MULTICS TECHNICAL BULLETIN

To:

From:

Date:

Subject:

Multies Project internal working documentation.

Distribution

Jeff Broughton

October 27, 1975

MI'B-232

Extensible Command Language for Use on Multics

Not to be

reproduced or distributed outside the Multics Project.

EXTENSIBLE COMMAND LANGUAGE

(ECL)

The purpose of this document is to describe an extensible
command language and command environment for use on the Multics
system which functionally incorporates the abilities of the
current command processor and its accomplices, abbrev and
exec_com, and additionally provides the user with more convenient
mechanisms for dealing with the <command environment and for

creating his own commands.

EEATIURES
0 Provides a well endowed, interpretive. proceduratl
language supporting variabless arithmetics, string and
logical operations., a powerful control structure

including <conditionals and iteration, and a condition
mechanism,

o Allows definition of user commands and functions by use
of procedures written in the command language itself,
These procedures would be partially compiled and as such
would execute faster than current exec_com files.

o Provides a mechanism for the automatic definition of the
syntax and semantics of the arguments to a user command
(procedure) including error detection and reporting.

¢ Supports a number of special data typess, e.g. pathname or
iocbs that correspond to the things normally manipulated
by the wuser at command level allowing him to deal with
them in a high Level fashion ignoring the details of the
of the supervisor interface.

o Allows the user to controlese through block structurer, the
environment in which a command executes. The environment
may be iteratively changed, as in walk_subtree, or it may
be Llimited for use in a restricted subsystem.

ECL Page 1 10/20/775

o Provides a means of defining other languages, such as a
data compiler like cv_pmf or command subsystems such as a

debugger using the command processor to intergret the
statements (commands).

The method of defining the ECL language is the same as wused
for defining the Multics PL/I language. See Section 1.2 of the
Bulticgs PL/l Language Reference Mapuals Order No. AG94, Rev. 1.

IHE_IODIERPRETATLION QF ECL

The ECL language describes a sequence of operations to be
performed in terms of an <active unit>:

<active unit> ::= <program unit>i<statement unit>
<program unit> ::= <procedure>
<statement unit> ::= <executable unit>l<declarative>

<executable unit> ::= <group>i<on unit>l
<for unit>l<data unit>|<independent>

A <grogram unit> describes a subroutine that may be called
by other programs.

A <statement unit> describes a single action that may be
performed at the direct request of the user. The processing of a
<statement Llist> 1is directed by the command interpreter, and such
processing is said to be performed at command level.

Input containing an <active unit> is read and processed by

the translator. A syntactically correct unit is passed to the
processor for execution,

Ihe_Strugture_of ECL
BLOCKS
A <block> is the most important syntactic form in the
language: it controls the flow of execution, delimits the
meaning of names»,» and controls the environment of execution.
<blogk> ::= <procedure>l<on unit>i<for unit>l<data unit>
<procedure> ::= <procedure statement>[<parameter block>]

[<Kprocedure body>l1<End statement>
<procedure body> ::= {<body unit>|

ECL Page 2 10720775

<Entry statement>[<parameter block>]
<body unit> ::= <block>l<declarative>l|
[<label>J<executable unit>

<on unit> 1:= <0n statement>([<parameter block>
[(<on unit body>]<End statement?>
<on unit body> ::= <body unit>...

<for unit> ::= <For statement>{<for unit body>]
<End statement>
<for unit body> :2:= <body uUnit ...

<data unit> ::= <Data statement>[<data unit body>]
<End statement>
<data unit body> ::= <body unit>...

ALl of the components of a <block> are said to be contained
in that <block>. The components of a <block> that are not also
contained in a <block> itself contained in the original, are said
to be immediately —contained in the original <block>. A
<procedure> that is a <program unit> is not containeg in any
<block>.

GROUPS

A <group> describes a group of <statement>s within which
there is an internal flow of execution.

<groug> ::= <do group> | <if group>

<do group> ::= <Do statement>[<statement Llist>]
<End statement>
<statement Llist> ::= {[<label>]<executable unit>}...

If statement><then part>(<else part>]
= Then <executable unit>
:= Else <executable unit>

<then part>

<if group> :1:= <
<else part> :

The internal flow of wexecution 1is determined by the
interpretation of the <Do statement> or <If statement>.

Note: an <if group> that is an <executable unit> comprising
a <statement unit> may not contain an <else part>.

STATEMENTS

ALL nigher level constructss, e.g. an <active unit> or
<block>, are formed from a List of <statement>s each with an

optional <prefix>, The <statement>s recoynized by the language
are.

ECL Page 3 ‘ 10720775

<statement> ::= <independent>|<dependent>i<declarative>l
<descriptive>i<invalid>

<independent> ::=
<Call statement> |
<Let statement> |
<Exit statement> |
<Continue statement> |
<Goto statement> |
<Interpret statement> |
<Perform statement> |
<Signal statement> |
<Revert statement> |
<Return statement> |
<Resignal statement>
<null statement>

<dependent> ::=
<If statement> |
<Do statement> |
<For statement> |
<Data statement> |
<0n statement> |
<procedure statement> |
<Entry statement> |
<End statement>

<declarative> ::=
<scope statement> |
<Synonym statement> |
<Environment statement>

<descriptive> ::=
<Semantics statement> |
<keyword spec> |
<type spec> |
<value spec> |
<6roup statement> |
<multiple Statement> |
<Select statement> |
<Form statement>

AlL statements must be terminated by a <newline> or
semicalon., The syntax and semantics of individual <statement>s
is described in the following section.

Independent statements are those which describe an explicit
action to be performed.

Dependent statements are used to build <procedure>s, <on
unit>s, anc <group>s as described above.

ECL Page & ©10/20/775

ﬂ

Declarative statements are used to define names _iq ‘the
programs and to establish the rules for resolving a definition.

Descriptive statements are used to form a <parameter block>.
An <invalid> statement is any group of <token>s delimited by
a <newline> or semicolon that does not correspond to one of the

other types of statements. This includes any group of <token>s
that begins with an <identifier> that is not a statement name.

STATEMENT PREFIXES

Statement prefixes are used to name 3 statement., or to
control 1ts meaning within the program:

<prefix> ::
<label> | <controt prefix> | <form prefix> | <parm optiocn>

<label> ::= <i1dentifier> :

<control prefix> :2= Then | Else

<form prefix> :: Optional | Repeat

Default | Errcr | From

<parm option>

A <label> defines an <identifier> as a name for the
following statement. Lexically, 1t may only appear at he
beginning of a <line> containing a <statement> that may begin an
<executable unit>: e.g. a <Do statement>, an <On statement>, or
an <independent> statement.

A <control prefix> is wused to designate the alternative
actions in an <If group>. It may only appear on a statement that
may begin an <executable unit>.

<form prefix>es and <parm option>s are used 1in <parameter
block>ss, and are discussed in that section.
LEXICAL SYNTAX

Each <statement> (and optional <prefix>) is formeac from a
<line> consisting of a group of one or more basic syntactic units
callea <token>s. The format of these <token>s describe the
conventions needed to input a valid <statement>:

<line> = [<Ktoken>l...{<newline>l, 2}

<token> ::= <string>li<identifier>i<operator>]
<gption name>|<comment>|<delimiter>

ECL Page 5 16720775

<string> ::= <quoted string>l<unguoted string>

<guoted string> ::= "[<char>|""]..."
<char> ::= any ASCII character except "

<ungquoted string> ::= <chars>... .

Excluding all such strings that are <identifierd>s,
<operator>s, or <option name>s.

<chars> 1:= <letter> <digit>l<Ii=bal+l=t*l /17181 18171]

<letter> ::= <capital>lalblcldielflglhliljl
killminloiplgirlsitiulviuwixlylz
<capital> t:= AIBICIDIEIFIGIHITIJIKILIMI

NIOIPIGIRISITIUIVIWIXIYIZ

<digit> : O111213141516171819

<identifier> t= <capital>(<ichar>...]

it #se

<ichar> ::= <letter>li<digit>lI_I18$1%
<operator> :z:= +l-i*xl/1*xx]"|=1"=1gI2I<=]>=1&111}]lI}]I==
\
<pgption name> ::= -<letter>{<chars>...]

= /x[<any>...1%/

<comment> ::
:= any ASCII character

<any> @

<delimiter> ::= <punctuation>l<white space>

<punctuation> 3= L1 bCIDILITICTY

<wuhite space> ::= <blank>|<tab>

Though not explicitly required by the syntax of statements.,
all <string>ss, <identifier>s, <operator>s, <option name>s, and
<comment>s must Dbe separated by «c¢ne or more del imiters,
<comment>s can appear freely in any location, as can <white
space> which must be used to satisfy the above restriction if
there is no <punctuation> required.

A <line> that contains no <token>s is discarded and replaced

by a non-null <line>,

Irapslatioo

The process of translation causes the input to be read and
matched to the syntax of an <active unit>.

ECL Page 6 10720775

TRANSLATION OF A PROGRAM UNIT

The source of a <program unit> resides in a Multics segment
named proyram-name.,ecl.

The translator for a <program unit> reads <line>s of the
source file and matches them against the list of defined
<statement>s, A <label> may not appear in the input. I1f an
<jnvalid> statement is encountereds, an error 1is reportea and
processing continues wWwith tne next <line>,

The <statement>s found by the translator must form a
complete, syntactically correct <procedure>. If not an error is
reported.

1f there i1s no error in the input sources the translator for
a <program unit> generates an object segment named program-name
containing the <program unit> with entrypoints correspongaing to
each <procedure statement> or <Entry statement> immediately
contained in the outermost <procedure>,

The <program unit> 1i1s passed to the processor when one of
the entrypoints is invoked.

TRANSLATION OF A STATEMENT UNIT

The source of a <statement unit> is read from the 1/0 switch
user_input, and as such may be directly entered by the user.

The translator for a <statement unit> reads <line>s of input
and matches them against the list of defined <statement>s. If an
<invalid> statement or a <statement> not permitted by the syntax
of a <statement unit> is encountereds then an error is reported,
~alltl input following the offending statement is flushed, and the
statement itself is throw away. Additional lines may then
continue tc be entered.

When the translator has assembled enough <statement>s to
form a singles syntactically complete <statement unit>, the
<statement unit> is passed to the processor for execution.

If execution completes normally, control returns to the
translator to read another <statement unit>.

kxegution

An <active unit> 1is executed in a manner dependent on the
form of the <active unit>:

Case 1. The <active unit> is a <statement unit>: Execute
the <statement> or <group> that comprises the

ECL Page 7 107240775

<statement unit>,

Case 2. The <active unit> is a <program unit>: Activate the
block derioted by the contained <procedure> at the
entrypoint that was invoked, causing execution to
commence, .

The execution of an <active unit> moves from <statement> to
<statement> alony & path called the flow of <contrcl. The
interpretation given to a <statement> 1is subject to the
environment of execution as defined in the immediately containing
<block>.

The rules for executing an individual <statement>s are given
in the section on the Syntax and Semantics of Statements.

THE ENVIROMENT OF EXECUTION

tach <block> has associated with it a definition list, a
resolution rule list, and an active handler list which together
define the environment of execution.

The definition Ltist 1is a list of <identifier>s defined in
the block and the values or objects to which they are bound.

The resolution rule list specifies rules denoting which
(<block>s') definition lists are to be searched when resolvins 2an
<identifier> reference.

The active handler list specifies a list of conditions for
which handlers (<on unit>s) have been established in the <block>.

In addition to those defined for <block>s, there is a global
definition list maintained for the purpose of having definitions
that last from process to process, and a definition Llist giving
the builtin functions and psuedo-variables defined Ly the
tanguagye. (See the section on Builtins.)

The execution of a <statement unit> (which is not contained
in any <block>) is influenced by environment Llists specially
maintained in the invocation of the command interpreter directing
the processing of the <statement unit>,

BLOCK ACTIVATION

A <block> is activated when an entry to a <procecure> 1is
invoked or an <on unit> is invoked to handle a condition, To
activate a <block>, perform the follow operations:

1« Initialize the resolution rule Llist by executing the

<Environment statement> immediately contained within the

ECL Page 8 10720775

ECL

<block> if one exists. Otherwiser, execute the default
<Environment statement> as described in the description
of that statement,

Initialize the active handler list to null.

Initialize the definition list to nulls, and process any
contextually aerived definitions to be made in the
<plock>. A definition may not override a previous
definition of the same <identifier>.

a. For each <label> that is immediately contained in the
<block>, <create a definition for the <identifier>
specified in the <label>, and bind it to a label value
aesignating the following <executable unit>.

9. For each <procedure> that is immediately contained 1in
the <block>s create definitions for the <identifier>s

naming the <procedure statement> and any <Entry
statement>s immediately contained in the <procedure>,
and bind those <identifier>s to entry values

designating the corresponding entrypoints,

Execute each non-"Local”" <scope statement> and <Synonym
statement> immediately contained in the <block>.

(reate a3 definition for each <identifier> that appears as
a parameter in a <procedure statement> or a <Parameter
statement>., and process the <parameter block> or
(implied) <parameter List> designatec for the entrypoint
for the block.

Execute each "Local" <scope statement> immediately
contained in the block.

Excluding the <descrigtive> and <declarative> statements
just processedes the body of the <block> forms a list of
<executable unit>s. Execute these <executable unit>s
according to the flow of control beginning with the first
such wunit that follows the point at which the <block> 1is
to be entered. :

The <pblock> that has been activated most recently is called
the current block. The <block> that invoked the current block is
called
the current block is called the parent block.

the calling block. The <block> that immediately contains

Page 9 10720775

THE FLOW OF CONTROL WITHIN A BLOCK

The <statement>s or <yroup>s that comprise a List of
<executable wunit>s are executed 1n the order in which they
appears except as the flow of control is influence by the
execution of individual <statement>s. .Upon the completior of the
list, <control returns to the point at which the <block> was
invoked,

The execution of a <Goto statement> can cause execution to
move to a <executable unit> other than the next one in sequence.
In such a case, execution continues as i1f that <executable unit>
(the target of the goto) were reached normally from its preceding
statement,

when an <if group> is encountered during execution, an
<executable unit> contained in the <then part> or <else part> may
be selected for execution, If such a case occurs. that
<executable wunit> is executed normally. Execution then proceeds
normatly to the next unit.

Wwhen a <do gyroup> is encountered during execution, the
contained <statement List> is executed as a List of <executable
units> subject to the <control of the <Do statement>. When
execution of the <do yroup> is complete, execution continues with
the next unit.

EVALUATIOQOH _QF EXPRESSIQNS
Ihe_Data_of ECL

1he data that is manipulated by the language takes on two
forms: the simple constant values produced as the result of
evaluating an expressions, and data objects which may be assigned
any desirec value and have certain properties relating to the way
in which their values are accessed.

RBata_lyues

FEach value has associated with it one of fifteen data types
that determine now it is stored internally and what operations
may be performed upon it. The data types that are supported are:

1. integer - represents positive and neyative whole numbers
and i1s stored internally as fixed binary(35).

le real - represents arithmetic wvalues with fractional
partses, and i1s stored internally as float decimal (14),

3. logical - represents a simple truth value and is stored
internally as bit(1) aligned.

ECL Page 10 10720775

ﬂ

ECL

10.

1.

12.

13.

string - represents character strings or bit strings
(with length greater than one) and is stored internally
as character(256) varying.

{iteral - represents strings that have a special meaning
in the language or a special meaning to wuser definea
statements (commands) such as keywordss, operators., and
punctuation. Literal values are stored internally as
character(32) varying.

address - represents the address of a storage location
anc is stored internally as a pointer,

date ~ represents a Multics standard <c¢lock reading
{(microseconds since January 1., 1960Q0) and 1s stored
internaltly as fixed binary(71).

pathname - represents an absolute pathname of some
directory entry and is stored internally as
character (168).

branch - represents a directory entry and is stored
internally as a structure containing relevant
information about the entry.

iocb - represents an I1/0 switch and is stored internally
as a pointer to an I/0 control block.

refname - represents a reference name and is stored
internally as character(32).

label - represents a location 1in a program and the
environment of the invocation of the gprogram. It is
stored internally as a Label value.

entry - represents an entry 1into a subroutine and the
environment of the block in which the subroutine 1is
defined. An entry value may represent both command or
noncommand subroutines. The former are procedures
defined by or written in the Llanguage. The Llatter
include all procedures written in other languages and
still callable from within the language. An entry value
may represent three types of subroutines:

a. A procedure is a subroutine which may be invoked by a
simple call and which executes a certain sequence of
operations.

b. A function is invoked to compute and return a value.
C. A psuedo-variable may be invoked to return a value or

used as the target of an assignment to receive a
supplied value, Psuedo-variables are useful to model

Page 11 10720775

14.

15.

values in the <command environment which require
subroutine calls to alter., €ega the working
directory.

An entry value is stored internally as an entry wvalue.,
with additional designators .indicating whether it is a
command/noncommand procedure and whether it is a
orocedure, function or psuedo-variable.

undefined - represents the absence of a wvalue of any
other type. It is the value associated with variable
objects bound to newly defined identifiers that have no
other initial value specified.

list - is an aggregate type that is an ordered sequence
of values which may be accessed as a group or
individually. It may be wused to represent arrayses
structures, stackse or abstract data types. There is
one element corresponding to each positive integer. An
element that has never acquired a value in any manner
has the type undefined. A Llist has one attribute, its
Length, which gives the largest index for an element
with a nonundefined value. If then there are no such
elements, then the length 15 zero.

Qbject_Ivpes

ECL

1.

Simplte variable objects which have an associated value
that may pbe changed by assignment,

An external data object describes an external symbol =--
for example, an error_table_ code -- giving its name and
a fixed type. Evaluating an identifier bound to such an
object will extract the value from the external lccation:
assigning to the value of the identifier will alter the
value of the external location. It may have any data
type except entry.

A psuedo-variavle reference describes a particular use of
a psuedo-variable giving the arguments with which the
procedure is to be invoked. It is <created when a
psuedo~variable wused as the target of an assignment or
passed by reference to a subroutine.

A |ist cross-section describes a particular sublist of a
List wvalue. It designates the list, the object having
the Llist 3as a valuer, the starting element of the sublist
and the length of the sublist. It is created to describe
a Llist <cross—-section ocurring as the target of an
assigment or being passed by reference to a subroutine,

Page 12 10/20/75

Y

Y

Structure_of Expressigns

There are two syntactic types of expressions: basic
expressions which either are single tokens or are delimited by
parentheses or oraces and which are used primarily as single
arguments, and expressions which involve several tokens and must
appear delimited by some keyword pharse or punctuation.
Expressions represent some computation to be performed.

<basic expression> ::=
<identifier> | (<expression>) | <constant> | <list>
<constant> ::= <string> | <literal>
<string> ::= <quoted string> | <unguoted string>

<titeral> ::= <option name>

<list> ;:= { [<basic expression>...J 1}

<expression> ::= <infix> | <prefix> | <combination>

<infix> :1:= <expression> <infix-op> <expression>
<prefix> ::= <prefix-op><expression>

The result of evaluating a basic expression is the result of
evaluating the <contained <identifier>, <constant>, <list> or

<expression>. The result of evaluating an <expression> is the
result of evaluating the infix or prefix operation or
<combination> it represents. The methods of evaluating these

inferior constructs are described below.

fonstants

There are two types of constant values that may appear as or
in an expression.

1« A <string> represents to a data value of type string.

2. A <literal> represents a literal data value corresponding
to the designated <cption name>.

Note that the class of unquoted strings also includes what would
normally be considered as numbers —- 123, 12.3, 12e3 and so
forth, these are considered strings until the context of their
use forces conversion to arithmetic (integer or real) values.

ECL Page 13 10720775

ldeptifiecs

ldentifiers are the names of objects or constant values.
They are a subset of unquoted strings. They must begin will an
uppercase alphabetic <character and contain only alphabetic
characters and diyits and the characters "_", "$", and "%".

DEFINITION OF IDENTIFIERS

The creation of a definition for an identifier appends the
<identifier> to a definition Llist and binds the <identifier> to
an object or value, All <identifier>s must be defined before
they are used, There are five means of definition:

1. Definition of identifiers representing simple wvariable
objects. (See the scope statement.)

2. betfinition of identifiers representing external data
objects. (See the Synonym statement.)

3. vefinition of an identifier representing an entry
constant, (See <procedure> and the <Entry statement>,?

4, Definiticn of identifiers representing constant label
values.

S. Definiticn of the pararameters to a Ssubroutine. An
identifier that is a parameter may be bound to either a
constant value or an object of any type.

RESOLUTION OF IOENTIFIER DEFINITIONS

An <identifier> definition i1s resolved by finding the wvalue

or oubject to which it is bound. To resolve a definition, perform
the following procedure:

1. Search the definition List for the current block for a
definition of the <identifier>. If founds then return
the object or value to which the <identifier> is Dbound.

2. Otherwises, the <identifier> definition is to be resolved
subject to the the list of <resolution rule>s established
by the (implied) Environment statement for the current
<plock>: Apply the rules specified 1in the designated
order. The rules are interpreted as follows:

a. The Preyiguys rule specifies that the definition Llist
in the immediately previous activation of the
containing <block> is to be searched. 1f no such
activation existss, then this rule is skipped.

ECL Page 14 10720775

D

b. The Parent rule specifies that the search 1is to
continue 1in the parent of the current block == the
<block> immediately containing the —current <block>,
following the rules established 1in the parent. If

there is no parent blocks, then this rule 1s skipped.

c. The Caller rule specifies that the search is to
continue in the block that invoked this block == the
block that invoked a subroutine, entered a begin
blocks or signalled the condition invoking an on unit
-- following the rules established in the caller. 1f
there is no caller, then this rule i1s skippede.

d. The Global rule specifies that the global definition
list is to be searched.

e. The Builtin rule specifies that the tist of builtin

- s i o —

functions and psuedo-variables 1s to be searched.

- - -

are to be used to attempt to find an external symbol
with tne name of the identifier. Resolution of an
identifier by this rule causes an entry value
designating the external entry point found to be
returned.

The definition Llist selected by the application of the
rules above, is searched for an non-transparent
definition of the <identifier>, It one is founds, then
the object or value to which the <identifier> is bound 1is
returned, If the search fails, the next rule is applied
until the list is exhausted.

EVALUATION OF AN IDENTIFIER

When an <identifier> is used as part of an expression, it is
evaluated to find the value that it currently represents. To
evaluate an <identifier>, first, resolve the <identifier>'s
definition, If it is bound to a constant values then return that
value as the result of evaluating the <identifier>, If it s

to an object of some sorts, then evaluate that object and

return the result.

<combination> is used to represent parenthesized

expressionss function invocationses List cross—-sections., and
psuedo~-variable invocations.

<combination> ::= <constant>i<list>li

(<expression>)i<reference>

Page 15 10720775

Evaluation depends on the nature of the <combination>.

Case 1.

Case 2.

Rgferences

to

A <refe
gescribe

subroutine,

The <combination> is a <constant>, <list>, or
parenthesized <expression>: Evaluate the construct.,
and return the result as the result of evaluating
the <combination>.

The <combination> is a <reference>: Evaluate the
<reference>,. If the result is a constant value.,
then return that value. Otherwise, evaluate the

objects, and return the result.

rence> represents a data object or value. It 1s used
the target of an assignment, the arguments to a
and the operand of an expression.

<reference> ::= <simple reference> | <complex reference>

<s

imple reference> ::= <identifier>

<complex reference> ::= <element><argument Llist>

<element> :1:=

<constant>l<identifier>l(<expression>)l{<reference>]

To evaluate a <reference>, select the applicable case, and
perform thne

Case 1,

Case 2.

indicated operations,

The <reference> is a <simple reference>: Evaluate
the <identifier> specifieds and return the value or
object to which it is bound.

The <reference> i1s a <complex reference>: Evaluate
the component <basic expression>s and <reference>s
of the <argument List> in an unspecified order.
Evaluate the <element>, and select the applicable
case:

da. If the evaluated <element> is a list values, or 1is
an obDject representing a List value or
cross-sections then the evaluated <argument List>

- must consist of one or two values which must be
convertible to integer values. Let 1 be the
converted wvalue of the first expression. 1f
there is a second, let p assume its value/
otherwises let o be 1. The result is a list
cross-section of the object or value representing
the n elements beginning with the ith element.

. Page 16 10/720/75

‘D

b. If the evaluated <element> is a wvalie that
converts to an entry value representing a
function, then derive and process the arguments
as for a procedure call. Invoke the tunction
with these arguments and return the result.

c. If the evaluated <element> 1is a wvalue that
converts to an entry value representing a
psuedo-variable, then derive the arguments to be
passed to the psuedo=~variable when it is invoked
as for a procedure called. The resutt s a
psuedo-variable reference formed by associating
the arguments with the psuedo-variable.

de ALl other cases are in error.

Qbilect Evaluatign

The evaluation of an object yields the value associated with
that object:

1« 1f the object is a variable object, then the wvalue

associated with the wvariable object is returnec as the
result,

2. If the object 1s an external data objects, then tne result
is a value with the value wextracted from the external
location.

3. If the object is a psuedo-variable reference, then the
psuedo-variable designated is invoked with the associated
argumentss, processed as for a procedure call. Tre value
returned py the psuedo-variable is the result.

4, If the object is a list cross_section, then the object
representing the list is evaluated, and a list consisting
of the designated elements returned.

The <list> constructs, <basic expression>s enclosed in
braces, evaluates into a list value, ~The elements are formed by
evaluating the expressionss and forming the resulting values into
a sequence ordered left to right.

ECL Page 17 10/20/75

Qperaetors

The language supports most of the standard infix (two
ocperand) and prefix (one operand) operators, as well as a few
special ones. Evaluation of an infix or - prefix operator causes
the operands. to be evaluated, the indicated operation to be
performeds, and the result returned as the value of the operation.
There are five types of operators; arithmeticos logicale.
comparision, string and list. They maintain the normal (i.e.
PL/1) operator precedence,

Most of the operators normally work on scalar data values.
If the one operand of a prefix operator 1i1s a list, then the
result is a list of the wvariable objects having the values
cerived from applying the operator to each element of the List
individually. For infix operators, if both operands are lists
(of the same length), then the result is a list of the wvalues
resulting from a pairwise application of the operator to the
elements of the two lists. I1f one operand is a scalar, and the
other is a list, the scalar 1s promoted to a Llist of the
appropriate length,

Cxcept as otherwise noteds, 1t is an error for any of the
operands to have an Undefined value, the program is in error.

ARITHMETIC CPERATORS

These perform the standard arithmetic operations between
their operands. The operands are expected to be either inteyer

or real. If they are not, they are converted to one of these
tygcess as appropriate (see conversions), before the operation 1is
attempted. The result will be integer if there 1is enough

precision to hold the result, otherwise the result will be real.
There are five arithmetic operators:

+ addition

- subtraction (infix), negation (prefix)
* multipication

/ division

x ok exponetiation

LOGICAL OPERATORS

There are two Logical infix operators and ("§") and or

("1"™), angd one logical prefix operator not ("°"), These
operators expect their operands to be of type logical, and as
abcve, operands not of this type will be converted. The result

is a logical data value,

ECL Page 18 10/720/75

COMPARISION OPERATORS

These operations return a logical value indicating whether
or not the specified comparision was successful, The
comparisions fall into two <categories: value comparision, and
type comparison.

Value Comparision

There are six infix operators which may be used to compare
the wvalues of types integers, real, logical, strings and Lliteral.
They are the standard operators:

is equal to

is not equal to

is less than

is not greater than
is not less than

is greater than

"

v VAN
"won

These operators expect there operands to be of the same type. It
not they are converted according to the table below.
Comparisions of values of type integer and real are done
arithmetically. Comparisions of logical are performed as if the
values were the integers, U0 or 1. Comparisions of string and
literal wvalues are done according to the ASCII cotlating
sequence.,

integer real logical string Lliteral
integer integer real integer integer string
real real real real real string
logical integer real logical logical string
string integer real logical string strirg
Literal string string string string Lliteral

These six operators may also ke used to compare values of
type date. I1f one operand i1s not a date wvatue, it must be a
string convertible to a date value. The comparision is performed
arithmetically on the internal fixed binary(71) form.

Only the operators "=" and *""=" may be used to compare
values of other data types, Addresses compare equal 1 f they
specify the same location. Entries and labels compare equal if
thet describe the same location and generation of storage. locbs
compare egual if they identify the same 1/0 switch (even if

syn_"'ed). Branches compare equal if the segments have the same
unigue id's., Pathnames compare equal i1f they describe the same
directory entry. Comparisions are made between values of the

same type. If one of the wvalues is strings and the other
addressy entry., branche. pathname., refname., or i1ocb, then the
string is converted to the other type. If botn values are of the

ECL Page 19 10120775

types refname, pathnames, address or branche then conversion to
address or branch (if one of the two is a branch) is attempted
before the comparision. Otherwise, the program is in errcr. It
compares equal to only another undefined value.

Type Comparision

The operator, ==, is an infix comparision operator
returning the value True if the two operands are of the same
type. It has the same precedence as "=",

STRING CONCATENATION

The operator, "I1I", is wused to concatenate two strings
together. It expects both operands to be of type string. If
they are nots the offenders are converted before the operation is
pertormed. The result is a string value.

LIST CONCATENATION

The infix operator, "!", is used to join two lists together
in the same manner as two strings are joined by concatenation. It
expects both operands to be of type Llist, if not, the scalar
cperands are promoted to one element list before the operation is
cerformed. It has the same precedence as "II1".

Conyersions

{onversions may be requested explicitly by use of conversion
functions, or implicitly by context. The conversions given in
the table below may be performed among scalar data types.

An equals sign indicates conversion of a value to the same type.,
in which case the value is simply copied. An asterisk indicates
a conversion that may be performed under transitive closure and
which i1s Likely to have meaning. These multistep conversions
will be performed automatically. (An attempt can be made to
convert most types to most any other type wWwith a string value as
an Intermediate steps, but such attempts will generally result in
conversion errors.) Those marked with numbers indicate one step
conversions and are described below.

ECL Page 20 10/20/75

«

- —— e T e D W . D = e S e - e S T R U R Y A e R dn W MR D W M R Em G0 G G AR NS R R MR W WD R e e m e e

Data Type Conversions

integer logical literal date branch refname Llabel
A\ TO
FROM \ real string address pathname iocb entry
inteyer = 1 3 8
real 2 = * 8
logical 4 * = 9
string 5 6 7 = 11 12 13 14 * 18 20 27
literatl 10 =
address \ 12 = 22 * 24
cate 13 =
pathname 15 23 = 16 *
pranch * * 17 = *
ioch 19 =
refname 21 25 * * =
entry - 26 =
label =
1. integer to real = the integer value 1is converted to a real
value according to the rules of PL/I for their internal
forms.

2. real to integer - the integer part of the real wvalue is

taken., For example, 2.34 becomes 2; =-2.34 becomes =-2.
3. integer to loyical - if the integer value is nonzerocs, the
result is Trues otherwise, it is False. Real values are

converted to integer in conversion to logical.

4, togical to integer - True becomes the value 1; False, zero.
togical to real involves a conversion through integer.

ECL Page 21 10720775

10.

1.

12.

13.

14,

15.

ECL

striny to integer = if the string represents an integer 1in
the range -2%%*35 to Z2**35-~1, the result is that integer. If
the string represents a real value in that range, the integer
part of that value is the result. Otherwise, the program is
in error,

strinyg to real - if the string represents a number in the
range ~10e128 to +10el127, the result 1is that number.
Otherwise, the program is in error. Whenever a string is to
converted to an arithmetic type (as for example, when it is
the operand of an arithmetic operator) a string to integer
conversion will be performed if the numoer is an integer in
the appropriate range, otherwise, a string to real
conversion will be attempted.

string to lLogical - if the string is "1", then the result 1S
true; if the string 1is "0", then the result is false,
Otherwise the program is in error.

integer or real to string - the result is the character

string which most compactly represents the number. There
will pe no leading blanks, and a sign willt appear orly for
negative wvalues. For wvalues with magnitudge greater than
1C#+#%x14, exponential form will be used.

logyical to string - if the source value is true, the result
is "1"; otherwises, the result is "0".

literal to string - the <character string representing the
Literal is simply copied.

string to literal - the <character string representing the
string value is simply copied.s I[fsr howevers, there are more
than 32 significant characters in the string, the program 1is
in error.

address to stringe., string to address - the iocoa_ format for a
pointer is used to represent the address value as a string.
If{ a string to address conversion fails, a string to pathname
to agdress conversion will be attempted before an error is
reported.

date to strings, string to date - the <convert_date_to_binary_
format string is used to represent the string equivalent of a
date.

striny to pathname - a (possibly) relative pathname is
expanded to an absolute pathname. The entry portion of the

pathname may ve star laden,

pathname to strinyg - the character string representing the
pathname is simply copied.

Page 22 10/20/75

16-

17.

19.

20.

21

2.

23.

24.

25.

27.

ECL

pathname to branch - the pathname is copied and a check 1s
made to verify that the entry specifed by the pathname
actually exists. (Star laden entry names will result in an

error.) Qther <conversions to branch are done via pathname,
branch to pathname - the pathanme of the directory entry is
copied. Conversions from branch values are perforred with

pathname as the interinediate type.

string to iocb - the 1/0 control block for the 1/0 switch
whose name is given in the string is found.

jocb to string - the name of the I/0 switch associated with
the I0CB is the result.

string to refname - the string is copieds and a check is made
to verify that i1t is indeed a reference name on some segment.,

refname to string - the <character string representing the
refanme value 1i1s copied.,

address to pathname = the result 1s the pathname of the
segment designated by the address value.

pathname to address - the segment specified by the pathname
1s Initiated.

acdress to refname - the first nonnull refe'rence name on the
segment specified by the address value 1s used.,

refname to acdress - a pointer to the segment whose reference
name is given 1is found.

entry to string - if the entry represents a command
procedures, the result is the identifier associated with that
entry. If the entry represents an external procedure, then
the result is the name of the entry 1in the form
segnamel{soffsetnamel.

string to entry - firsts, a check is made to see if there is a
procedure, function or psuedo-variable with the name given by
the string., If so, the result is an object of the
appropriate type wWwith the address and environment of the
routine specified. Seconds a search for an external
procedure is performed accorcing to the algorithm of
find_command_», and if found becomes the entry value. It will
be a procedure or function depending on the status of the
functicn bit in the entry parameter descriptor list (if one
is present); otherwises, it will be designated a procedure.

Page 23 10720775

Promgtigno

The promotion of a scalar to a list causes a list of the
appropriate length to be constructed from copies of the value fo
the scatar,

IQE_SYNIAX _AND_SEMANTICS _QF _STAIEMENIS

lpdenendent _Statgments

THE Call STATEMENT
<basic expression> [<argument Llist>]

<argument Llist> ::=
{<basic expression>|[<reference>]}...

The Lleading <basic expression> may not be a simple
<identifier>, This restriction 1is made to permit leading
<identifier>s to identify other statements.,

This statement causes a designated procedure to be invoked
with the argument Llist supplied. To execute a <Call statement>:
Evaluate the leading <basic expression>, and convert the result
to an entry value. This value must represent a procedure as
opposed to a function or psuedo-variable. If there 1is no
<argument list>, then invoke the procedure without arguments/
otherwise, evaluate each component of the <argument Llist>, and
cerive the arguments to be passed to the called procedure in the
followiny manner:

1. A <basic expression> that evaluates to a scalar (nonlist)
value, produces a single argument, the wvalue of the
<basic expression>.

2. A <basic expression> that wevaluates to a Llist value
produces a number of arguments that is equal to the
length of the Llist (including zero). .The arguments
(ordered left to right) are the values that are the
elements of the list.

3. A <reference> produces a single argument which 1is the
object that results from evaluation of the <reference>,

The arguments have the same Lleft to right ordering as their
generating syntactic forms, Prior to being passed to the
procecure, the arguments are processed in a manner dependent on
the type of the procedure:

1. If the procedure is a command procedure, then no further

processing 1i1s reguired., The arguments are passed as 1Se
to be processed according to the parameter specification

ECL Page 24 10720775

)

of the called procedure. The procedure may assign values
to those arguments which are objects (i.e. result form
the evaluation of a <reference>).

2. 1f the procedure is an noncommand procedure with entry
parameter descriptors, then the arguments are first
evaluated and converted to the type &expected by the
prccedure., Scalars <c¢onvert to their corresponding PL/I
types. Lists may convert to either one dimensional
arrays or structures (with <contained Llists wmatching
substructures). on returne the argument values
corresponding to <reference>s, but possibly modifed by
the called procedures, are reassigned to the criginal
<reference>,

3. 1f the procedure 1s an noncommand procedure without entry
parameter descriptorse then the arguments are passed
according to their corresponding PL/I data types. Lists
are passed as uni-dimensional arrays if their elements
are convertible to a common type. (The common type is
determined as for the comparison of two different data
types.) On returns, the argument values corresponding to
<reference>s., but possibly modifed by the called
procedures, are reassigned to the original <reference>.

THE Let STATEMENT
Let <reference> = <expression>

Execution of a <iLet statement> causes the source
<expression> to be assigned to the target <reference> to alter
the value of the object that the latter represents.

To execute a <Let statement>, evaluate the source
<expression> and the target <reference>, and assign the value of
the source expression to the evaluated target. The target of an
assigynment operation may not be a constant value. Otherwise,
assignement is performed by selecting the applicable case on the
basis ot the type of the target.

Case 1. The target is a variable object: associate the
object with the value of the source expression,

Case 2. The target is an external data object: C(Convert the
source value to the type of the external object, and
copy the result into the external location.

Case 3., The target is a psuedo-variable reference: Invoke

the psuedo-variable with the arguments specified,
and supply it with the assigned value.

ECL Page 25 10/20/75

Case 4, The target is a list <cross-section: Evaluate the
object representing the list value. Insert the
element(s) of the source value into the resulting
list wvalue in place of the designated element(s)
extending or contracting the lList as nhecessary.
Assign the modified list to original object.

THE Exit STATEMENT
Exit

An <Exit statement> may not appear immediately contained in
the body of a <procedure>.

The execution of an <Exit statement> 1s dependent on the
context in which it appears:

Case 1. It appears within a <group> as an <executable unit>:
Terminate the execution of the <group>.

Case 2, It appears in the body of an <on unit> as an
<executable unit>. Return from the <on unit> to the
point at which the condition was signaled.

Case 3, It appears in a the body of a <for unit> as an
<executable unit>, Return from the <for unit> to
the <Perform statement> invoking the <for unit>,

THE Continue STATEMENT

Continue

A <Continue statement> may only appear as an <executable
unit> in a <group> headed by an <iterative do>, a <do while>, or

a <do Llist>,

To execute a <Continue statement>, terminate the execution
of the Llist of <executable unit>s in the <group>'s <statement
list>, and continue Wwith the next step in the execution of the
<group>.

THE Geocto STATEMENT
Goto <identifier>
The <identifier> must evaluate to a label value.
To execute a <Goto statement>, evaluate the <identifier>.

It must yield a label value. Move control to the <executable
unit> designated by the label value bound to the <identifier>.

ECL Page 26 10720775

This operation involves a local goto if the statement is in the
current block, If the statement 1s in some other blocks this
involves a nonlocal goto which causes all intervening active
blocks to be deactivated and the <condition cleanup to be
signalled in each such block before deactivation.

THE Interpret Statement
Interpret

The <Interpret statement> allows the <construction of a
command interpreter using the mechanisms of the command language
interpreter for input and translation.

To execute an <lnterpret statement>, read and translate one
<statement unit> (as from command level), and execute in it as 1f
it were contained in the <block> containing the <interpret
statement> itsel f.

THE Perform STATEMENT
Perform

The <Perform statement> is used to invoke a <for unit Gody>
comprising the second part of a compound command.,

To execute a <Perform statement> simply invoke the <for unit
body> <containead in the <for unit> that invoked the <procdure>
containing the statement. If no such <for wunit> existss, thne
execution of the <Perform statement> will have no effect.

THE Signal STATEMENT
Signal <condition> [<argument Llist>]

The <KSignal statement> is used to invoke the most recent
handler for a specified condition, It may <cause a handler
established by the standard Multics condition mechanism to be
invoked. To0O execute a <Signal statement>, perform the following
gcrocedure: Evaluate the <condition>, and convert its value to a
string value., This yields the name of the <condition. 2gegin a
search for a handler for the condition in the current blccks and
continues, on failure, with its callers, Scan the active handler
List of the block beinyg searched first for a handler for the
condition specifieds, and then for a handler for the condition
"any_other". If the search yields a handler, then process the
<argument list> as for a procedure call, and invoke the handler.
If no handler is founds the program is in error.,

ECL Page 27 10720775

Note also that as in a <procedure>, while executing in an
<on unit>, the values of the arguments passed by reference may be
changed to communicate information back to the calling procedure
{the procedure signalling the condition).

THE Revert STATEMENT
Revert <condition>

To execute a <Revert statement>, evaluate the <condition>
expression and convert the result to a string value giving the
name of the condition to revert. Search the active handler list
in the current block for a handler for the condition so named.
It one is found, remove it from the list.

THE Return STATEMENT
Return [<expression>]

A <Return statement> can only appear immediately contained
within body of a <procedure> or a <data unit>. The optional
return <expression> may only appear in the body of a function or
psuedo-variable, the return <expression> must appear when in the
<data unit>,

In the context of a <procedure> body, execution of this
statement causes the subroutine 1in which it is contained to
return to the point at which it was invoked. If the optional
<expression> 1s presentes It is returned as the value of the
function or psuedo-variable, (1f a psuedo-variable was invoked
to receive a value instead of return a value, then the program is
in error if the <expression> is given.)

In the context of a <data unit>, execution of this statement
causes the <expression> to be evaluated, converted to a character
strings, and returned as the next valtue of the <data unit>.

THE Resignal STATEMENT
Resignal- [<argument Llist>]

A <Resignal statement> may only appear immediately contained
in the body of an <on unit>.

Execution of this statement causes the current <on unit> to
be exited., The search for an active handler for the <condition.,
as performed by a <signal statement>, is continued, and the next
most recent handler invoked. If an <argument List> is specified.
it 1is processed as for a procedure call, and the next hanaler is
invokecd with that group of arguments. If no <argument Llist> 1is

ECL Page 28 10420775

\

specifiede the same (but possibly altered) arygument list as the
current handler was invoked with is used.

THE NULL STATEMENT

<null statement> ::3= no tokens

txecution of a <null statement> c¢causes no action to be
performed and has no effect on the program, Control passes
normatlly to the next <executable unit>. The purpose of the <null
statement> is to provide, for example, & convenient way to
specify a <then part> that performs no action.

Depengdent_Statements

THE If STATEMENT
<If statement> ::= If <basic expression>

The <If statement> controls the internal execution of an <if
group>, That iss, it selects for execution either the <then part>
or optional <else part>.

To execute an <If group>, evaluate the <pasic expression>
appearing in the <if statement>, and <convert its value to a
logical value, If the result is trues, execute the <executable
unit> contained in the <then part>; otherwises, if a4 <else part>
is givens, execute the <executable unit> contained in the <else
part>.

THE Do STATEMENT

<do statement> ::= <simple do>lI<iterative do>l|
<do while>l<do case>i<do list>

<simple do> ::= Do
<iterative do> ::=
Do <do index> = <initial> Repeat <next>
[<while precicate>]
<do index> ::= <reference>
<initial> ::= <expression>
<next> ::= <basic expression>
<while predicate> ::= While <basic expression>

<do while> ::= Do <while predicate>

<do case> :1:= Do (Case <case selector>

ECL Page 29 10720775

<case selector> ::= <basic expression>

<do Llist> ::= Do <list spec>L,<list spec>l...
{<while predicate>]

<list spec> ::= <do index> From <list value>
<list value> <basic expression>

The <do statement> denotes the beginning of a <group> and
controls the execution of the <executable unit>s contained in the
<group>'s <statement Llist>.

A <do statement> is never itself actually executed, Rather.,
when the control encounters the <do group> as an <executable
unit>, the applicable <case is selected on the basis of the <do
statement> and the indicated operations performed.

Case 1., The <do statement> i1s a <simple do>:

Execute the lList of <executable wunit>s onces then
terminate the execution of the <group>.

Case 2. The <do statement> is an <iterative do>:

a. Evaluate the <reference> in the <do index>; let
the result be Re Evaluate the <initial>
expressions, and let its result be V.

b. Assign V to R.

c. If a3 <while predicate> 1is given, evaluate the
<basic expression>, and convert the result to a
logical value. If this wvalue i1s false, the
execution of the <group> is complete,

d. Execute the Llist of <executable unit>s, and when
finished, continue to step €.

e. Evaluate the <next> expression, and let the
. result be V., Continue with step ba

Case 3, The <do statement> is a <do while>:
a. Evaluate the <basic expression> given in the
<while predicate>, and convert the result to a
logical value. l1f the value is falses then the

execution of the <group> is complete,

b. Execute the List of <executable wunit>s, and
continue with step a.

Case 4. The <do statement> is a <do case>:

ECL Paye 30 10720775

a. Fvaluate the <case selector> expressions and
convert the result to an integer value. Let I be
this value. The program is inerror if I <= 0 or
if I is greater than the number of <executable
unit>s in the <statement list>,

be Execute the Ith <executable unit> in the list.
Case S. The <do statement> 1s a <do list>:

a. Evaluate each <reference> specified as a <do

index>/ let the results be Rls caes RD where n
is the number of <list spec>s. Evaluate each
<list wvalue>. If the result is not a lList.,

promote the scalar value to a one element list.
Let the list values be Lls ..., LD Let k be 17
let L be the length of L]. The program 1is in
error if L does not also equal the length of atl
the other Li.

L. Assian to each Ri the kth element of Li.

c. If a <while predicate> 1is given, evaluate the
<basic expression>, and convert the result to s
logical value. If the value is falsesr, then
execution of the yroup is complete.

d. Execute the list of <executable unit>s and when
finisheds continue with step e,

e. Let kK be the value of kx + 1. If kK > L1, then
execution of the group is complete. Otherwiseos
continue with step b.

THE For STATEMENT
<for statement> ::= For <Call compouna>

The <For statement> is used to construct compound commands.
It denotes the beginning of a group of <statement>s that are
subject to the control of the command specified 1in the <Ffor
statement> itsel f.

A <KFor statement> i1s never dctually executed. Rather when
control reaches the <for unit>, the <Call statement> specified 1is
executed, Execution of this command may cause the <for unit
body> to be invoked by execution of a <Perform statement>.

After the <for unit> has been invokeds control is returned
to the point at which it was invokeds, that is, the <Perform
statement>, upon completion of all <executable unit>s in the body
of the <for unit> or upon execution of an <Exit statement>. The

ECL Page 31 10720775

<for unit> may be invoked zero or more times by the specified
command,

The <for wunit> may be viewed as a single entry procedure
with no aryguments that is passed to the <command specified,
However, its environment is normally the same as an internal

procecure defined within the command. The <Environment
statement> mays, of course, change this,

THE Data STATEMENT

<Data statement> ::= Data <reference>

The <Data statement> defines a block of statements that
generate lines of input to be read.

The <Data statement> 1is not itself directly executable.
Rather, when control encounters the <data unit> as an
<executable unit>, an I10CB value for a switch <controlling this
input stream is assigned to the <reference>. When subsequent
attempts d4re made to read from this switchs, the <data wunit> is
invoked to return a value that is to be convertec into a
character string and "read" as input. For the first such
invocation, control begins with the first <executable unit> in
the <gata unit>, and ends when a <Return statement> is executeds
for all subsequent invocationss control resumes at the point
following tte <Return statement> previously executed, and again
terminates when the next <Return statement> i1s executed.

THE On STATEMENT
On <condition> [<Kparameter list>]

The <0n statement> denotes the beginning of an <on unit>, a
handler for an abnormal condition, which may be viewed as a
single entry procedure that is 1invoked when the condition 1is
signalled. The <0On statement> further defines the parameters
with which the handler is to be invoked.

The <0n statement> is not itself directly executable,
Rather, when control encounters the entire <on unit> as an
<executable wunit>, the <on unit> is establised as a handler for
the specified condition by performing the following procedure:
Evaluate the <condition> expression and convert the result to a

string value. This is the name cf the condition. Add the <on
unit> to the active handler List in the current blcck as a
handler for the conditicon replacing any handlers for the

condition previously established.

The <condition may be siygnalleds, and the <on unit> invoked,
by the execution of a <Signal statement> (see above) or by the

ECL Page 3¢ 10720775

standard Multics signalling mechanism.

The parameters are specified for an <on unit> in the same
manner as for a <procedure>, Either a <parameter List>, a
<parameter block>, or the Argument builtin may be used.

After an <on unit> as been invgked, control is returned to
the point at which the condition was signalled upon completion of
the execution of all <executaole unit>s in the body of the <on
unit> or upon execution of an <Exit statement>,

THE PROCEDURE STATEMENT

<procedure statement> ::=
<type descriptor><identifier>[<parameter list>]

<type descriptor> ::= ProcedurelFunctionlvariable

The <procedure statement> denotes the beginning of a
<procedure>, a subroutine blocks, and desiynates the type of the
subroutine by the <type descriptor>. HMoreover, it detfines an
entrypoint to the <procedure> and may include a description of
the <parameter list>.

A <procedure statement> is not itself directly executable.
The appearance of a <procedure statement> in a <block> causes the
<identifier> specified to be defined and bound to an entry value
desginating the corresponding Llocation when the <blcck> is
entered, The appearance of a <procedure statement> in 4
<procedure> that is a <program unit> causes a corresponding
external entry to be genrated for the the object segment into
which it is compiled. Parameter Specification

Parameter Specification

The parameters to a procedure, tunction, or psuedo-variable
are specified in one of two ways: by providing a <parameter
list> in the procedure header, or by giving a <garameter block>
gefining the syntax and semantics of the arguments expected by
the procedure.

If a <parameter block> appears within the <boay> of a4
procedure, it is taken to apply to all entries to that procedure
unless there 1s a <parameter block> which appears immediately
following each entrys, in which case each such block applies to
its <corresponding entry. If there are no <parameter block>s
within a procedure, then each entry is <considered to have an
(implied) <parameter tist>. All other cases are in error.

There 1is one tinal mechanism for referencing the arguments
to a procecure: the builtin Llist Arguments, which corresponds to

ECL Page 33 10/20/75

the argument List with which the procedure was invoked.

Parameter Llists

A parameter list specifies a List .of <reference>s which will
assume the identity of the values passed to the entry that the
parameter list applies to:

<parameter list> ;:= {<value parm>i<reference parm>)
<value parm> ::= <identifier>
<reference parm> ::= [<identifier>]

when the entry to which the <parameter list> applies is invokedes

one of two operations will be performed for each
parameter-argument patr:

Case 1, The parameter is a <value parm>: The <corresponding

argument must be a simple value. Bind the
<identifier> to the value given,

Case 2. The parameter is a <reference parm>: The argument

must be some sort of object, Bind the <identifier>
to the object given,

It an entry is invoked with less arguments than there are
parameters specified for the entry, then the program i1s in error.
If an entry 1is invoked with more arguments than there are
parameters specifieds then it will be expected that the remaining
arguments are to be referenced by the Argument builtin
psuedo-variables, and no error will be reported.

THE Entry STATEMENT
Entry <identifier> [<parameter Llist>]

The <Entry statement> defines an alterante entrypoint for a
<procedure>, The type of entry value that it designates is given
by the <type descriptor> in the <procedure statement> beginning
the <procedure>, It may also describe the parameters to the
entry.

An <entry statement> is never directly executed itself, The
appearance of an <Entry statement> in a <procedure> causes an
additional <identifier> to be defined as entries to the
subroutine in the same manner as the <identifier> appearing the
<procedure statement>,

ECL Page 34 10/20/75

THE End STATEMENT
End

The purpose of the <End statement> is to syntactically close
the constructs: <procedure>, <on unit>, <do group>, <parameter
block>, and <compound form>, It 1s never actually executed.

Declarative_Statements
THE SCOPE STATEMENT
<scope><symbol spec>L,<symbol spec>l...

<scope> ::= LocallTemplGloballParentlCallerl

BuiltinlExternallPrevious
<symbol spec> ::= <identifier>[<initialization>]
<initialization> ::= = <expression>

An <initialization> option may not appear if the <sccpe> 1is
other than Local, Temps or Global.

The <scope statement> serves two purposes: to create
definitions for local and glooal identifiers bound to wvariable
objects, and to override the effect of an <Environment statement>
for evaluating a single name. When making definitions, only a
<scope statement> that is a <statement wunit> may override
previous declarations of the same <identifier> made 1in the
<block>.

To execute a <scope statement>, select the applicable case
and perform the indicated operations.

Case 1, The <scope> is "Local": Compute the initial value
(as described below), let the result be V. Append a
definition for the <identifier> to the definition

List for the current block (subject to he
restrictions concerning overriding a previous
definition). Bind the <identifier> to a new

variable objects, and assign V to the object.

Case 2. The <scope> is "Temp": Compute the ‘initial value.,
and Llet the result be V. Append a definition for
the <identifier> to the definition Llist for the
current block (subject to he restrictions concerning
overriding a previous definition) with the notation
that the definition is transparent (not to be found
from other than the current block), Bind the
<identifier> to a new variable object, and assign V
to the object.

ECL Page 35 1072G/75

Case 3. The <Kscope> is "Global": Search the global
definition list for a declaration for the
<identifier>. If presents, let the variable object
to which it is bound be R. Otherwises create a
global definition for the <identifier>: Compute the

initial value, and let the result be V. Append a
definition to the global definition list. Bind this
global instance of the <identifier> to a new
variable objects also designated R. Assign V to R,
In either case. add a definition for the
<identifier> to the definition list for the <current
block (subject to the restrictions <concering

overriding a previous definition), and bind it toc R,

Case 4, The <scope> is any other valid <scope>: Resclve the

<identifier> by searching the definition list
designated by the <scope> interpreted as a
<resclution rule>; let the result be R. If no

definition exists, then the program is in error,
Otherwise, add a definition for the <identifier> to
the definition Llist of the current block, and bind
the <identifier> to R.

The 1nitial value is determined in the following fashion:

If an <inijtialization> is given, evaluate the contained
<expression>; the result is the initial value, Otherwise, the
initial value is undefined. Note that the initial wvalue 1is

calculated before the new definition is made. Therefore:

Local A = A

creates a local copy of the value given by the <identifier> "A",

THE Synonym STATEMENT

A synonyin for an external object may be defined with the
synonym statement:

Synonym <identifier> <external symbol> <type>

<external symbol> ::= <basic expression>
<type> ::= <basic expression>

To execute a <Synonym statement>., evaluate the <external
symol> expressions,. and convert the result to a string value to
give the name of the external symbol to be represented, Evaluate
the <itype> expression, If the value is Undefined, the program is
in error. If the value is of type entry, then the external
symbol s taken to designate a procedure entrypoint, and a
definition for the <identifier> is created, and the <identifier>
is bcund to the corresponding entry value. If the value is of
some other type, an external data object of that type is <created

ECL Page 36 10/20/75

ﬂ

to represent the external locations and a definition for the
jdentifier bincreateds, binding the <identifier> to the object sO
created.

THE Environment STATEMENT

The <Environment statement> may be used to control which
gefinition lists are searched to resolve an reference to an
<identifier>,

Environment [<resolution rule> [,[<resolution rule>]...]

= {Parent | Caller)} |

<resolution rule> ::
Previous | Global | Builtin | External

Only one <Environment statement> may agpear in the body of a
<procedure> or <on unit>,

Execution of this statement establishes, in the <block> in
which it is containeds a List of <resolution rule>s specifying
what <block>s? definition Llists are to be searched, in left to
right order, when an identifier definition is to resolved. (See
the discussion of the resolution of <identifier> definiticns.)

Default Environment Statements

1t no <Envircnment statement> appears in a <procedure> that
is a <program unit>, then by default, the following is supplied:

Environment Caller, Global, Builtin, External

Simitarly, any other <procedure>, or a <data unit> or <on unit>,
that does not contain an <Environment statement> has the default:

Environment Parent

A <for unit> is intended to be executed within the environment of
its caller, and therefore has the default:

Environment Caller
The special "block™”™ that defines the execution environment for
<statement unit>s, initially has rules corresponding to the
following statement:

Environment Global, Builtin, External

ECL Page 37 10720775

Qescriptive_Statements
PARAMETER HBLOCKS

This facility allows the wuser to define the syntax and
semantics of a new command by providing a means of describing the
forum and meaning of the arguments expected by a command
procedure, The same facility is available for functions.,
psuedo~variables, and on units.

Syntax of the Paramter Block

<parameter block> :
<Parameter statement> [<parm spec>...] <End statement>

s =
.

<Parameter statement> ::
Parameters <identifier> ([, <identifier>l...

<parm spec> ::
<basic form> | <compound form> | <construction>

<basic form> ::= .

[<form prefix>]{<keyword spec>|<type spec>l<value spec>)

[<success>][<default>l<error>]
<keyword spec> ::= Keyword <literal> [Or <literal>]...
<type spec> ::= <type name> <identifier>
<value spec> ::= Value <identifier>

<success> ::= <executable unit>

<default> ::= Default <executable unit>
<error> ::= Error <executable unit>
<compound form> ::=
<compound header>[<parmspec>...]J<End statement>

[<success>] [<Kdefault>l<error>]

<compound header> ::= [<form prefix>]

“N

<Group statement>|{<Select statement>|I<Multiple statement>

= Group [<title string>l
:= Select [<title string>]
= Multiple [<title string>]

<Group statement> ::

<Select statement> :

<FMultiple statement> ::
<title string> ::= <string>

<construction> ::= <Form statement>[(<from spec>]

ECL Page 38 16720775

<form statement> ::= Form {ListlString) <identifier>

<from spec> ::= From <parm spec>

Measning of Semantic Forms

The <Parameter statement> defines the <identifier>s which
are to be the parameters to the <contianing procedure,. Their
values are determined by the parameter specifications given 1in
the body of the <parameter block> as gescribed below.

The arguments supplied to an entry for which a <parameter
tlock> has been specified must be simple values and are are
scanned right to left (first to last) matching each to a form
specifed 1in the parameter specification Llist, I1f a match cannot
be found, or if the are too many or too few arguments an error 1is
reported as described below.

The three basic forms are used to match a single argument.
An argument that is a literal constant can only be used to match
a Keyword form., This permits their use as unambigous delimiters
of argument groups.

The Keyword form gives a list of one or more keyuwords
(Literal constants) of which one 1is expected ¢to match the
argument occuring in the implied location. The argument itself
must also be a literal constant. For example:

Keyword -brief Or -bf

reans that either the control argument -orief or its abbreviation
must appear.

A type form requires the presence of an argument of a type
convertible to the specified data type. The converted value is
assigned to the <reference> specifed in the type specification.
A <type name> inay be one of the data types supported in the
language: Integer, Reals, Logicals String, Literal, Acdress.,
tntry, Label, Pathname»,» Branchs, or Jocb.

The Value: - form merely requires the presence of an argjument
in a given location. The value of the argument is assigned to
the <reference>,-

The compound forms allow the specification of positional
orager for a List of formss, or of selection among one c¢r more
distinguishable forms which may appear in an unordered fashion.

The Group form defines an ordered list of one or more forms

that must match arguments in the precise order given in the
semantic block. The first form in a group may not be optional.

ECL Page 39 10720775

The Select form demands the appearance of one member of a ‘\
list of forms. There must be an unambiguous way to distinguish
between each of the forms in the Llist,

The wMultiple form is similar, but requires the presence of
one or more members of the list of forms. They may appear in any
order, but one member of the List is permitted to be used only
once. There must Dbes, in addition to the restriction mentioned
above, a non-ambiguous means of distinguishing between the
members of the list and any following forms.

Two prefixes are allowed on either basic or compound forms.
An Optional prefix specifies that the given form need not appear.
That is, if the corresponding argument does not match the form,
then that form may be skipped, and processing cont inued by
matching the same argument with the next form in the Llist. It
must be possible to distingusih between the optional form and any
following <(optional) forms. A Repeat prefix specifies that the
form given may appear any number of times and that the body of
the procedure 1is to be executed once for each time the form
appearses and after all variable assignment for each match have
taken place. There may be no nested Repeat specifications.

One final mechanism is provided to allow a list or string to
be built from several arguments. For contiguous arguments, the
syntax is:

Form {ListlString) <identifier>

which forms a list or strinyg out of all arguments up to but not

jncluging the first which matches the next specified form (or the
end of the argument Llist). This next form, which acts as a
delimited fcr the Llist or string, must be a keyword. Once the
string or List has been built, it is assigned to the <iderntifier>
interpreted as a <reference>. The value may also be built from
the occurences of certain noncontiguous arguments, The syntax
for this variant 1is:

Form {ListlString} <identifier>
From <parm spec>

Any explicit assignment to the <identifier> within the <parm
spec> will instead add a new element to the Llist or string. That
iss an assignement of the form:
Let <identifier> = <expression>
will become for the list form of a <construction>
Let <identifier> = <identifier> ! <expression>
(For strings, each new element 1is converted to a string and -~

concatenated to the end of the existing string along with one

ECL Page 40 10/20/75

intervening blank.)

Two basic forms are distinguishable if they are both keyword
specifications or if one is a keyword and the other is a type or
reference specification., Two groups are distinguishable if their
first forms are distinguishable.

Semantic Meaning

There are two means available to provide semantic
information. Firsts each compound or basic form may be
immediately followed by a <success> specification, an <executable
unit>, to be executed if the form is present. For example:

Setlect
Keyword -workiny_dir Or -wd
Let Dir = WorkingDir
Pathname Dir
End

Seconds, each compound or basic form may be followed by a
<default> specification, an <executable unit>, to be executed if
tne form was allowed to not appear (i.e. optional or appearing in
a Select or Multiple form) and did not indeed appear. For
example:

Optional Select
Keyword -brief Or -bf
Let BriefSw = True
Keyword =-long 0r -Lly
Let BriefSw False

H]

End
Default Let BriefSw = False

Error Processing

If the arguments supplied to a command do not correspond to
what is required for the <commands, an error message will be
generated automatically. The message s selected trom the
following:

1. Too many arguments. After processing the last expected
arguments, there exist as as yet unscanned ones,

2. Bad syntax in command. A required Keyword 1is missing.
(A check is made to see if the next form is what it
should (could) be.)

3. Expected argument missing. A required argument, as in a

type or reference form, is not present. (A checks as
above, is maded)

ECL Page 41 10/720/75

4. Expected argument group missing. An entire group or
construction is missing. The pharse "argument group"”™ is
replaced by a <title string> if one is specified for the
group.

5. Argument is not convertible to <type>: <arg>. A required
argument is not of the designated type. (A <check 1is
perform to determine that an argument is present in that
locations, and not just missing.)

6. Extraneous argument present, An extra argument is
presents, tiat is, the next argument is what the curent
one should be.

7. Invalid keyword, <keyword> expected. Issued when an
invalid keyword appears in the place of a8 required or
optional kevword,

8. Invalid syntax in argument group. A required group or
optional group whose first members have been matched
contains unmatchable forms. The pharse "argument group"
may again be replaced by the <title string> for the
gqroup.

9. Invalid option. There are argument{(s) present that do
not match any form in a Seltect or Multiple specification,

10. Invalid syntax in command. Issued when all else has
failed.

11. Invalid syntax in command, arguments <argl>...<argn> not
recognized. Issued in the above case, but when Llater
forms can be matched.

The user can specify the action to be taken if one of the
errors, 2+, 3, 4, Oor 5, occur by using an <error> statement, Ffor
basic formss, the statement supplied is executed if the form was
required to appear but did not. Note that an <error> neec not be
applied to forms within a Select or Multiple forms and also that
<default> and <error> statements are mutually exclusive.

Order of Processing

A <parameter Dblock> is interpreted Dby performing the
following operations in the order indicated:

1. The arguments passed to the <procedure> or <on unit> are
scanned and matched according to the rules given for each
form. If an error is detected, then the <error> action
or default error action 1is taken as applicable, and
processing aborted.

ECL Page 42 10/20/75

«

2. ALl implied assiynments (as for the type and value form)
are performed in unspecified order.

3. The <default> actions for optional forms that «cid not
appear are executed in unspecified order,

Upon completion, the rest of the body of the <block?> is executed.
(That iss, step 6 of block activation is performed.) If there are
additional groups of arguments to be processed for a repeat form,
steps 2 ana 3 are repeated for only those forms that appeared in
the repeated <parm spec>s. The body of the <block> is also
rexecuted.

BUILIIN EUNCTIOND . IRENTIEIERS._ AND_ESUEDRQ-VARIABLESR

A number of computational and special purpose functions are
provided by the language. These functions may be invoked by name
in the samne manner that a wuser defined procedure would bes
groviced that the wuser has not defined one with the same name.,
and if Builtin i1s specified as part of the <current environment,

The description of these functions will include their name,
parameters, and the type of their result. Most of the functions
require that their parameters be of a specific type. If an
argument is not of the correct typer, it wWwill be <converted or
promoted as appropriate. The type expected for a parameter will
be designated py the letter denoting the parameter:

arithmetic (real or integer)
branch

date

ioch

List

pathname
reference

string

logical

value (anything)
address

X <+ DU ~a0Q OO

The result is indicated by "->" (which may be read as evaluates
to) followed by a type letter. Psuedo-variables are indicated by
Hg-> instead of e in all cases, the type of the assigned
value 1s the same as the result,

Acithmetigc Builtios

These perform the same function as their counterparts in
PL/I. The operands must be (convertible to) arithmetic values.
The result is either an integer or real value depending on the
precision needed to express the result. The functions provided

ECL Page 43 10720775

are:

Iype_Copnyersign_Builtins

These may be used as both functions and psuedo-variables.
Wwhen useda as a function with one argument, they convert the value
of the one argument to the type implied.s When used as a function
of no arygumentss, they return a value of the specified type for
use i1n type comparisions. When used as psuedo=-variables, they
take the wvalue assiyned to them, convert it. and assign it to
their one argyument. There is one such builtin for each data
type. Conversions are performed in the manner described in he
section on conversions.

glring_Suiltins

The first group of string builtins perform the same function
as their PL/I counterparts. Provided are:

1. Index sl sg =-> a

2. Substr s1 al (a2 <-=> s
3. Reverse sl => s

4. Verify sl sg2 => a

5. Search sl sg => a

6. Length s1 -> a

The second yroup of string builtin perform certain special
functions. Specifically:

e Suffix r]l sl <-> s

Appends a suffix given by sl to (String rl1) if the suffix
is not already present, For example:

ECL ' Page 44 10720775

V)

(Suffi)("x" ".pl‘l") _> '.X.pl1"
(Suffix "xopl1” ",plL1") -> "x,pl1"

This may also be used as a psuedo-variable to agsign a
string, guarenteed to contain the specified suffix, to
rl: :

Let Suffix LA ".plL1" = "x"

sets A to the value "x.pl1". This is particularly useful
for Pathname parameter specifications.

2. Strip rl sl <-> s

This removes a suffix given by sl from (String rl) if the
suffix already appears. For example:

(Str.ip 'lx-pl"ll ll.pt1l') _> llxll
(Strip "x" ".pL“") - "x"

This may also be used as a psuedo-variable to assign a
strings, guarenteed not to contain a suffixs, to rl:

Let Strip LAJ ".pl1" = "x.pl1"
sets A to "x".
3. Format sl vl ... vp -> s
This returns a string which is the result of editing the
values of rl1 through rg under control of the ioa_ style

format sl., For example, if A = 1.23, then:

(Format "A = “d" A) -> "A = 1,23"

List_builgiins
The list puiltins may be divided into two yroups. The first
are functions which perform the same sort of operations on Llist
elements as the string builtin functions do for characterers.
1. Index L1 2 =-> a
Example: (Index ({1 2 4 5} {{2 4}})y -> 2
2. Reverse 1 ~->
Example: (Reverse ({1 2 33})) =-> {3 2 1}

5. Verify 11 L2 =-> a

ECL Page 45 10/20/75

Example:s (Verify {{"5" "4" "6"2} ({5 72>}y -~-> 2

4. Search L1 L2 =-> a

Example: (Search {{yes nol}} yes) =-> 1
5. Length 1 -> a

Example: (Length {{1 True a B}}) => &
The second group performs certain special functions:
1. Expand 1] -> L

This performs "iteration” processing on its argument.
The result is a list formed by <concatenating together
corresponding elements of the first level sublists and
scalars. ALl first level sublist must be of the same
length., For example:

(Expand ({1 {2 3) 4 {5 632} =->
€1 ¢ 4 5 {1 3 4 63}

Z. Eval s1 =-> L

This returns a list which is the result of tokenizing and
evaluating the contained expressions:

(Eval "a (2 + 2) -c¢'") => {("a" 4 -c)

Input{Qutput Builtins

ECL

1« Line [31] <-> s
This may be used as function or psuedo-variable to read
or write one line to the 1/0 switch specified by 1]
(defaulting to user_input or user_output), Examples:
(Line) -> one line of input including <NL>
Let Line error_output = "help"”
writes "help" || <NL> on the switch error_output.
2. lnput (11 =-> ss Output [il1] <- s
These perform the same function as Line except that they
read (write) one token or expression from (to) the

designated switch.

5. duery sls, Response s1 => s

Page 46 10/20/75

These ask the question given by sl and return the string
containing the answer given by the user, Query restricts
the answer to being either yes or no.

Userlnputs, UserOQutput., ErrorQutput -> i

These represent the 10¢8's of the corresponcing I1/0
switches,

—— e s W D e -

Argument -> L

This identifier 1s bound to the argument to the argument
list with which a procedure., function, or
psuedo-variable was invoked. It may be used as a Llist
value would.

Narguments => a

This identifier 1s bound to the value of (Length
Argument).

Target =-> L

This returns a logical value indicating whether or not a
psuedo-variable was invoked as the target of an
assignement. 1f invoked from cther than a
psuedo-variablesr, i1t returns the value Undefined,

AssignedvValue =-> v

This identifier is bound to the wvalue that was assigned
to a psuedo~variable. It is an error to reference this
function in a context where Target yields a valie other
than True.

wiscegllaneous tuiltins

1.

ECL

e -

Trues False => t

These are bound to the logical values true and false.
Null => «x

This is bound to the null address value.

Undefined

This returns an undefined value -- that is, the value of

the object to which a newly defined identifier is bound.

Paye 47 10720775

4.

Converts rl r¢ -> t

This returns & logical value indicating whether or not rl
can be converted to the type of r2. Example:

(Converts 2 Address) -> False

Seament_Name_ Byiltins

ECL

1.

2.

3.

4.

5.

O.

7.

Directory pl =-> »p

This returns the pathname designating the parent of the
entry designated by pl. The parent of the root is
itself.

EntryName pl => s

This returns the <character string giving the entry
portion of the pathname, pl. The entry name of the root

1s .
HomeDir <=> o)

This psuedo-~variable represents the pathname of the
user's home directory -- or default working directory.

workingDir <=> p

This represents the gpathname giving the user's current
working directory.

Unique -> s

This returns a character string containing a unique
character string.

Segments [plls, Directories [pll,
tinks [pll, MSFs £pli. Files {pll1 -> L

These return a list of branch wvalues identifying
directory entries whose names match the (star Laden)
pathname given by pl and of the approriate type. (Files
include seyments and multisegment files.) The default
value for pl is workingDir || ">%xx"

Match sl sZ2, MatchPath sl pl -> t
These return a4 Llogical value indicating whether or not

the string s2 (EntryName pl) matches a given starname,
sl. For example:

Page 48 10720775

e

(Match *_,*_,archive c.archive) -> fFalse
(MatchPath *.*_archive <tools.s.archive) -> True

Equal sl s2 -> s, tqualPath pl s2 =-> »p

These implement the equal convention. The first
parameter represents the source string, the seconds the
equal pattern with which to edit the first. The result
of Equal 1is the string giving the edited name. EcualPath
uses the entry portion of the pathname, but the result
has the directory portion restored. for example:

(Equal prog.s.archive =_,archive) -> ‘"prog.archive”
(EqualPath >udd>p>pers>x.pll a.=) ->
">udd>p>pers>a.pl1”

Branch_guiltinsg

ECL

These functions return information about the attributes of a
specified «cirectory entry. For those attributes for which it is
sensible for the user to alter the valuess, they may also be wused
as psuedo-variables.

1.
2.

3.

Author ol -> s

BCAuthor bl -=> s

Dtm ble Dtu bl., Dtd ble Dtem bl -> d

These return the date/time modifieds, date/time usede
date/tinme dumpedes and date/time entry modified
respectivelye.

Type bl => s

This returns either "segment”, "directory”, "“link", or
"multisegment file",

Currentiength bl =-> a

RecordsiUsed bl => a

LinkTarget bl -> p

This returns the'pathname that a link points to.

Nullbtink bl -> t

This returns a logical value indicating whether a Llink
points to an existing brancha.

Page 49 10720775

9. HitCount bl <=> a
TUa CopySwitch bl <=> t
117. SafetySwitch bl <=> t
12. Quota bl <-> a
13. MaxlLength Dbl <=> a
4. ACL b1, IACL bl <-> 1
Where the list takes on the form:
{ {<mode> <aclname>}... 2

15, Wames bl <-> L

where L is a list of string values giving the names on

the entry.
6. RingBrackets bl <-> L

dhere L is a list of length three (for segments)

or

lergth two (for directories) containing integer values

giving the ring brackets on the entry.

If the entry specified by bls does not have an attribute of
particular type specitfieds, then the program is in error.

EXAMPLES
The following 1s an example of a very simple command.

pcerforms the function of the current add_name command.

Procecdure agdd_name
Entry 4n

Temp Code

Parameter BranchName, NewName
Pathname Branchname
Repeat String NewName

End

hcs_$chname_file (Directory BranchName)

the

It

(EntryName BranchiName) "'" NewName [Codel

I1f Code "= 0 Then Do
com_err_ Code "add_name" NewName
Return

End

ECL Page 50 10/20/75

end

The following subroutine is intended to 1invoked the first
thing 1in & processea That 15 it 1is equivalent to a current
start _uUpe€Ca

Procecdure StartUp
Global LastlLogon

Parameter Interactives, NewProc
Optional Keyword =login
Let NewProc = False
Default Let NewProc = True
Optional Keyword -absentee
tet Interactive = Ffalse
Default Let Interactive = True
End

If Interactive Then Do
accept_messages -print -prief
mail -brief
If ° NewPrac Then Do
memo -brief
Do I From Segments >doc>info>*.info
If Lastbogon < Dtm I

Then Line = Entry I || "modified."
End
End
LastLogon = Clock
End
End

1t peforms more or Lless standard functions on Llogin and
New_procs. In addition, it examines all info segments to see if

any have been modified since the last ltogin.

The following two suproutines show the use of the <condition
mechanism in ECL with the command guery mechanism. First, is an
example of how the built in function query could be coded.

Function Query Question

Temp Answer

Siynal command_query_ (String Question) True [Answer]
Return '

End

ECL Pagye 51 10720775

Second, 1s an example of how to code the answer command.
Procedure answer

Parameter BriefSws Answer, Command
Value Answer \
Optional Keyword -bf Or =brief

Let BriefSw = True
Default Let BriefSw = False
Form List Command
End

Un command_query_ Question YesNoSw [Ans]
If ° BriefSw
Then Line = Question Il " " {1l Ans
If YesNoSw
Then Do While Verify Ans {yes no} > U
Output = "Please answer L..."
Ans = Input
End
End

(Command 1) (Command 2 (Length Command - 1))

End

The following subroutine performs essentially the same
function as the current Multics command processor.

Procedure command_processor_ CommandlLine

Environment External
Temp CommandlLine
Builtin Expands Length, Eval

Do Command From (Expand (Eval CommandLine))
(Command 1) (Command 2 (Length Command - 1))
End

End

The command Lline to pe interpreted is passed as an argument to
the procedure. The function, Eval, is invoked to parse the Lline
into basic expression and evaluate them (by reference).
Iteration processing is then performed by Expand. Each resulting
command 1s then invoked, one at a time, with the C(Call statement
embedoed in a Llist iteration loop. The environment statement
insures that only external commands (not builtins or procedures
gefined in a calling block) wiltl be found by the Call. Note that
specifying just "Environment"” would, in a like manner, restrict
the user to calling procedures defined in the same subroutine.
In this ways, a restricted subsystem or language interpreter could

ECL Page 52 10720775

be constructed.

The following is an example of the use of block structure to
control the envirconment. It is the command walk_subtree written
in a manner to exploit a local <copy of the wvariable working
directory.

Procedure walk_subtree
Entry ws

Parameter Dir, Command, Brief
Select
Keyword -wd Or -working_dir
Let Dir = Workingbdir
Pathname Dir
End
Optional Keyword -brief Or -bf
Let Brief = True
Default Let Brief = False
Form List Command
End

Walk Dir
Return

Procedure Walk wdir
Local WorkingDir = Pathanme Wdir

If ° Brief Then Line = WorkingDir
(Command 1) (Command 2 (Length (Command - 1))

Do I From Directories

Walk 1
End

End
End

When the command gets executed within the the internal procedures
walke the local variable WorkingDir has been set. If the command
procedure called makes use of the variable explicitly (and found
through the Catler, not Builtin, rule) then the correct things
will happen. Correct functioning is also dependent on the
builtin Directories and the conversion process also being aware
of the new copy of the variable. This approach is particularly
cesirable as the change is Llocal- with the environment for
command level set to exclude calling blockss, a new command level
created as the result of a quit signal is idisolated from the
changing state of the <current working directory which may be
cngoinyg in the previous level.

ECL Page 53 10720775

The following two examples show alternate ways in which a
"default”"” wvalue <can be obtained for an argument. In the first
cases, prompting is used to acquire the missing value.

Procedure pli

Parameter Sourcefilesr Maps wee
Optional Pathname (Suffix SourcefFile ".pl1"™)
Detault Do
Line ErrorQutput = "Enter source fite ="
Pathname (Suffix SourcefFile ".pl1") = Input
gnd
Optional Multiple
Keyword -map

End
End

End

In the second examplesr a global default wvalue is wused. This
default value maintains the idea of a current file name which may
be used in or set by any command that uses it.

Procedure pl1
Global CurrentFile

Parameter Scurcefile, Maps eae
Optional Pathname (Suffix CurrentFile ".pl1")
Default Let Line = "Assuming " 1l CurrentFile
/* CurrentFile is global =*/
Opticonal Multiple
Keyword -map

End
End

gend

ECL Page 54 10/20/75

