 delay_char char. (1) unal,
2 upper_case char <1> ~nal,
2 lower_case char <1> undl,
2 tct_offset fixed bin <18),
l: mvt_offset _fixed bin <18),
2 special_offset fixed Liin C18),
2 delay_off~et (4) fixed bin (18);

is "1"b if. the terminal
shift characters.

requires case

u µper_ case_ on l y is "1"b if the terminal
c ap i ta l le t t er s •

handles only

oelay_char

uµper_case

lower_case

tct_offset

n. v t _ 0 t f s e t

is the ASCII form of the character used
for carriage movement delays.

is· the uppercase snift character.

is· the lowercase shift character.

is the relative offset (in tty_ctl) of
the default table used by
ttx_ut~l_Sfind_chdr for identifying
"special" characters.

is the relative offset of the table used
by tty_uti l_limvt for translation, or 0
if translation is not required for the
particular terminal type.

MULTICS TECHNICAL ~ULLETIN MTB - 234

special_offset is the relative offset of the
version of the special_chars
described below.

page 11

default
table

delay_offset is an array of offsets ot the
delay_tables (described below> to be
used for this terminal type at 110, 150,
3QQ, and 1200 bps respectively.

The special characters table is used by the formattin~ phase
of tty_write. It has the followin~ format:

dcl 1 special_chars aliyned based,
2 cmt (6) aliyned,

3 count fixed bin (8) unal,
3 chars <3> char (1) unal,

2 printer_on aligned,
3 c o un t f i x e d b i n (b) u n a l ,
3 chars (3) char (1) unal,

2 printer_off aligned,
3 count fixed bin (8) unal,
3 chars (.3) char (1) unal,

2 red_ribbon_shift aligned,
3 count fixed bin (8) unal,
3 chars (3) char <1> unal,

2 olack_ribbon_shift aliyned,
3 count fixed bin (8) unaL,
3 ctldrs (3) char (1) unal,

2 en1_of_page aligned,
3 count fixed bin (8) unal,
.S chdrs (3) char (1) unal,

2 escape_length fixed bin,
2 not_editea_escapes C10 refer Cescape_length)),

3 count fixed bin (8) unal,
3 chars (3) char (1) unal,

2 edited_escdpes (10 refer Cescape_length)),
3 count fixed bin Cd) unal,
3 chars <3> char (1) unal;

Note: In each of the level 2 substructures in this structure
aeclaration, count, which has u value 0 <= count <= 3, indicates
the number of chdructers in the sequence: the first count
elements of the chars array is the sequ~nce itself. If count is
zero, there is no se~uence for the character in question.

MULTICS TECHNICAL BULLETIN MTd - 234 page 12

cmt

printer_on

printer_off

describes the character sequences to be
used for the six carriaye rr.ovement
characters, in this order: new-line,
carriaye return, backspace, horizontal
tab, vertical tab, form-feed. If count
is zero, the carriage movement function
in question is not available on the
terminal. In this case, the following
action is taken:

new-Li·ne'

carriage return

backspace

horizontal te1b

vertical tab,
form-feed

<invalid>

substitute appropriate
number of backspaces

substitute carriage
return and appropriate
number of blanks and/or
ho r i z on ta l tab s

substitute appropriate
number of blanks

ignore character

The counts for carriage reurn and
backsoace may not both be zero.

is the character sequence to be used to
implement the "~rinter_on" control
operation.

is the character sequence to be used to
implement the "printer_off" control
operation.

red_ribbon_snift is the character sequence to be

black_ribbon_shift

end_of_paqe ·

escape_length

substituted for a
character.

is the character
substituted for a
character.

red ribbon-shift

sequence to be
black ribbon-shift

is the character sequenc~ to be printea
to indicate that a page of output is
f u l l •

is the number of output escape sequences
in each of the two escape arrays.

MULTICS TECHNICAL BULLETIN MTB - 234 page 1 3

not_edited_escapes is an array of escape sequences to be
substituted for particular characters if
the terminal is in "~edited" mode. This
array is indexed according to the
incicator returned by
tty_util_$find_char.

edited_escaµes is an array of escape sequences to be
used in "edited" mode. It is indexed in
the same fashion as not_edited_escapes.

The delay tahle provides the number of delays
conjLJnction with carriage movement chdracters.
fJllowing forrPJt:

to be used in
It has the

dcl 1 delay based aliyned,
2 vert_nl fixed bin,
2 hor.z nl fixed bin,
2 const_tab fixed bin,
2 var_tab fixed bin,
2 backspace f1xeo bin,
2 vt ff fixed bin;

vert_nl is the number of aelay characters to be
output for all new-lines to allow tor
the line-feed.

h0rz_nl is a factor used to determine the nu~ber
of delays to be added for the carriage
return portion of a new-line, depending
on column position. Tne formula for
calculating the numoer of delay
characters to be output following a
new-line is:

const_tab

v<ir_t.;.1b

ndelays = vert_nl + Chor.z nl*column)/512

is the constant portion of the number of
delays associated with any horizontal
tab character.

is a factor useu to dettrmine the number
of aaditional deldYS associated with a
horizontal tab depending on the number

~ULTICS TECHNICAL BULLETIN MT8 - 234 page 14

Lack space

V t f T

of columns traversed. The formula for
calculating tne number of delays to be
output following a horizontal tab is:

ndelays = const_tab + Cvar_tab•n_columns)/512

is the number of delays to be output
followiny a backspace character. If it
is negative, it is the complement of the
number of delays to be output with the
first backspace of a ~eries only (or d

single backspace>. This is for terminals
such as the TermiNet 300 which need
delays to allow for hammer recovery in
case of overstrikes, but do not require
deldyS for the carriage motion
associated with the backspace itself.

is the number of delays to be output
fellowing a vertical tab or form-feed.

MULTICS TECHNICAL BULLETIN MTB - 234

•
t'.lQlHll..E_Q.i;,~~!lleil.Q~-Q.£ tty_ut i l_

till!!!!~: tty_uti l_

The entries in this module are used for translation and
formatting ot typewriter input and output. All of them run in
the Cdller's stack frame, and taKe as an argument a pointer to an
argument structure provided by the caller.

fQ![t: tty_util_$find_char

This entry uses a t c t Ct est character and translate)
1 n st r u ct ion to sear c n a g i v en s tr in g for '' i n t ere st i n y" ch a r a c t e rs
as JefineJ by a translation table supplied by the caller.

l.!s.a;J.e

where

declare tty_util_$find_char entry (ptr);

call tty_util_$find_char (argptr);

is a pointer to the structure described
below. (Input')

dcl 1 tct_arg_structure based ali1ned,
2 strin9p ptr,
2 strin·Jl fixed bin,
2 tally fixed bin,
2 tablep ptr,
2 indicator fixed bin,
2 workspace (3) fixed bin;

stringp is a pointer to the string to be tested;
if indicator (see below) is 3 or 7, it
is updated to ~oint to the first
"interesting" character in the string;
otherwise, it is updated to point to the
character following the first
"interesting" character. <Input/Output)

stringl is the len~th in characters of the
strin:i tc ue tested. If strinyl is
~reater than 2000, only the first 200Ll

:·1U LT I CS TECHNICAL 8 UL LET IN MT B - 2 3 4 page 16

ta l l y

tablep

inclicator

characters are tested. stringl is
decremented by the same number of
characters as stringp is advanced. If
the entire string is searched and
inJicator is Q, stringl is set to D.
(Input/Output>

is the
characters
('o'u t put>

number
passed

of
av er

"uninteresting"
by the test.

is a pointer to an aligned packed array
of 12d fixed bin CS> values to be used
dS a translation table. The elements
correspond to ASCII characters in the
normal collating sequence; the value of
ea~h · element is zero if the
correspondiny character is
uninteresting, or else the value of the
indicator to oe returned if the
correspondin~ character is encountered.
(Input)

is the result of the search. It may have
th~ following values:

0 no special characters

1 new-line

2 carriaye return

:s "white space," i. e., horizontal
tab, two or more consecutive
blanks, or a combination of one or
more blanks and a tab or backspace
character. stringp is set to point
to the first "white space"
character.

4 backspace

5 vertical tab.

6 form-feed

7 character requiring octal escape

8 red ribbon shift

9 black ribbon shift

""

1·. UL T I CS TC CH N I CAL 8 U LL ET I N MT i:; - 2 3 l+ page 17

~.or ks pace

other -- a character requiring a special
escape sequence. The indicator
value is the index into the
escape table of the sequence to
be used, plus 16.

is to be used by tty_uti l_ for temporary
stora~e if necessary.

£a.tr).'.: tty_util_$mvt

This entry is used to translate a cnaracter string using an
mvt (move with translation) instruction.

;.vh ere

declare tty_util_.bmvt entry (ptr);

call tty_uti l_l>mvt (argptr);

is a pointer to
descrilied below.

the mvt_arg_structure
(Input)

dcl 1 mvt_arg_structure basea aliyned,
2 stringp ptr,

string;:>

stringl

tablep

tar Jetµ

~ str1nyt fixeJ bin,
2 iJJCJ fixed bin,
2 tablep ptr,
2 tar·Jetp ptr,
2 workspace <2> fixed oin:

is a pointer to the character striny
be translated. (Input>

to

is the length in characters of the
string pointed to oy stringp. (Input)

is a pointer to an aligned character
string of Length 128 to be used as a
translation table. (Input)

i s a pointer to the place where the
translated strin9 ; s to be placed: i t
rn us t point to a character string of
length strin·;:il or greater. (Input)

MULTICS TECHNICAL ~ULLETIN ~Tu - 234 page 18

workspace is as above.

fD1rl: tty_util_1scm

Tnis entry is used to search a character string for a
character with one of its two high-order bits on, using an scm
<scan with mask) instruction.

where

declare tty_util_Sscm entry Cptr);

call tty_util_$scm (argptr);

argptr points to the scm_arg_structure
described below. <Input)

dcl 1 scm_arg_structure based aligned,
2 st r i ng µ pt r,
2 stringl fixed bin,
2 tally fixed bin,
2 search_mask bit C2> aligned,
2 found_flag bit (1) aligned,
2 workspace (4) fixed bin;

strin'dp is a pointer to the
scanned. If the scan
updated to point to the
question. <Input/Output>

string to
succeeds, it

character

be
i s
in

strin::il

ta l l y

search_mask

is the length of the string pointed to
oy stringp. It is decremented by as many
characters as stringp is advanced.
Clnput/Outµut>

is the number of characters passed over
during the scan Ci. e., the number of
characters to the Left of the character
found, or the length of the string if no
character is found>. <Output)

is "1U"b if the 400<8)
searched for, or "01"b
is to be searched for.

bit is to be
if the 200<8> bit
(Input)

MULTICS TECHNICAL 8ULL~TIN MTB - 234

found_fla~

workspace

is set to "1"b if
oit specified
found; otherwise
<Output)

is as above.

page 19

a character with the
oy search_mask on is

it is set to "O"b•

