MULTICS TECHNICAL BULLETIN MT'B-198

ADDENDUM
To: Distribution
From: Steve Webber
Subject: New Hardcore Primitives
Date: Mey 22, 1975

Attached is an addendum to MTB-198. Please incorporate this as the
first two pages of text.

Multics Project internsl working documentation. Not to be reproduced
or distributed outside the Multics ProJject.

Muftics Technical Bulletin MTB-198

Tot Distribution

Froms Steve Webber

Subject: New Hardcore Primitives

Datet May 1975

Questions

The attached MTB proposes some nan primitives and interfacas
for the Multics system. There are many unresolved issues, and,
al though solutions are often proposed, there 1Is often f1lttle
agreement that what s proposed is correct. The following Ilist?t
glves some of the more Interesting unresolved Issuese. The reader
Is urged to keep this list In mind while readlng the MTB.

1e Do we mwant to use varying strings as extenslively as
proposed?
2e Is the proposed new storage alliocation technique (of using a

polnter to a reglon instead of a PL/I area) better?

3. Is the new <par_segnos ename> interface needed for segments
where <seg_ptr> interfaces are also provided? Indeed, would
lt be better to add a third class of |ntertaces that take
<ep> (pointer to directory entry)?

bhe Is the new include file scheme -- wlth version numbers --
appropriate? 0o we want to support include flles for systen
supported structures? Should Include files glve calling
sequences tor the intertaces?

S5a Should MSFs be supported In ring 0? If soy how extensively?
B8y how many interfaces?

ba Should star processing be removed from the hardcore?
[Should the fts_move primitives be removed from the hardcore?
8a Should we retaln the "SysDaemon'" speclal casing In the ACL

interfaces?

9, Should create_ and set_ aliow manipulation of ACLs and
names?

Multics Project Internal working documentatlone Not to be
reproduced or distr ibuted outside the Multics Project.

Page 2 MTB-198

10.

itl.

12.

13.

14

15.

16.

17.

18.

19.

Do we want a primitive to return default values for set_ and
create_?

Shouid create_ be mgre primitive and do much less =-- for
example not al low success [t segment [Is already there?

Shouid a mechanism be provided to copy an entire directory
out of the hardcore for user-ring perusal?

Should switch parameters be used or shouid alternate entry
polints be used?

Should we pass structures or pojinters to structures?

How should status about ltems within a structure be handled?
Do we want status codes returned In the structure?

How should tinks be interpreted (ASCII or blnary)?

Homn should we speclfy keywords such as “working_dir® Iin
search rules structures?

Should partial information be returned {f there [s not
enough room for all Information or [f some nonfatal error
occured?

Should we bother doing new primitives at ali?

Multics Technical Bulletin MTB- 198

Tot Distribution
From? Steve Hebber
Sublectt! New Hardcore Primitives

Date? May 1975

Pucpose

This memo proposes a new set of subroutines that would
define a nenw [nterface to ring 0§ and directory control, in
particular. Some of the functions currently implemented In ring 0
{and Invoked through the gate hcs_) will be removed from ring Q.
The prime functlons of Interest belng removed from ring g are 1)
reference name management and 2) pathname management. Since
these functions wiil be Implemented outslde of ring 8, It will Dbe
necessary to remove hcs_ Itself from ring g so that the target of
the hcs_ entries can use the new user-ring primitives for
reference name and pathname management.

The need for the new Interfaces arlses because, for
efticiencyy, reliabjitityy cleanllness, and secureabliity we are
changing the supervisor so that reference names and pathname
management are removed from ring 0. With the requisite new set
of Intertaces, [t behooves us to make other cleansing changes to
the wuser iInterface both for efflclency and conslistency. Thils
memo proposes a set of primitive interfaces to directory control
in {ight of thls new structure. The programs that hcs_ used to
Invoke will now reslide targely outside of ring g. These programs
wilt pot be writearounds to the new primitives but rather
compatible iInterfaces to new primitives when necessary. {Most of
the directory control “primltives™ of today are not that
primitlve, but rather invoke more primlitive functions to perform
thelr taskse.) It Is this most primitive set of functions which Is
peing proposed -- most other functions will be removed from ring
0.

Since hcs_ wlill no fonger reside In rlng gy replacement
gates for atl the necessary ring 0 functions outside of directory
control! must also be provided. These are outtined as well.

This memo Is divided into four sectionse The first sectjion
describes overall 3oals of any set of [nterfaces that, I hope,
will generally be agreed to. The second section descrlbes a set
of rultes and conventions ¢that I would propose as a means of
satlsfylng the goals in section 1. The third section descrlbes
the actual proposed hardcore primitives whlch use the rules and

Mul tics Prolject Internali worklng documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2 MTB-198

guldellnes of section 2.

The lssue of user-ring subroutines that must Interface wlth
the primitives opronosed here should not be forgotten. In
particulary It may wall be that the I[nner~level primitives are
the same ones offered at the uyuser f{evel. When this Iis
appropriatey, these primitlves should be made avallabtlte as user
tevel subroutines from the start. Other user level subroutines
(not In hcs_) can and should be designed In parallel with what Iis
belng proposed here. Sectlon &4 glves some possiblie user-ring
primitives.

Sections 2, 3 and 4 are completely open for debate and It lIs
hoped that we can resolve the major Issues In the very near
future. Wey of coursey do not want ¢to barge [Into the very
important area of system oprimitive deslgn and come up with
anything thrown together In a haphazard wavye. We doys however,
want to get on with thls task as other work will .Ilnevitably
depend on it.

2ection L. _Design of System Primitives

There are severat overall goals ¢to be satlsfled when
designing a system oprimitivea There are further requirements
when the primitives are to be user [nterfaces. The folfoming
requlirements are generally appllcable to any set of Interfaces In
the system:

1e The primitives must be efficlent to use.
2o The use of the oprimitive and [ts name should be

consistent wlith other primjitives In the system, or at
feast the set ot primitives of whlch 1t is a part.

3. The primitive set should be complete. There should be
primltives to handle ali of the normal needs of the
caller.

4o The primitlves should be extenslible, where possible, to

alion for future changes In the system.

5. The primitives should be as compatible as seems
reasonable to what we have todaye.

Ge The primitives should be easy to use iIf callted from a
ring ditferent from the one they execute In.

Te The primitives should be easy to move from one ring to
another if appropriate.

’

MTB- 198

Page 3

Sectlon 2. _Proposed Solutlons to Regulrements

1.

2o

3e

Le

The primltives must be efficlent to use. There are many
ways to design primitives which wlil make them more
efficient to use. The probiem 1Is coming up wWlith a
useful set that are not too {iImlited or too general. The
foliowing are proposeds

Ae Primitlves should have as few arguments as |is
reasonable to minimlze argument list preparation.

B. Primitives should be designed, where possible, so
that pg descriptors are required Iin the argument
lists. Thils means that character strings shoulid
be passed as char (N) varying, where N |s
cons tant; i1t also means that arrays should not be
passed it they are varlable in length -- Instead a
pointer to an array with bound should be passede.

Some primitlves today recejve switches to indlcate
alternate optlons to take. Such switches should
be embedded In an already exlstent structure, or
avolded, it possibiey, by providing a different
primitive,

Primitive sets should be consistent. Thls witl require
conventions such as?

Ae A status code ls always the {ast argument.

Be The names on *"seg™ and "flille" primlitives should be
consistent and It should be possible to guess what
the primlitive name Is and how [t*s called.

C. The system fungtions should be conslistently named
("Initiate”™ should only be used wlith reference
names, efce.).

De There should not be many primitives that do nearly
the same thing. The primitlives should be mutually
exclusive where appropriate so that a wuser wlil
know wunamblguously whlch primltive Is the one he
should be calling.

The primitive set should be complete. This means that
al!l necessary functions should be handied. It also
means that [t a “ptr" entry exists for a particular
function and a "flte”™ entry ls meaningful, It too should
exlsta The primitives should be symmetrlc by providing
all ot the functions In a conslstent, obvilous way.

The primitives should be extensible. They should be
designed so that new primjtlves can be added In an

Page &4

Se

MT8- 198

obvious way and that existing primitives can be modilfled
to provide new features when necessarvye. The proposed
way to handie this problem is to use version numbers in
structures. The structures used wilt be contained |[n
Include flites whlch also Include a varlable glving the
verslon number of the structure. Structures which are
changed should be appended to rather than reordered |f
possiblie. Alt structures passed to the primlitlve set
should have the verslon numper In the flirst word of the
structure.

The use of the version number would be as follows? the
first wversion of a structure would be Included In the
Include fjite for the structure (which shoutd be
avaitable to users and mentionedy, by name, In the user
documentation)l. The Include ftile shouid also Include a
declaration of the formi

declare STR_vaersion_N fixed bin static Init (N)3

where STR Is specific to the glven structure and N is
the version number. Users of the primitive should use
the standard Include file and should have a statement of
the formt

STR.version = STR_version_N3}

This would cause changes In a structure to be caught at
recompiltatlion time. O0ld versions of a structure should
be made avallablie iIn an Inciude file nameds

STR_olId_N_.incl.pl1i

where STR and N are as above. The user could change his
Zinclude statement to the old verslon if he did not want
to recode for the new version {(right auay).

An error_table_ code should be returned saylng a
primitive does not support a particuiar verslion when
that verslon becomes unsupported ([f ever).

The Include fliles provided by the system should probably
end In an underscore.

The primitives should be functlonatlly similar to what we
have today, it possible. An example Is the
makeunknown/initlate functions of today. 8oth of these
functions are provided by the hcs_8lnitlate primitive.
Note that the initiate functlon will no 1{onger be
implemented In ring g and thus the low-{evel primitive
could not provide both these functlionse.

MTB- 198

be

7.

.Page S

Primitives should be easy to call from anothetr ring. It
a primitive Is a gate, it must take special action with
respect to Its arguments. 1In particular (Input) polnter
valued arguments must be copied In a way that preserves
the wvalidation level. Further all other (input)
arguments must be copied to guarantee valid verlificatlon
of the arguments. Thls means that, due to the current
nay the compiler worksy It woutd be Inconvenient to pass
pointers embedded In structures as structures are not
copied in a way permitting hardware validation. A
program must not read an input argument more than once
or an output argument at all. OQutput arguments should
be stored into exactly once.

Returning values into a user-supplled area should also
be avoldedy, both because [t 1Is more llkely to cause
cranlouts and because it prevents users from using their
oWn area management routines.s It |s proposed that when
large amounts of varlabte-length data Is to be returned,
the wuser provide a pointer to a reglon of storage into
which the data Is copled. The first word of this region
should be fliled In wWith the slze of the reglon, In
words, before making the calt. Relative pointers and
indlces can then be used to locate selected data ltems.
(A new set of user-ring primitives to manage temporary
buffer segments is mentioned In section 4,)

It should be easy to move a primjtive from one rlng to
another, Since many new primitives will arise In the
near future and since the ring |In which they reside
depends on the hardcore system at the time, It should be
easy to move primitives about with eases To solve this
problemy, two requlrements must be met. First, all
primlitives must follow the coding conventions for gates.
Secondy each primitive (or set of primitives [f It s
cfear that they will forever be an Integral set) should
have a seperate (reference) name. Thls means that there
vlll not be a replacement for hcs_ but rather many sSuche
It does not mean that we will need muitiple gate
segments. Names wlill be moved to and from the new
hardcore gate segment as primlitives are moved into and
out of the supervisor.

sectlon 3. _Ihe New Primlitives

The new primitivaes faltl Into the following joglcal setst

1.
2e
3.
l‘.
5.

reference name primitives
pathname primitives

address space manager primitives
storage system primitives

finker primitives

MT8- 198

Page b
Be Interprocess communicatlion primltives
7Te general hardcore utlilty primitives
Ba interprocess signalllng primitives

9. hardcore I/0 primitives

The primitives described below are Intended to form a
complete set for all classes except for the Storage System
primitivese The storage system primitives, by far the |[|argest
sety 1Is only partially speclfied belows The major omissions are
Intentional due primarily to the lack of any backup primitlives.

In the following descriptionssy underiined parameters are
output, Items [n structures marked wlth a star (¥) are lInpute.

Reterence Name Primitives

There are elght proposed primitives for the reference name
managera. These are all entrles In the procedure ref_name_ whilch
wlil eventuaily be a user-ring primitive. These primltlives are
used by the following hcs_ entries (but may be called directiy)?

fs_get_call_name
fs_get_ref_name
fs_get_seg_ptr
Initiate
Ilnitiate_count
make_ptr
make_seg

terminate_noname
terminate_flle
terminate_name
terminate_seg

The tollowing is a list of arguments used In the reference
name primitivess

1. segno fixed bin (15) is the segment number of the
segment ot Interest

2e rname char (32) var is the reference name of
interest

3. struct_ptr ptr s a polnter to the following
structuret

dct 1 rn] atigned based,

A 2 names_allocated fixed bin,
2 names_returned fixed blin,
2 refnames (refer (rnl.names_returned))
char({32) var}
ba entry_ptr ptr is a polnter to a (PL/Iy, e«g.)

entrypoint}

MTB-198 Page 7

Se code fixed bin (35) Is a returned status code.
Entry? ref_name_gadd (segno, rname, code)

This primitive associates the given reference name with the
specifled segment number.

Entry:? ref_name_gdelete (rname, segno, code)

This primitive removes the glven reference name from the
list of those for the segment to which it Is assoclated.

Entryt ref_name_gdelete_segno (segno, code)
ref_name_gdelete_refnames (rname, gode)

This primitive removes all reference names assoclated with a
glven segment.

Entcys ref_name_g$get_segno (rname, segn9, cade)

This primitive returns the segment number of the segment to
which a particular reference name is associated.

Entrys ref_name_g$get_refnames (segno, struc_ptr, gode)
ref_name_gget_refnames_rn (rname, struc_ptr, code)

This primitive returns a user-specified number of reference
names assoclated with the glven segment. The parameter struc_ptr
polnts to the rnl structure specified above.

Entrys ref_name_gget_entry_ptr (rname, entry ptrs code)

This primitive returns a pointer to the entry rnamegrname if
such an enftry existsy le.2ey 1Ff an entrypolint with the same name
as rname exists In the segment whose reference name Is rname a
pointer to this entry is returned.

The ref_name_ primitives will originally reside in ring 0
and ref_name_ wlill be a gate with ring brackets (040+7)e When
the reference name manager |s removed from ring g, ref_name_ witl
no longer be a gate. It wiil have ring brackets of (1+747)e

Pathpame Management Primitives

There are two pathname management primitives which will
remaln after the full conversion to the reference name managere.
Since pathnames wif! no {onger be recognized In ring O,
eventualiy, the functlons of ftind_ and hcs_3fs_get_path_name wltl
be provided In the user r inge.

The following are arguments for the pathname management
primitlvest

Page 8 MTB- 198

1. dir_path char (*) var Is a dlrectory pathname,

2 dir_segno flxed bin (15) Is the segment number of a
directory,

3e segno filxed bin (15) is the segment number of a
segment (possibly a directory),

La path char (*) var ls a full pathname generated by
the primitive,

Se code fixed biln (35) 1Is a status code.,

The primitives arel

Entryt find_dlr_segno_ (dir_path, dilrc_segnos code)

This primitive parses the glven dlrectory pathname and
returns the segment number of the directory speclified.

Entry? get_pathname_ (segnos paths code)

This entry generates a pathname for the given segment by
concatenating the primary entry names of ail superior directories
{separated by ">"s).

Note that the pathname manager may uJse an Internal
assoclatlve memory to avold a recursion that (oglcally proceeds
to ¢the roote. Use of such an assoclative memory perpetuates the
current system bug causlng strange behavior 1t dilrectories are
renamed.

An outer level primitive that converts a (reltatlve) pathname
of a segment Into a polnter wll! atso be provideds It, however,
15 one level removed from these primltives and Is not dlscussed
untiil section 4 of this MT8.

Brimltives to Make Segments Known and Unknown

The followlng set of primitives will always reslde In ring
0. They manage the binding ot segment numbers to objects In the

hjerarchy and are the interface to what is commonly called the
address space managera.

MTB- 198 Page 9

These primitives are used by the following hcs_ entrijiest

Initiate
initiate_count
make_seg
makeunknown
terminate_¢flle
termlnate_name
terminate_noname
terminate_seg

Some ot the functlons provided by the above hcs_ entrles are
handled by the reference name management primltives,

The followling are arguments used In thls set of oprimitives?

1. par_segno fixed bin (15) is a directory segment number,

2e ename char (32) var Is an entryname In a directory,
3. segno tixed bin (15) is a segment number,

he - Struc_ptr optr lé ; polnter to a structure of

{malnly) returned Informatlon,

S5e fiags bit (36) is a string of flags wused to
control what unbind_segno_ does.
The first bit is the "reserve™
bits the second bIlt [Is the
“force" blt; others are reserved
for future expansion.

Be code fixed bin (35) 1Is a status code.
The pointer struc_ptr above points to a user-supplled

structure In which Intormatlon 1s returned. This structure Is
declared as tollows? ‘

Page 10 MTB-198

dcl
¥
(*)

L

bsi allgned based,

version flxed bln,

segno fixed bin(15),

control,

2 reserve blt (1) unal,

3 dirsw blit (1) unal,

3 no_wrlte bit (1) unal,

3 mbz bit (33) unat,

bit_count fixed bin (24),

mode llke mode,

flags,

3 seg_already_known bit (1) unal,
3 may_or_may_not_be_there bit (1) unal,
3 rest bit (34) unal,

2 linkname char (168) vary

N NN -

NN N

dc mode allgned based,
read blt (1) unal,
execute bit (1) unal,
write blt (1) unal,

mbz bit (33) unalj

NN -

The primitives are?l
Entrcy? bind_segno_ {(par_segno, ename, struc_ptr, gode)

This primitive binds a segment number to the segment whose
name is ename In the directory whose segment number [s par_segno
unless ename speclifijes a Ilink. If ename speclifles a |ink,
tinkname Is filled Iin and a status code is returned. It the
segment |s already known, that number Is returned but the
seg_already_known flag is set. :

If the entry being made known |[Is a directory, the
may_or_may_not_be_there flag Is set 1f 1t has not yet been
established that the user can know about the directorye.

Khenever a call to blnd_segno_ s made, 3 wusage count for
the calling ring Is Incremented In the KST entry for the segment.
Thlis wusage count mechanism allows users of bind_segno_ to have a
clean, efflcient Interface analogous to the nuit reference name
Intertace of today but without the overhead of any name
management. Indeed, any programs that mereily want a pointer to a
segment and have no need for any reference name functlons would
work smoothiye. The bind_segno_ and wunbind_segno_ interfaces
therefore replace the hes_$initlatel _count] and
hcs_3Sterminate_noname Interfaces In a iarge number of cases.

Entry? priv_bind_segno_ (par_segno, ename, Struc_ptr, gode)
This primitive works simitariy to bind_segno_ except that

special action is taken In ring g to allow the segment belng made
«xnown to be referenced without full regard to the access

MT8-198 Page 11

lsotatlon mechanlsm®s controls.
Entry: unbind_segno_ (segno, ftltags, cgde)

This primitive decrements the usage count of the specl fled
segment for the calling ringe. If alt Jusage counts are 0y the
segment Is made unknown. Similarly, if the “force™ bit is ON (bilt
2 ot flags)y, and alt usage counts are 0 In atl Inner ringss the
segment is made unknown,.

If the segment is made unknown then [ts segment number [s
returned to the free pool of segment numbers unless the “reserve™
bit (bit 1 ot ftags) Is ON.

Storage System Primitives

The following set of primitives are Intended to represent
the external interface to directory control. These primitives are
more primitive than the hcs_ entrles of today and are also used
wlithin ring g. There are several majlor changes being proposed
including:

) No allocatlons in user areas will be done,

2e No star processing wilyd be doney

3. No pathnames will be accepted, and

L. Status "ftags™ are used instead of some *codes”,

The primitives necessary for backup and the reloader are not
mentioned here. These primitives will be designed later when a
better understanding of the requlrements ot backup is avallable.
It should be notedy however, that backup wlill have |ts own
primitives and that the normal user primitives wi!i therefore not
be constrajlned by some [(]lttle used or otherwlise unnecessary
feature of backups It should also be noted that the user-ring
hcs_ entries witl all be supported and that backup can continue
to use these untll new backup primitives are avallable.

Most of the storage system primitives use structures to
communicate both input and output information. Some ot these
structures are too detalfed or cumbersome for a3 clear user
intertace and soy where appropriates, many user-ring primitives
are provided to Intertface to the actual hardcore primitives {the
most obvious set of user-ring primitives wlil be hcs_)e.

The following 1is a {ist ot arguments common to many of the
storage system interfacest

1. par_segno tixed bin (15) is a directory segment number,

Page 12 MTB- 198

2e ename char (32) var ls an entry name In a directory,

3. struc_ptr ptr points to an input/output
structure,

he seg_ptr ptr iIs a polnter to a segment.

S5e names_ptr ptr is a polnter to a structure for
returning namese.

6e aci_ptr ptr ls a pointer to an ACL
structure.

Te {lnkname char (168) var is a 1lnk name managed by rling
O

8. newname char (32) var is a name being added to an
entry.

9. deliname char (32) var is a name being deleted from an
entrye.

10« ofdnanme char (32) var ls a name currently on an entry

that [s to be deleted.
11. dlr_segno fixed bin (15) Ils a dlirectory segment numbere.
N. code fixed bin (35) is a returned status codee.

Since many of the primitilves return JInformation iIn a
structure, some of the structures also Include status codes and
status flags assoclated with speclflc items wilithin the structure.
Thlis IiIntermixing of returned yalyes and returned status Is a
compromise In style and s proposed for tack ot a better method
known to me. In general, when a “code" fleld in a structure Is
returned with a nonzero error_tablie_ value, the *“code™ argument
wlll be set to error_table_$partially_successful (or some such
namels If a code argument of zero (s returnedy, all structure
code fields wiil be zero, but some status “flags™ may be set.
See the [ndividual primitive descriptlons for more detallse.

One more item worth mentioning about the storage systen
primitives (s that It Is Intended that dlrectory operations and
tlle operations ("flle" refers to single segment or multisegment

"ftiles™) be completely independent. There are separate
primitives for manlpulating these at many tevels In the storage
system. The Intent is to glve users approprlate warnlng 1f they
appear to be performing an operation on the wrong kind of entity.

The new storage system will require certaln changes to the
user-vislble Interface to directory control. Some of these

changes are required for new capablilities whlle others are
Intended to encourage users to "ask the rlght questlons”™ because

ﬁ

MTB- 198 : Page 13

of effliclency considerations. An example of new features Is the
possibliity of a wvery fast fs_move function In certaln casese.
When and [f this Is avajifable, new primitives will be proposede.
An example of asking the wrong question arises when segment
status is requested. The new storage system ls potentialiy more
expensive when returning complete status especlally if the status
for all segments in a directory Is requested. For this reason,
the default for “1lst™ etce.s should be changed to work In the
most eftficient nay.

The storage system primitives are divlided into the tollowling
classes?

1. creating primitives

2. naming primltives

3. deleting primitives

Le status primitives

e set primitives (attribute changing)
6e act primitives

7. quota primitlves

8. truncation primlitives

9. utitity primitives

Pcimitives for Creating Seamentss efcs

The following primitives create an entry In a directorye. A
major functional change from what lIs avallable today is that a
user may specify all the reasonable attributes to be applied to a
segment. This 1s because a user with append permlssion on a
directory who does not have modify permlission as welly must be
able to say everything about the branch being created in the

create_ call, (Another Independent proposal would requjre
awarding append permisslon on a dilrectory onily if modify
permission Is awarded.) A secona functional change [s the

addition of the concept of multisegment tllies Into the storage
systemes This iIs done by providing a mechanism for converting
segments to and from multisegment flles and by enforcing some
consistency on MSF®s in directory gcopntrol. (For examplie, making
an MSF known should return a (warning) status and creating and
deleting MSF components should be speclal caseds For detalis of
the MSF |mplementation proposals see the actual descriptions of
the primitives belows)

Entry! create_ (par_segno, ename, struc_ptr, gode)

This primitive creates a vaniita flavored, single segment
tile. The parameter struc_ptr points to the following structure:?

Page 14 MTB- 18

crl aligned based,

version fixed bin,

options,

3 change_attributes_I1f_exlsts blt(1) unal,
3 dont_usa_Iinact bit (1) unal,

3 truncate bit (1) unal,

3 mbz blt (33) unal,

mode |lke mode,

set_array like set_array,

set_Info tlke set_Info;

dct
L J

NN e

&
[ASIEASNAY]

dci set_array allgned based,
bit_count bit (1) unal,
ring_brackets bit (1) unal,
entry_bound bit (1) unal,
access_class bit (1) unat,
max_length bit (1) unatl,

mbz bit (31) unalj

[ASIAVINAS N AC I AS R AN I g

dcl set_info aligned based,

2 switches,

3 safety bit (1) unal,

3 copy_on_write blt (1) unal,

3 entry_bound blt (1) unal,

3 multiple_ctltass bilt (1) unal,
3 mbz blt (32) unatl,

bit_count tixed bin (24),
ring_brackets(3) flilxed bin (3),
ring_bracket_code fixed bin (35},
entry_bound fixed bin (14),
max_length fixed biln (35),
access_ctltass bit(72);

=

NN NN

This primitive creates the named segment and sets the
varlious attripbutes as speclitied. It the segment exlsts and
“*change_attributes_Ilf_exists™ is ONy the primitive works like the
set_ primitive and merely updates the attr lbutes. Similariy, |if
the segment exists and *“truncate”™ Is 0Ny the segment will be
truncatede. The "™dont_use_inacl™ switch instructs the primitive
not to use the [nitial ACL. The primitive wllly In any case,
pltace an ACL entry on the segment consisting of the mode
specified (for the callting process®s user ID).

The "“set_array™ fleld Instructs the primitive ¢to use the
specitled item from the Input structure. If a bit Is OFF [n the
set_array tleldy the corresponding attribute Is set by default.
For exampley the ring brackets would be set to (vavyv) If
cri.set_arraye.ring_brackets were 0OFF,

MTB-198 Page 15

Entrcy? create_8dir (par_segno, ename, struc_ptr, code)

This primitive creates a directory branch In the speclftied

directory. The Input pointer struc_ptr points to the foliowlng
structure?

dcil 1 cdi aligned based,
¥ 2 version flxed bin,
* 2 options,
~ 3 change_attributes_|f_exIsts bit (1) unat,
3 dont_use_I1lnac! bit (1) unal,
3 mbz bit (34) unal,
2 mode (ike dlrmode,
* 2 set_array,
3 mbz bit (1) unal,
3 ring_brackets bit (1) unal,
3 mbz blt (34) unal,
quota fixed bin,
quota_code fixed bin (35},
access_class bit (72),
access_class_code fixed bin (35),
ring_brackets (2) fixed bin (3},
ring_brackets_code fixed bin (35)}

NN N

dct dirmode atigned based,
status bit (1) unai,
modlfy blt (1) unal,
append bit (1) unal,

mbz bilt (33) unat;

NN NN =

An ACL of "mode™ for the calling process®s user ID Is set.
Entry! create_8$1link (par_segno, ename, linkname, gode)

This primitive creates a 1llnk entry in ¢the directory
specitleds Since |ilnks are not interpreted In ring 0,4 tinkname
ls allowed to be any blnary data of up to 168%9 bits in length.

Entrys create_gsmsf (par_segno, ename, struc_ptr, code)

This primitive creates an MSF entry In the dlrectory
speclfied. Like create_, it lIs not a fatal error [f the entry
already exists. However, (f the entry 1Is Inlt]Jally a single
segment file it Is converted to an MSF with the following
mappings!

1e The ACL on the MSF component lIs set to the specltled
mode; the ACL on the MSF dlrectory [Is copled from the
ACL of the parent directory,

e The max_{tength for the MSF, If not specifled by fthe
usery, ls set to sys_info_$max_msf_slze, and

Page 16 MTB-198

3. The segment initiail ACL for the MSF directory is set to
the segment Initiai ACL from the MSF®s parent directorye.
(The directory inltial ACL Is set nult.)

Entry!? create_gmst_component (par_segno, ename, COMp_NOy cade)

This primitive will create the comp_no*th component of an
MSF. Several components may be created In order to ensure the
conslistency (contigulty) of the MSF. Alt attributes on the
segment created are set to those of the other components of the
MSF (guarenteed conslstent by the other primitives of directory
controll. The parameter comp_no s an Integer which must be
greater than the current number of components In the MSF and less
than the maxlmum number of allowed components.

An MSF component can be created by any user with write
permission on the MSF as long as the max_tength ot the MSF [s not
exceeded. {Any user with modity permission on the MSF directory
can change the max_1langths)

Primitives for Manipulating Names

When a segment (dir, llink, MSF) is inltlally created, a
single name [s associated with it. Thls name Is the primary pame
and witl remaln the primary name unti!l It Is removed no matter
now many other names are subsequently added or deletede. The
fotlowing orimitives are wused to change names. To find atl
namesy, see the status_ primitives.

Entry? names_gadd (par_segno, ename, newname, code)
names_%add_ptr (seg_ptr, newname, code)

This primltive adds the name newname to the {ilst of names
assoclated with the glven segment (dir, tlnk, MSF).

Entry!? names_gsdelete (par_segno, ename, delname, ¢ode)
names_3detete_ptr (seg_ptr, delname, gode}

This primitive removes the glven name from the given segment
(dire tinky MSF). If delname Is the last name on the entry [t is
not removed and an error code s returned. If delname [s the
primary name, a new primary name Is chosen by the primlitive.

Entry: names_g$change (par_segno, ename, oldname, newname, code)
names_%change_ptr (seg_ptr, oldname, newname, code)

This primltive replaces the name oldname wlth the name
newname, It ofdname Is the primary name, the primary name l|s
changed to newname.,

MTB- 198 Page 17

Primitives foc Deleting Seamentss eics

The following primitives are used to delete entriles from
dlrectorjese. Afl requlre modlfy permlssion on the parent
directorye.

Entrys del_ (par_segno, ename, gpga)
del _$ptr (seg_ptr, gode)

This primitive deletes the speclfied segment.

Entryt del_gdlr (par_segno, ename, gagde)
del_3dir_ptr (dir_segno, gode)

This primitive detetes the speciflied dlrectory. If the
directory has any branches In it, It Is not deleted and an error
ls returned.

Entry: del _$link (par_segno, ename, ¢ode)

This primitive deletes the specified tink from the speclitied
directory.

Entry? del _gmsf {(par_segno, ename, gode)

This primitive deletes the MSF named ename fronm the
directory whose segment number is par_segno.

Primitives for Returning Status

There are two major changes to the status primitlives.
Firsty the star conventlon iIs not recognized. Therefore Iisting
programs must be returned an entilre dlrectory®s contentse.
Seconds because of nem storage system conslderations, there will
be Just two forms of returned statuse brlef and longe. Baslcally,
brlef status contalns Information about the segment [ndependent
of lts slze or usee.

Recalil that this MTB does not propose réplacemenfs for the
backup primitlives. Hencey the status primitives described below
should not be expected to be acceptable for backup use.

One tast poilnt to mention s that the primitives below are
the hardcore primitives. Addlitional, user-ring primitives (such
as those in hcs_) will augment the hardcore primjitives to make a
more usable set.

The status primitives are divided into two classesy those
which return what are caltled “directory®™ attributes and those
whlch are calted "segment™ attributes. To use the primitlves
mhich return directory attrjibutes, status permission on the
containlng dlrectory 1Is required; for segment attributes all

Page 18 MT8- 198

that s requlred Is nonnuil access on the segment, (Thls means
that to get status of a linky status permission ls required on
the containing directory -- since tinks do not have ACLs.)

Entecy! status_ (par_segno,s ename, struc_ptr, names_ptr, gcode)
status_3ptr (seg_ptr, struc_ptr, names_ptr, code)

This primitive returns selected status about a segment (dir,
{inky MSF) useful to normal users. It requlres status permisslion
on the containing directory. Either struc_ptr or names_ptr may
be null. If ejithar s, the associated information 1Is not
returneds It struc_ptr ls nonnull It polnts to the following
structure. The Jtems starting with "“dtu"™ on to the end of the
structure are all set to 0.

dct
*
E'
»

sti allgned based,

versjion fixed bin, ,
size_allocated fixed bin,

controtl,

3 primary_name_only bit (1) unal,

3 mdbz bit (35) unal,

data llke status_info;

NN N

N

ool status_Iinfo aligned based,

type tixed blin,

nnames fixed bin,
ptr_to_first_name ptr unal,
(dtem, dted) bit (36)’

uid pit (3b6),

author char (32) var

eftmode tlke mode,
bit_count_msf_Ind fixed bin (24},
snitches,

3 safety blt (1) unal,

3 copy_on_write blt (1) unal,

3 entry_bound blt (1) unal,

3 multiple_class bit (1) unal,
3 mbz bit (32) unal,
ring_brackets (3) fixed bin (3),
bit_count_author char (32) var,
entry_bound flixed bin (164),
access_class blt (72),
device_name char (32) var,
ex_effmode bit (36),

NN NNNNNNN -

MM MONYN

(dtu, dtm, dtd) bit (36),
records fixed bin (9),
cur_length fixed bin (35),
max_length flixed bin (35),
mbz (13) fixed bin (35);

[ACEASIRAVIN S V)

The type element of the status_info structure ls Interpreted
as follows:

MTB- 198 Page 19

tink
segment
diraectory
MSF

WO

This primitive is used by first filling In the starred {tems
and then caliing ring 0. If the entry of Interest Is a link,
type Is set to 0 and struc_ptr will be assumed to point to the
following structures

del 1 tki aligned based,

. version ftixed bin,

* size_altocated fixed bin,

¥ control,

3 primary_name_oniy blt (1) unal,
3 mbz blt (35) unat,

type filxed bin,

nnames fixed bin,
ptr_to_first_name ptr unal,
(dtemy, dtd) blt (36),

uld bit (36},

author char (32) var,
!inkname char (168) var,
mbz (&) fixed bln (35);

N NN

MMM NNNNDNYN

If the entry of interest is a directory, type Is set to 2
and struc_ptr will be assumed to point to the same structure as a
nondlrectory segment. However, certain Items are not defined.

The polnter names_ptry, [f nonnully, should point to the
following structure:?

dcl 1 names_str allgned based,
¥ 2 size_altocated fixed biny,
2 names (1) char (32) varying;

The varjable "“ptr_to_first_name™ |[n the status structure
polnts to one of the names In the above array. As before, the
starred items should be filled In before the call. The varlable
slze_aliocated 1is In words. If the flag "primary_name_oniy"™ |ls
set ON in the control arrayy only the primary name wjitl be
returned. In any case, “ptr_to_tirst_name™ wlill always point to
the primary namee

Entryt status_slong (par_segno, ename, struc_ptr, names_ptr,

code)
status_stong_ptr (seg_ptr, struc_ptr, names_ptr, code)

This oprimitive Is the same as status_ except the last [tems
{from "dtu"™ onward) are also returned, Hlth the nemw storage
systemy, this oprimitive 1ls potentially more expensive than the
status_ primitive.

Page 20 MTB- 158

Entryt status_sall (par_segno, ename, struc_ptr, names_ptrs

cade)
status_gSall_ptr (dir_segno, struc_ptr, names_ptr, code)

Thls primitive Is called to return status Information about
all entrles of a dlrectory. {Any star reduction of the
information is done after thls call =-- |in the user ring.) When
this entry Is called names_ptr Is generally not null and points
t0o the same structure as for the status_ calt. "The struc_ptr
parameter may not be null and must point to the following
structuret

dct 1 ali_sti aligned based,
. 2 version tixed bin,
¥ ? slze_allocated fixed bin,
* 2 controly,

3 primary_name_only blt (1) unal,

3 totals_only blt (1) unal,

3 not_this_type (083) bit (1) unatl,

3 mbz bit (30) unal,
num_entrles flxed bin,
num_this_type (02:3) fixed din,
num_names fixed bin,
num_names_this_type (g33) fixed bin,
data (1) like status_info;

RN NNN

{Due to the potentlatly 1arge amount of storage needed to dump
targe directories it will qulte often be useful to acquire a
temporary segment for the returned information.)

If “totals_only"” s set ONy only the number of segments,
directoriesy etce.y witl be returned. (In thls case namesS_ptr may
be null)e.e The [tems "num_entrlies™ and "num_this_type™ are always
returned. If "“not_this_type (i)™ Is ON, Information about the
specifled entrjes is not returned.

Entrcy? status_g%altt_long (par_segno, enamey, struc_ptr, names_ptr,

cade)
status_g%sall_long_ptr (dlir_segno, struc_ptr, names_ptr,
code)

This primjtive works as the status_3$all primltive except

that the f{ast Iitems In the status_info structure also also
returned. As above thls may be more expensive wWwith the new
storage system.

Entry seg_status_ (par_segno, ename, struc_ptr, codel
seg_status_s$ptr (seg_ptr, struc_ptr, gode)

This primitive 1Is catled to return segment attributes of a
segment and therefore requires nonnuil access on the segment.
The parameter struc_otr polnts to the following structuret

MTB- 198 Page 21

dct
L

segstl afigned based,
version tixed bin,

type fixed bin,

effmode like mode,
blt_count tixed bin (24),
entry_bound fixed bin (14),
records fixed bin,
cur_length fixed dbln (35),
max_length fixed bin (35)

NN NNNNNNN -

' The speclified entry must be a segment or a multisegment
€.

The above entrles are used by the following hcs_ entrjies?

hcs_381s_get_brackets
hcs_$fs_get_mode,
hcs_%get_author,
hcs_gget_bc_author
hcs_8$get_dir_ring_brackets
hcs_g$get_max_tength
hcs_3get_max_length_seg
hcs_%$get_ring_brackets
hcs_$get_safety_swn
hcs_3get_safety_sSw_seg
hecs_$star_
hcs_3$star_list_
hcs_3status
hcs_$status_
hcs_gstatus_1long
hcs_3status_minf
hcs_8$status_mins

Primltives to Change Attributes

The following set of primitives 1Is wused for changlng
attrlbutes of an eantry. As wilth the status primitives, the
distinctlon |s made between directory attrilbutes (requlring
status permission on the <containing directory) and segment
attributes (requiring wrlte access on the segment).

Entcy: set_ (par_segno, ename, struc_ptr, cogde)
set_8%ptr (seg_ptr, struc_ptr, code)

This primitlive requlres modify permission on the contalning
dlrectory. The parameter struc_ptr points to the followlng
structure?

dcl
3

¥
¥

setl allgned based,
version tixed biln,
control fike set_array,
info llke seft_info;

N NN -

Page 2?2 MTB-198

where set_Info and set_control are speclfied in the
description of the create_ primitives.

Entry: seg_set_ (par_segno, ename, struc_ptr, gcode)
seg_set_sptr (seg_ptr, struc_ptr, code)

This primitive witl change segment attrlbutes on a segment
and hence does not raquire as much access as the set_ oprimitive.
(It requlires write permission with respect to the segment.) The
parameter struc_ptr polnts to the followling structure?l

dcl 1 sseti allgned based,

¥ 2 verslon flxed bin,

¥ 2 control like set_array,

¥ 2 bit_count fixed bin (24),

¥ 2 entry_bound flixed bin (14);

Primitives tor Manipulating ACLs

This set of primitives ls used to add, delete, replace and
fist ACLs on segments or directories. The distinction Is made
between directories and segments because, although the structures
are quite simitar today, we should not get trapped by thise.
(MSFs are treated as segments.) There are four classes of
orimitives each of whlch has an entrypolint for adding, defeting,
listing and reptacing ACL entrles. The four primitive classes
are ftound In aci_, dir_acl_y inacl_ and dir_inacl_.

Entryt acl_%add (par_segno, ename, acl_ptr, code)
acl_%add_ptr (seg_ptry acl_ptr, gode)

This primitive adds the specified ACLs to the specifled
entry. If a wuserid Is encountered whlch Is already on the ACL
for the entry the ACL entry ls replaceds In this, and In att of
the ACL manipulating entries, the parameter acl_ptr must polnt to
the following structures

dcl
*

»
)
")

acll atigned based,

versjion fixed bin,
n_acls_aflocated flxed bin,
count f]lxed bin,

acla (1),

3 userid,

L personid char (22) unal,
4 projectid char (9) unat,
4t tag char (1) unal,

mode | ike mode, /% or {lke dirmode */
exmode blt (36),

code fixed bin (35);

N NN N e

W W

MTB8-198 Page 23

Entcyt acl_3delete (par_segno, ename, acl_ptr, code)
acl_gdelete ptr (seg_ptr, acl_ptr, code)

This oprimitive deletes any ACL entrjes from the specified
branch that exacti{y match one of the userid flelds Iin the |[nput
ACL structure. It a specifled userld Is not on the ACL of the

br:nch the assoclated code Is set and the code parameter |s also
sete.

Entry! acl_siist (par_segno, ename, acl!_ptr, gode)
acl_s$tist_ptr (seg_ptr, acl_ptr, code)

This primitive wit) return ACL informatlon about the
specitled branchs All ACLs are to be llsted and acli.count 1s
set to the number listed. If there Is not enough space allocated
to tist all of the ACL entrles, as many as can be returned are
and an error code is returned.

Entryt! acl_sreplace (par_segno, ename, acl_ptr, gode)
ac'_srep.ace‘pfr (seg_pfr. acl_D?F’ QQQQ’

This primitive witt replace the entire ACL by the ACL
speclfled In the Input ACL structure.

The following ACL primitives work analogously and are listed
here for completeness?

dir_acl_$add (dir_segno, acl, cgde)
dir_act_sdelete (dir_segno, acls gode)
dir_act_slist {dlr_segnos acl, gogde)
dir_act_g%replace (dir_segno, acl, code)

Inacl_%add (dir_segno, acl_ptry, ringy gode)
Inacli_gdelete (dIlr_segno, acl_ptr,y ring, code)
Inacl_3tist (dir_segnos acl_ptry ring, code)
Inacti_gsreptltace (dir_segno, acl_ptr, ring, godel
dir_inacl_gadd {dir_segno, aci_ptrs, rings gode)
dir_lnact_g$delete (dir_segno, acl_ptr, ring, cgode)
dir_itnacl_gilst (dir_segno, acl_ptr, ring, gode)
dir_inacl_sreplace (dir_segno, acl_ptr, rings c¢ode)

Primitives for Manlipulatinag Quota

There are three primitives currently being proposed for
manjpulating guota. {The newly proposed directory record quota
of the new storage system [s not covered here.) The primltive to
move quota from a directory to Its parent or vice versa s

Entrcyt quota_3%move (par_segno, ename, quota, cade)
quota_g$move_ptr (dir_segnos, quota, code)

This oprimitive wlill accept a positive or negative value for
quota. If quota is posltivey, that many records of quota are
moved from the parent of the directory emname to ename [tself. If

Page 24 MTB-198

quota 1is negative, the absolute value ot quota records are moved
from the directory ename to lts parent.

Entcy: quota_sget (par_segno, ename, struc_ptr, gode)
quota_gget_ptr (dir_segno, struc_ptr, gode)

This primitive returns quota Information about the dlrectory
ename. The parameter struc_ptr points to the folioning
structurel

dcl
.

Qi atigned based,

version fixed bin,

quota fixed bin,

used fixed bin,

time_record_product flxed bin (71),
time_updated flixed bin (71),
inferior_gquotas fixed bin,
terminal_quota blt (1)}

N NN NN N -

Entryt hpquota_g$set (par_segno, enamey quota, gode)
hpquota_3set_ptr (dir_segno, quota, gode)

This primitive 1s privileged to system adminlstrators and
provlides a means of specifying the quota for a directory without
moving it from the parent directory. It is the only means (other
than backup primitives not mentlioned here) of "generating* quota.

Pclmitives for Truncating Segments

The following set of oprimitives are used for truncating
segments and MSF*s. They requlire only write permission on the
associated segment.,

Entry? truncate_ {par_segno, ename, offset, cgode)
truncate_3ptr (seg_ptry, oftset, code)

This primitive truncates the singie-segment flle specifled.
The parameter offset specifies the first word ftruncatede.

Entryt truncate_gmst (par_segno, enames, offset, gade)

This primitive truncates the speclifled MSF. As many MSF
components as are necessary are deleted In order to bring the MSF
down to the specifled size. The first component, however, Is not
deleted.

MTB-198 Page 25

Primitives of General Utllity to the Storage System

The following primitives do not fall Into a well deflned

group and are llsted here to complete the 1ist of Storage System
primitivese.

Entryt user_effmode_ (par_segno, ename, userid, pode, code)
user_effmode_s$ptr (seg_ptr, userlid, modes code)

Entry? tevel_3%get (level)

Entcy? fevel _3set (level)
Primitives Used by the Linker

The following set of primitives will be used by the linker.
They will Initlally be availabte (only) In ring 0, but will be
moved to the user ring when name space management and the llnker
Itselt are. The primitives belon are used by the following hcs_
entries (many of which are not used and are obsolete)?

hcs_g%assign_Iinkage
hcs_3$fs_search_get_wdlir
hcs_3$fs_search_set_wdlir
hcs_sget_count_linkage
hcs_s$get_defname_
hcs_sget__linkage
hcs_gget_1Ip
hcs_tget_rel_segment
hcs_gget_search_rules
hcs_$get_seg_count
hcs_gsget_segment
hcs_ghigh_ton_seg_count
hcs_ginitlate_search_rules
hcs_siink_force
hcs_$make_ptr
hes_grest_of_datmk_
hcs_3%set_1p
hcs_gunsnap_service

Page 26 MTB~- 168

The following declarations apply to parameters used by the
tinker primitives?

storage_ptr ptr a pointer to a reglion of
storage allocated for the user

slze fixed bin(18) the slze, In wordsy of sforage
to be altocated

working_dir char(*)varying is ‘a character string
representatjion of the current
working directory. HWhen used
as an output quantity it Is an
absolute pathnamej when used
as an Input quantlity 1t may be
a relative pathnane.

wdlr_segno fixed bin(15) is the segment number of the
current working dlrectorye.

softcore_segno fixed bin(15) Is the segment number of the
first softcore segment.

first_user_segno fixed bin(15) is the segment number of the
first user-ring segment beyond
the softcore segments,

fast_valid_segno fixed bin(15) is the tast wvallid segment
number avaliable to the
processSe.

stack_segno fixed bin(15) is the segment number of the

(standard) stack segment for
the catllng ringe.

tast_used_segno fixed bin(15) Is the targest segment number
used by the processe.

Entrys asslgn_storage_ (storage ptr» slze, godg)
This oprimitive allocates size words of storage {(on an even
word boundary) in a process®'s combined {finkage segment. A new

segment will be created If there is not enough room lteft in the
current segment (or reglon).

Entryt unassign_storage_ (storage_ptr, slze, gode)

This primitive returns the glven storage to the ring®s free
pool of storage. {(Initialty, this function wilt! have no effect.)

Entrys wdlr_s$get (woprking dirs codel

MTB- 198 Page 27

This primitive returns the character string representation
of the working directory for the current ring.

Entryt wdir_sget_ptr (nwdlir _seanQs code)

Yhis primitive returns the segment number of the current
ring®*s worklng directorye.

Entryt wdlr_3%set (working_dir, code)

This primitive sets the working directory for the current
ring glven a (retatlive) pathname.

Entry: wdir_gset_ptr (wdir_segno, gode)

This primitive sets the worklng directory for the current
ring given the segment number of the dlrectory.

Entry? segno_timits_ (ggftcore seqgno. 1irst_user segno.
last_valld sedano, last_used segng!)

This primitive returns values of wusefu! segment number
rangesSs.

Entrcy? get_stack_segno_ (stack seang)

This primitive returns the segment number of the (first)
stack segment (created by the supervisor) for the calling ring.
Thlis and segno_Ilimits_ are the only two linker primitives that
witl remaln in the supervisor.

Entry? search_rules_%get (struc_ptr, cgde)

This primitive returns the character string forms for the
search rules in effect for the current ringe. The parameter
struc_ptr points to the following structure?

dct 1 search_rules atlgned based,
* 2 count_allocated fixed bin,
2 count_returned flxed bin,
2 rules {1 refer (search_rulesa.count_returned))
char (168) varying;

Entrys search_rules_g$get_ptr (struc_ptr, cgde)
This primitive returns the directory segment numbers for the

directories in the current search rules. The foltowing artificial
segment number mappings {of today) apply to keywordst

Page 28 MTB- 198

Keyword Segment Number

initjated_segments 1
reterencling_dir 2
working_dir 3

The parameter struc_ptr points to the ftoltlowing structuret

dci 1 search_ptrs al lgned based,

¥ 2 count_allocated fixed bin,

2 count_returned fixed bin,

2 rules (1 refer (search_ptrs.count_returned))
fixed bin (15);

Entry! search_rules_g8set (struc_ptr, ggda}

This primitive sets the search rules for the current ring
glven (retlative) pathnames and keywords In an ordered array. The
parameter struc_ptr polnts to the same structure used iIn the
search_rules_gget primitive,

Entry? search_rules_g%set_ptr (struc_ptr, cgde)

Thls primitive sets the search ruies for the current ring
glven segment numbers ({(real! and artiflclal) of the directorjes to
searche The parameter struc_ptr polnts to the same structure as
used In the search_rules_3get_ptr primitive.

Beimitives for Interorocess Communication

The followlng set of primitives will be Identlical to the
current IPC primitives In function. The entries are currently iIn
hes_ (nhich witl become a user-ring program) and hence the new
gate below [(s provideds The hcs_ entries and the new primltives
map as foilons?

hcs_s$assign_channel hclpc_s$asslgn_channel
hcs_gblock hcipc_gblock
hcs_$delete_channel hcipc_3delete_channel
hcs_g$fbltock hclpc_$tblock
hcs_gipc_init hcipc_Sipc_init
hcs_3%read_events hcipc_3read_events
hcs_8$sfblock hclpe_$stblock

hcs_gwakeup hcipc_%wakeun

MTB8- 198 Page 29

Primitives of Gepneral Utility

The foillowing primitlves execute In ring g0 and hence a new
gate to ring g must be provided for thems The following dlrect
mapping (renaming, etc.) will be used!

hcs_gcpu_time_and_pagling_ cpu_time_and_paging_
hcs_3get_alarm_timer alarm_tlilmer_Sget_alarm_timer
hcs_$get_page_trace hcu_3%get_page_trace
hcs_sget_process_usage get_process_usage_
hcs_8get_usage_values 0BSOLETE

hcs_$pre_page_info OBSOLETE

hcs_gproc_info hcu_8$proc_info
hcs_3reset_working_set OBSOLETE

hcs_$set_alarm OBSOLETE
hcs_gset_alarm_timer alarm_tlmer_gset_alarm_timer
hcs_$set_cpu_timer cpu_timer_$set_cpu_timer
hcs_3$set_pll_machine_mode OBSOLETE

hcs_$set_timer 0BSOLETE

hcs_3stop_process hcu_3%stop_process
hcs_$total_cpu_time_ total_cpu_time_
hcs_3trace_marker hcu_3trace_marker

hcs _$try_to_unlock_lock hcu_8try_to_unlock_1lock
hcs_gusage_values OBSOLETE
hcs_$virtual_cpu_time_ virtual_cpu_time_

The program hcu_ (for hardcore utillity) wil) be a hardcore
gate tor calling primitives In the supervisor which do not easity
falli into another category. Only primitives that are
Intrinsically hardcore In nature should be placed In this gate.
It is the replacement for hcs_.

The OBSOLETE Interfaces will no tonger be supported In ring
0y but rather by user=-ring writearounds {(in hcs_)e.

Primitives for Interorocess_Slanalling

The ftollowing primitives repiace the hcs_ primitives for IPS
management. They are currently ldentlcal to the hcs_ entrles In
function.

hcs_$get_ips_mask . ips_%get_ips_mask
hcs_3Smask_1ps lps_$mask_lps
hcs_greset_Ips_mask ips_$reset_lps_mask
hcs_gset_automatic_ins_mask lps_$set_automatic_ips_mask
hcs_$set_lps_mask ips_$set_Ilps_mask

hcs_gsunmask_Ips ips_sSunmask_ips

Page 30 MTB8=-108

Primltives for Pectforalng I/Q

The fotlowing primitives will be moved from hcs_ to the
indicated gatet

hcs_¢loam_1]lst loam_gloam_tist
hcs_$Sioam_refease loam_%Siocam_release
hcs_8loam_status loam_g$loam_status

The above three primitives will become obsolete when the full RCP
management becomes avallable.

hcs_$tty_abort tty_gate_3Stty_abort
hcs_3tty_attach tty_gate_3gtty_attach
hcs_3stty_detach tty_gate_3tty_detach
hcs_38tty_detach_neuw_proc tty_gate_3tty_detach_new_proc
hcs_3tty_event tty_gate_3tty_event
hcs_S$tty_Index tty_gate_3tty_Iindex
hcs_3$tty_order tty_gate_3tty_order
hcs_$tty_read tty_gate_3$tty_read
hcs_8Stty_state tty_gate_Stty_state
hcs_gttty_write tty_gate_g$tty_mrite

Primitives no longer supported by Hardcore

The fotlowing primitives are obsolete and wilt not be
replaced when hcs_ is removed from ring 03

hcs_sdel_dir_tree
hcs_3$fs_move_flle
hcs_g$fs_move_seg
hcs_gget_link_target
hecs_$star_
hcs_$star_list_

Al of these primitives wlll be supported to some degree In the
user ringe.

summary of New Hardcore Interfaces

0f the more than 150 hcs_ entries currently avajitable, many
wilt be replaced by new hardcore gates white others will be moved
to the user ringe Initlaliy, the foliowing names should be added
to hes_ (they wlil eventually be moved to a new hardcore gate
segment)i

hcipec_
cpu_tlime_and_paging_
atarm_timer_

hcu_

get _process_us age_

MTB- 198 Page 31

cpu_timer _
total_cpu_time_
virtual _cpu_time_
ips_

loam_

tty_gate_

When the full conversion is complete, there wll]!] be about 100
hardcore [nterfaces and another 30 In the user rlng that replace
the functions of hcs_e.

A new hardcore gate should be added soon with the follouing
names on |t

¥ ref_name_
* get_pathname_
¥ find_dir_segno_
bind_segno_
unblnd_segno_
create_
names_
def_
status_
seg_status_
set_
seg_set
aci_
dir_act_
inacl_
dir_inacl_
quota_
truncate_
user_eftfmode_
tevel _
¥ assign_storage_
unasslign_storage_
* wdlr_
segno_Himits_
get_stack_segno__
* sgearch_rules_

L)

The starred items wllil eventually be removed from ring 0 (by
renaming, etce)o.

Sectlon 4. User=level Subroutines

Thls sectjon proposes a few user-level subroutines to be
uysed by system commands and subroutines as weli as by general
user-wrjitten programse. There have been many interesting
intertaces proposed over the years but only a3 few are mentioned
here. One purpose tor proposing any new subroutines s to show
how the new storage system primitives might be used. Another

Page 32 MT8- 198

reason Is to try to provide subroutines that might be wusetul in
any reprogramming belng done,

Command Utility Subroutines

The following subroutlines would be Used by many commands.
Thelr lnput 1Is [ntentlally suited tor commands whlch are passed
varying character strings by the command processor.

The following 1s a 1lst of arguments wused by these
subroutines!

rel_path char (*) varylng 1s a varylng character string
which Is typicatty a command
{ine argument.

par_segno fixed bln (15) is the segment number of a
contalning directory.

ename char (32) varying ls an entrynane in a
directory.
struc_ptr ptr polnts to a structure

contalning Input and output
Information.

suffix char (16) varying Is a command name or other
ldentifylng name to be used
when generating the name to be
used for a temporary segment,

seg_ptr fixed bin (15) is a pointer to a segment.
sptr2 ptr points to a structure used by
the star_ subroutine

(described below).

star_names (*) char (32) var is an array of star names to
be Jused by the star_
subroutine.

The subroutines are?!

Entcy? expand_arg_ {(rel_path, par_seganos egames £ade)

This subrouutine converts the Input retative (absolute)
pathname |[Into a directory segment number and entry name. It Is
anatogous to expand_path_ which converts a relative pathname into
an absolute pathname.

MTB- 198 Page 33

Entcy? command_utii_2%open (rel_path, struc_ptr, gode)

This general purpose subroutine performs many functlons.
Flags In the input/output structure control the actlions taken and
the amount of (information returnedy, The parameter struc_ptr
points to the following structure?

dcl 41 cul atlgned based, -
* 2 verslon tixed bin,
. 2 control,

3 dont_chase bit (1) unal,
dont_get_seg_ptr blt (1) unal,
create bit (1) unat,
new_uid bit (1) unat,
truncate blt (1) unat,
delete bit (1) unal,
set_mode bit (1) unal,
want_suffix bit (1) unail,
set_bc blt (1) unal,
set_cc bit (1) unal,
mbz bit (27) unal,

* 2 mode llke mode,
2 status,

W N W W N NN W

3 seg_known blt (1) unal,
3 tink blt (1) unal,
3 no_read bit (1) unai,
3 no_execute bit (1) unal,
3 no_write blt (1) unal,
3 mbz bit (31) unal,
2 Seg_ptr ptr,
2 bit_count fixed bin (24),
2 char_count fixed bin (21},
2 par_segno fixed bin (15),
2 ename char (32) var,
2 suffix char (12) var;
wheret
1. dont_chase i1t ON and refi_path Indicates a |ink,
don*t chase the lInk; 1f OFF, chase the
{ink and return Information about the
ultimate target.
2e dont_get_seg_ptr I1f ON a pointer to the Indlcated segment
Is not returned (the segment [s not made
known) « Informatlon about the segment,
however, |1s returned. 1If OFF, the
segment (s made known and a pointer to
It returned.
3. create it ON and the segment is not found, 1|t

is createdy [f OFF, the segment s not

Page 34 MTB- 198

createds. It the fiag new_uid s also ON
{along with create) a new unlque ID wiltl
be assigned to the segment thereby
effectively deleting the old and
recreating it.

4e truncate It ON the segment (s ¢truncated. This
action witlt be taken only if a polnter
to the segment s asked for. Thils
control bit applies for both the open
and close entrypointse.

S5« delete ls used by the close entrypoints If ON,
the segment s deteted after being made
Junknonne

be set_mode Is used by the close entrypoint. It

specifies that the value of cul .mode ls
to be pltaced in the <calling process®s
ACL entry for the segment.

7« nant_sutfix 1t ON Indicates that the caller wants
suftix processing to be performed.

8. set_bcy set_cc are used by the close entrypoint to set
the blt count,.

3. mode i1s the deslired mode for the segment. An
ACL entry for the catting process wlith
thls mode Is placed on the ACL for the
segment. (The mode can also be set agalin
by the <close entrypoint as mentioned
above.)

If the access on the segment |[Is not
initialty at least the deslired access,
an attempt s made to change the ACL.
If this falls, the mode status blts
{no_read, etc.) are set.

10« status ls a structure of returned status
information of probable Interest to the
caller but not deemed fatal enough to
warrent a nonzero code return value.

11« seg_known ils set ON if the segment belng made
known was already knowne.

12« link is set ON If a link was chased.

13. no_ready, etce are set ON If the desired access could

not be gilven to the caller.

MTB-198 Page 35

14 sSeg_ptr is returned by the open entrypolnt and
is set to polnt to the specifled
segment. The close entrypoint uses this
varlabte to know which segment to make
unknowne

15. bit_count is returned by the open entrypoint,. If
deslired, it can be lInput to the close
entrypoint as Indicated by the set_bc
flage.

16. char_count ls returned by the open entrypoint. It
desiredy, It can be Input to the close
entrypolnt as Indicated by the set_cc
flage

Only one of set_bc and set_cc¢c should be
ON.

17. par_segno ls returned by the open entrypoint. It
represents the segment number of the
contalning directorye.

18« ename is returned by the open entrypolnt. 8Both
par_segno and ename will be set to the
target segment |f a3 llnk Is chased, If
suffix processing 1ls performed, ename
will contain the appropriate suffix.

19. suffix is the desired suttix to be used when
suffix processing Is called for.

The structure pointed to by struc_ptr above is typically
shared by the open and close entrypoints and serves as a storage
buffer for information of Interest to both entrypoints. Suffix
processing consists of making sure the specified suffix exlsts on
the name of the segment passed to the hardcore I[ntertaces. If
adding the specified suffix will make the entryname too tong, a
status lIs returned.

Entcy? command_utll_38close (struc_ptr, gode)

This entrypoint Ils used to "clean up"” after use of a
segments. The segment can be truncated, defeted, etc. under
control of the fiags In the cul structure as mentloned above.

Note that the command_utll_ entrypolnts remove nearly atl
name management tasks from the user programs. The segment s made
known and automatlicalty made unknown (if appropriate) by these
calls. No reference name operations are performed at alt.

Page 36 MT8- 198

Entry: get_temp_seg_ (suffix, seg ptr, code)

This subroutlne returns a polnter to a zero tength buffer
{temporary) segment In the process dlrectory. An ACL entry of
REW (for the calilng process) ls placed on the ACL of the
segment, The name of the segment is a unique name generated using
unfque_chars_ and also containing the lnput suffix. A pointer to
the segment [s returned in seg_ptr.

Entryt retease_temp_seg_ (seg_ptr, code)

This subroutine truncates the speclified segment, makes It
unknown, but does not delete [t from the process directory. The
segment s placed in a pool of free buffer segments for later use
by callers of get_temp_seg_. (These subsequent calis change the
name and make [t Kknown agaln,.)

Entry? star_ (struc_ptr, names_ptr, sptr2, star_names, cgde)

This subroutine scans the names speclfied by struc_ptr and
names_ptr (as returned by status_3%all or status_gall_long) and
creates an array of indlces into the orlglinal status structure of
matching entrjies.

dcl 1 smi atigned based,
¥ 2 slze_altocated fixed bln,
2 num_matching_entries tixed bin,
2 data {1 refer (smi.num_matchling_entries)),
3 strx tixed bin,
3 star_name_index fixed binj
wheret
i. strx is an index into the status array
polnted to by struc_ptr t hereby
indicating the entry which the star name
matchedes
2 star_name_lindex specltles whlich star name ot the

star_names array was matched.

