
MULTICS TECHNICAL BULLEI'IN 

To: Distribution 

From: Steve Webber 

Subject: New Hardcore Primitives 

Date: May 22, 1975 

MI:'B-198 
ADDENDUM 

Attached is an addendum to MrB-198. Please incorporate this as the 
first two pages of text. 

Multics Project internal working documentation. Not to be reproduced 
or distributed outside the Multics Project. 



Muttlcs Technical Bulletln HTB-198 

Toi Dlstrlbution 

From• Steve Webber 

SubJecta New Hardcore Primitives 

Oatel Hay 1975 

The attached MTB proposes some ne• primitives and interfaces 
for the Multics svstem. There are many unresolved issues, and. 
although solJtlons are of ten proposed, there ls often little 
agreement that what ls proposed ls correct. The follo•lng list 
glves some of the •ore interesting unresolved issues. The reader 
ls urged to keep this llst in mind Mhlle reading the HTS. 

1· Do we want to use varying strings as extensively as 
proposed? 

2. Is the proposed new storage allocation technique (of using a 
pointer to a region instead of a ?Lii area) better? 

3. Is the new <par_segno, ename> interface needed for segments 
where <seg_ptr> Interfaces are also provided? Indeed, would 
lt be better to add a third class of interfaces that take 
<ep> (pointer to dlrectorv entrvt? 

4. Is the new include file scheme -- with version numbers 
appropriate? Oo we want to support include flies for svste• 
supported structures? Should include flies glve calling 
seQuences for the interfaces? 

5. Should MSFs be supported ln ring O? If so, how extensively? 
By how many interlaces? 

&. Should star processing be removed from the hardcore? 

7. Should the fs_move primitives be removed from the hardcore? 

6. Should ~e retain the "Svs~aemon" speclal casing ln the ACL 
lnterf aces? 

9. Should create_ and set_ allow manipulation of ACLs and 
na11es? 

Muttlcs ProJect internal Morklng documentation. Not to be 
reproduced or distrlouted outslde the Multics Protect. 



Page 2 HTB-198 

10. Do we want a prl•ltlve to return default values for set_ and 
create_? 

11. Should create_ be JIQCJl prlmltlve and do •uch less for 
eKa•pf e not al low success If segment ls already there? 

12• Sh~uld a 11echanls• be provided to cooy an entlre dlrectorv 
out of the hardcore for user-rlng perusal? 

13• Should switch parameters be used or should alternate entry 
points be used? 

14. Should we pass structures or pointers to structures? 

15. How should status about lte11s within a structure be handled? 
Do we wa~t status codes returned ln the structure? 

1&. How shoiJI d I inks be interpreted C ASCII or binary)? 

11. How should we s~eclfy keywords such as •worklng_dtr• ln 
search rules structures? 

18. Should- partial lnfor11atlon be returned if there ls not 
enough roo• for all information or lf so•e nonfatal error 
occured? 

19. Should we ~other doing new primitives at alt? 



--, 

Multics Technical Bulletin HTB- 198 

Toi Distribution 

From: Steve Webber 

SubJectl New Hardcore Primitives 

Oatea Hay 1975 

Thls me•o proposes a new set of subroutines that would 
define a new interface to ring O and directory control, ln 
oartlcular. Some of the functlons currently implemented ln ring O 
(and invoked through the gate hes_) will be removed from rlng o. 
The prime functions of Interest belng removed from rlng o are 1) 
reference name management and 2) pathname management. Slnce 
these functions will be lmplemented outside of ring o, lt will be 
necessary to remove hes_ ltself from ring o so that the target of 
the hes_ entries can use the new user-ring prlmltlves for 
reference name and pathname manage•ent. 

The need for the new Interfaces arises because, for 
efflclency, reliability, cleanliness, and secureabllltv we are 
changing the supervisor so that reference names and pathname 
management are removed fro• ring o. Mlth the requlslte new set 
of interfaces, lt behooves us to make other cteanslng changes to 
the user interface both for ef f lclencv and consistency. Thls 
memo oroposes a set of primitive interfaces to directory control 
in light of thls new structure. The programs that hes_ used to 
invoke will now reslde largely outside of rlng o. These program5 
wlll QsU be wrltearounds to the new primitives but rather 
compatlble interfaces to new prlmltlves when necessary. <Host of 
the directory control "prlmltlves• of today are not that 
pri•itlve, but rather invoke more prlmltive functions to perform 
thelr tasks.> It is this most primitive set of functions whlch ls 
being proposed -- most other functions will be removed from rlng 
o. 

Since hes_ wlll no longer reside ln rlng o, replacement 
gates for all the necessary ring O functions outside of dlrectorv 
c~ntrol must also be provided. These are outlined as welt. 

This memo ls di~lded lnto four sections. The flrst section 
describes overall ~oals of any set of interfaces that, I hope, 
will generally be agreed to. The second section describes a set 
of rules and conventions that I would propose as a means of 
satisfying the goals ln section 1· The third section describes 
the actual proposed hardcore primltl~es which use the rules and 

Multics ProJect Internal working documentation. Not to be 
reproduced or distributed outside the Multics Prolect. 



Page 2 HTB-198 

guldellnes of section 2· 

The issue of user-ring subroutines that must interface with 
the primitives prooosed here should not be forgotten. In 
particular, lt may well be that the lnner-level prlmltlves are 
the same ones offered at the user level. When this ls 
appropriate, these primitives should be made available as user 
I eve I subroutines from the st art. Other user ·I eve I sub rout lnes 
(not in hes_, can and should be designed in parallel with Mhat ls 
being proposed nere. Section 4 gives some possible user-ring 
prlmlti11es. 

Sections 2, 3 and 4 are completely open for debate and lt ls 
hoped that we can resolve the maJor issues in the very near 
future. we, of course, do not want to barge into the very 
important· area of system primitive design and come up with 
anything thrown together in a haphazard way. We do, however, 
want to get on wlth thls task as other Mork will .lnevltabty 
depend on it. 

There are several overall goals to be satisfied Mhen 
designing a svstem prlmltlve. There are further requirements 
when the primitives are to be user interfaces. The follo•lng 
reQulrements are gene~ally aPP11cable to anv set of Interfaces ln 
the svstema 

1· The prlmltlves must be efflclent to use. 

z. The use of the prlmltlve and its name should be 
consistent wltn other primitives ln the system, or at 
least the set of primltlves of which it ls a part. 

3. The primitive set should be complete. There should be 
prl•ltlves to handle aJI of the normal needs of the 
caller. 

~. The prl•ltlves should be extenslbte, where possible, to 
allow for future changes ln the system. 

5. The primitives should be as compatible 
reasonable to what we have today. 

as seems 

&. The prlmi~lves should be easy to use if called from a 
ring different from the one they execute ln. 

7. The primitives shou4d be easy to move from one rlng to 
another if appropriate. 



MTB- 198 

1. The primitives must be efficient to 
ways to design primitives which 
efficient to use. The problem ls 
useful set that are not too limited 
following are proposedl 

Page 3 

use. There are many 
wllf make them more 
coming up with a 

or too general. The 

A. ?rlmltlves should have as few arguments as ls 
reasonable to minimize argument list preparation. 

B. ?rlmltlves should be designed, where possible, so 
that ~Q descriptors are required 1n the argument 
lists. This means that character strings should 
be passed as char <N> varying, where N ls 
constant; it also means that arrays should not be 
oassed if they are variable ln length -- Instead a 
pointer to an array with bound should be passed. 

Some orlmltives today receive switches to lndlcate 
alternate options to take. Such switches should 
be embedded ln an already existent structure, or 
avoided, lf possible, by providing a different 
::>rlmltlve. 

2· Primitive sets should be consistent. Thls wlf f require 
conventions such ass 

A. A status code ls always the fast argument. 

a. The names on .. seg" and .. flle'• prlmltlves shoutd be 
consistent and lt should be possibJe to guess ~hat 
the prl•ltlve name ls and how 1t•s called. 

c. The system !1mk1J.Jm~ should be 
<"lnltlate .. should only be 
names, etc.). 

consistently named 
used with reference 

o. There should not be many prlmltlves that do nearly 
the same thing. The prlm1t1ves should be mutually 
exctuslve where appropriate so that a user wlll 
know unambiguously which prlmltlve ls the one he 
should be calling. 

3. The prlmltlve set should be complete. This means that 
all necessary functions should be handled. It also 
means that if a "ptr" entry exists for a partlcutar 
function and a "flle" entry is meaningful, lt too should 
exist. The primitives should be svmmetrl~ by providing 
all of the functions ln a consistent, obvious way. 

The primitives should be 
designed so that new 

extensible. 
prllftJ.tlves 

They should be 
can be added in an 



Page ~ HTB- 198 

obvious way and that existlng primitives can be modified 
to provide new features when necessary. The proposed 
wav to handle this problem ls to use version numbers ln 
structures. The structures used will be contained in 
include flies which also include a variable giving the 
verslon number of the structure. Structures which are 
changed should be appended to rather than reordered If 
possible. All structures passed to the prlmitive set 
should have the version numoer ln the first word of the 
structure. 

The use of the version number would be as follows1 the 
flrst version of a structJre would be Included ln the 
include file for the structure (which should be 
available to users and mentioned, by name, In the user 
documentation). The include flle should also Include a 
declaration of the f orml 

declare STR_verslon_N fixed bin static lnit (N); 

where STR 
the version 
the standard 
the f orml 

ls speclfic to the given structure and N ls 
number. Users of the orlmitive should use 

Include file and should have a statement of 

ST~.version - STR_version_N; 

This would cause changes in a structure to be caught at 
recompilation time. Old versions of a structure should 
be made available ln an include file na•edl 

STR_old_N_.incl.pli 

where STR and N are as above. The user could change hls 
Xlnclude statement to the old version lf he dld not want 
to recode for the new version <rlght aMay). 

An error_table_ code should oe returned saving a 
primitive does not support a particular version when 
that version becomes unsupported (if ever). 

The Include flies provided by the svstem should probably 
end in an underscore. 

5. The primitives should be functionally similar to what we 
have today, if possible. An example ls the 
makeunknown/lnltiate functions of today. Both of these 
functions are provided by the hcs_Slnltlate primitive. 
Note that the lnitlate function will no longer be 
implemented in ring O and thus the low-level primitive 
could not provide both these functions. 



HTB- 198 'Page 5 

6. Primitives should be easy to cal I from another rlng. If 
a prlmitlve ls a gate, it must take special action with 
respect to its arguments. In particular <Input> pointer 
valued arguments must be copied in a way that preserves 
the validation level. Further all other Clnput> 
arguments must be copied to guarantee vafld verlflcatlon 
of the arguments. Thls means that, due to the current 
way the complier works, lt would be Inconvenient to pass 
pointers embedded ln structures as structures are not 
copled in a way permitting hardware vaf ldatlon. A 
program must not read an input argument more than once 
or an outp~t argument at all. Output arguments should 
be stored lnto exactly once. 

Returning values into a user-supolled area should also 
be avoided, both because It ls ~ore likely to cause 
crawtouts and because It prevents users from using their 
own area management routines. It ls proposed that when 
large amounts of varlabte-tength data ls to be returned 9 

the user provide a pointer to a region of storage Into 
which the data ls copied. The flrst word of this region 
should be filled ln wlth the size of the region, In 
words, before making the calf. Relative pointers and 
indices can then be used to locate selected data Items. 
<A new set of user-ring prl~ltlves to manage temporary 
buffer segments is mentioned in section 4.) 

7. It should be easy to move a prlmitlve fro• one ring to 
another. Since many new primitives will arise in the 
near future and since the rlng In which they reside 
depends on the hardcore syste~ at the tlme, It should be 
easy to move primitives about with ease. To solve thls 
problem, two requirements ~ust be met. First, a.LL 
primitives must fol low the coding conventions for gates. 
Second, each prlmltlve (or set of prl~ltlves lf It ls 
clear that they wlll forever be an integral set) should 
have a seperate <reference) name. This means that there 
wilt not be a replacement for hes_ but rather many such. 
It does not mean that we wllt need multiple gate 
segments. Names will be moved to and from the new 
hardcore gate segment as primitives are moved into and 
out of the supervisor. 

The new primitives fall Into the following logical sets• 

1· reference na•e primitives 
2. pathname pri•itives 
3. address space manager primitives 
~. storage system primitives 
5. linker primitives 



Page & HTB- 198 

&. 
7. 
8. 
9. 

interprocess communlcatlon primitives 
general hardcore utility primitives 
interprocess signalling prlmltives 
hardcore I/O primitives 

The primitives described belo~ are intended to form a 
complete set for all classes except for the Storage System 
primitives. The storage system primitives, by far the largest 
set, ls only partially specified below. The maJor o•issions are 
intentional due primarily to the lack of any backup prlmltlves. 

In the following descriptions, underlined parameters are 
output. Items in structures marked ~1th a star <•> are Input. 

There are eight proposed primitives for the reference name 
manager. These are all entries in the procedure ref_name_ whlch 
will eventually be a user-ring primitive. These primitives are 
used by the following hes_ entries (but may be called dlrectly)1 

fs_get_call_name 
fs_get_ref_name 
fs_get_seg_ptr 
Initiate 
lnltlate_count 
make_ptr 
make_seg 
termlnate_noname 
terminate_f lie 
termlnate_na11e 
termlnate_seg 

The following is a list of arguments used in the reference 
name prlmltlvesl 

t. segno 

2. rna11e 

3. struct_ptr 

It. entr-v_ptr 

flxed bln <15> ls the segment number of the 
segment of interest 

char- ( 32) var ls the 
inter-est 

reference na111e of 

ptr ls a pointer to the followlng 
structures 

de I 1 rn l aligned based, 
• 2 nantes_al located fixed bln, 

2 names_returned fl xed bln, 
2 ref names (refer <rnl.names_returned)) 

char(3Z) var; 

ptr is a pointer to a (PL/I, e.g.) 
entrypoint; 



Page 7 

5. code fixed bin (35) ls a returned status code. 

ref_na~e_Sadd (segno, rname, ~) 

This orimltlve associates the glven reference name wlth the 
specified segment number. 

ref_name_Sdelete (rname, ~~~Q~, ~~~) 

This prlmltive removes the given reference name from the 
llst of those for the segment to which lt ls associated. 

ref_name_Sdelete_segno (segno, ~~) 
ref_name_$delete_refnames (rname, ~2~~) 

This prlmltlve removes all reference names associated with a 
given segment. 

This prlmltlve returns the segment number of the segment to 
which a particular reference name is associated. 

ref_name_$get_refnames (segno, struc_ptr, ~> 
ref_name_Sget_refnames_rn Crnanie, struc_ptr, ~~> 

This primitive returns a user-specified number of reference 
names associated with the glven segment. The parameter struc_ptr 
points to the rnl structure specified above. 

ref_name_Sget_entry_ptr (rname, .wl!.cX_Q!J::, ~) 

Thls primitive returns a pointer to the entry rnameSrname if 
such an entry exists, i.e., lf an entrypolnt wlth the same name 
as rname exists ln the segment whose reference name ls rname a 
pointer to thls entry is returned. 

The ref_na•e_ primitives will orlglnalty reside ln ring 0 
and ref_name_ will be a gate with ring brackets ca,o,7). When 
the reference name manager ls removed from ring o, ref_name_ will 
no longer be a gate. It wlll have ring brackets of c1,7,7l. 

There are two pathna•e management primitives which will 
remaln after the futl conversion to the reference name manager. 
Since pathnames wilt no longer be recognized in ring o, 
eventually, the functions of find_ and hcs_lfs_get_path_name will 
be provided ln the user rlng. 

The following are arguments for the pathname management 
prlmltlvess 



Page 8 HTB- 198 

1· dir_path char (.) var ls a directory pathname, 

2· dir _segno fl x ed bin (15) ls the segment number of a 
directory, 

3. segno f lxed bln (15, ls the segment number of a 
segment (possibly a directory), 

.... path char ,., var ls a f ult pathname generated by 
the primitive, 

s. code f 1 x ed bln (35) ls a status code. 

The prlmltlves aret 

En.lex• flnd_dlr_se~no_ (dlr_path, Qlr ~ego2' ~) 

This prlmltlve parses the given directory pathname and 
returns the segment number of the directory speclf ied. 

get_pathname_ <segno1 2"1.bt ~2U&) 

This entry generates a pathname for the given segment by 
concatenating the prl•ary entry names of all superior directories 
<separated by •>"s). 

Note that the pathname manager may use an internal 
associative memory to avoid a recursion that loglcally proceeds 
to the root. Use of such an associative memory perpetuates the 
current system bug causing strange behavior lf directories are 
r-enamed. 

An outer level pr-lmltive that converts a (retative) pathname 
of a ~QJllaa1 l~to a pointer will also be provided. It, however, 
ls one level removed from these primitives and ls not discussed 
until section I+ of this MTS. 

The following set of primitives will always reside in ring 
o. They manage the blndlng of segment numbers to oblects in the 
hierarchy and ar-e the interface to Mhat is commonly called the 
address space manager. 



MTB- 198 Page q 

These primitives are used by the following hes_ entrless 

Initiate 
1n1tiate_count 
make_seg 
makeunknown 
terminate_flle 
ter11lnate_name 
terminate_noname 
termlnate_seg 

Some of the functions provided by the above hes_ entries are 
handled by the reference name management orlmltives. 

The following are arguments used ln this set of prlmltlvesl 

1. par_segno f 1 xed bln (15) ls a directory segment number, 

2· en a me char ( 32) var J. s an entryname ln a dl rectory, 

3. segno f 1 xej bin (15) is a segment number, 

"· struc_ptr otr ls a pointer to a structure of 
(mainly) returned lnformat!on, 

5. f I ags bit (36) ls a string of flags used to 
control what unblnd_segno_ does. 
The f lr-s t b 1 t ls the "reserve" 
bit; the second blt ls the 
.._force" bit; others are reserved 
for future expansion. 

&. code f i >< ed bin (35) ls a status code. 

The pointer struc_ptr above points 
structure !n ~hich Information ls returned. 
declar-ed as followsr 

to a 
Th ls 

user-supolled 
structure ls 



Page 10 HTB-198 

dcl 1 bsl aligned based, 
• 2 version fixed bln, 

<•> 2 segno fixed bln(15), 
• 2 contro I, 

3 reserve bit <1> unal, 
3 dirsw bl t <1) unal, 
3 no_wrlte blt (1) unal, 
3 m b z b 1 t C 3 3) un a I , 

2 bit_count fixed bin (24), 
2 mode like •ode, 
2 f 1ags, 

3 seg_already_known blt (1) unal, 
3 may_or_may_not_be_there bit (1) unal, 
3 rest blt (34) unal, 

2 llnkname char (168) var; 

dcl 1 mode aligned based, 
2 read blt (1) unal, 
z execute bit lil unal, 
2 write bit (1) unal, 
2 mt>z bl t (33) unal; 

The pri•ltlves area 

E.!l!c.:t• bind_segno_ Cpar_segno, ename, struc_ptr, ~) 

This prlmltlve binds a segment number to the segaent whose 
name ls ename in the directory whose segment number ls par_segno 
unless ename speclfles a llnk. If ename speclfles a link, 
llnkname ls filled ln and a status code ls returned. If the 
segment ls already known, that number ls returned but the 
seg_already_known flag ls set. 

If the entry being made known ls a directory, the 
may_or_may_not_be_there flag ls set lf it has not yet been 
established that the user can know about the directory. 

Whenever a cal I to blnd_segno_ ls made, a usage count for 
the calling ring ls incremented ln the KST entry for the segment. 
This usage count mechanism allows users of bind_segno_ to have a 
clean, efficient interface analogous to the null reference name 
Interface of today but without the overhead of any name 
management. Indeed, ~nv programs that merely want a pointer to a 
segment and have no need for any reference name functions would 
work smoothtv. The blnd_segno_ and unblnd_segno_ interfaces 
therefore replace the hcs_SlnltlateC_countl and 
hcs_Stermlnate_noname interfaces ln a large number of cases. 

E.n!c.:t• prlv_bind_segno_ (par_segno, ename, struc_ptr, ~) 

This primitive works similarly to blnd_segno_ except that 
special action ls taken ln ring o to allow the segment being made 
known to be referenced without full regard to the access 



MTB-198 Page 11 

1solat1on mechanism•s controls. 

fn1c.~· unbind_segno_ <segno, f I ags, '-~ilt 

This pr1mlt1ve decrements the usage count of the specified 
segment for the cal 11ng ring. If alt usage counts are o, the 
segment ls made unknown. S1milarlv 1 1f the "force• bit ls ON (bit 
2 of flags), and all usage counts are o in all Inner rings, the 
segment ls made unknoMn. 

If the segment ls made unknown then Its seg•ent number ls 
returned to the free pool of segment numbers unless the "reserve" 
bit (blt 1 of flags) ls ON. 

The following set of pr1mlt1ves are Intended to represent 
the external Interface to directory control. These prlmltives are 
more prlmltlve than the hes_ entries of today and are also used 
wlthln ring o. There are several mator changes being proposed 
lncludlngl 

1· No allocations ln user areas will be done, 

2. No star processing wltl be done, 

3. No pathnames wlll be accepted, and 

4. Status "flags• are used instead of some "codes". 

The primitives necessary for backup and the reloader are not 
mentioned here. These primitives will be designed later when a 
better understanding of the requirements of backup ls avallable. 
It should be noted. however, that backup will have lts own 
orlmltives and that the normal user primitives will therefore not 
be constrained by some llttle used or otherwise unnecessary 
feature of backup. It should also be noted that the user-ring 
hes_ entries will all be supported and that backup can continue 
to use these until new backup prlmltives are avallable. 

Host of the storage system primitives use structures to 
communicate both input and output information. Some of these 
structures are too detailed or cumbersome for a clear user 
Interface and so, where appropriate, manv user-rlnq primitives 
are provided to interface to the actuaJ hardcore prlmltlves (the 
most obvious set of user-ring primitives will be hcs_l. 

The following ls a list of arguments co••on to many of the 
storage system interfaces• 

1. par_segno fixed bin (15) ls a directory segment number, 



Page 12 

2. ename 

struc_ptr-

It. seg_ptr 

5. names_ptr 

acf_ptr 

1. Unkna11e 

8. newname 

9. del name 

10• otdname 

11· dlr_segno 

N. code 

char ( 3 Z ) v a r 

ptr 

pt,. 

ptr 

ptr 

HTB- 198 

ls an entry name in a directory, 

points to 
structure, 

an input/output 

ls a pointer to a segment. 

ls a pointer to a structure for 
retu~nlng names. 

ls a pointer 
structure. 

to an ACL 

char <1&8) var ls a link name managed by ring 
o. 

char ( 32 > var 

char ( 32) var 

char < 32) var 

ls a name being added to an 
entry. 

ls a na•e being deteted from an 
entry. 

ls a name currently on an entry 
that ls to be deleted. 

f lxed bin (15> ls a directory segment number. 

fixed bln (35> ls a returned status code. 

Since many of the prlmltlves return information in a 
structure, some of the structures also include status codes and 
status flags associated with speclf lc items within the structure. 
This Intermixing of returned lLA.l~A~ and returned ~~ ls a 
compromise in style ~nd ls proposed ro~ lack of a better method 
known to me. In general, when a "code" field in a structure ls 
returned wltn a nonzero error_table_ value, the •code• argument 
will be set to error_tabte_$partially_successful (or some such 
name>. If a code ar1ument of zero ls returned, all structure 
code fields will be zero, but some status •taags• may be set. 
See the lndlvldual primitive descriptions for more details. 

One more item worth mentioning about the storage system 
primitives ls that lt ls Intended that directory operations and 
file operations c•r11e" refers to slngle segment or multlsegment 
nfiles•> be completely Independent. There are separate 
primitives for manipulating these at manv levels ln the storage 
system. The intent ls to give users appropriate warning lf thev 
appear to be performing an operation on the wrong kind of entity. 

The new storage system wlll reQulre certain changes to the 
user-visible Interface to directory control. Some of these 
changes are reQuired for new capabllltles whlle others are 
Intended to encoura~e users to "ask the right Questions" because 



MTB- 198 Page 13 

of efficiency considerations. An example or new features ls the 
posslbllltv of a very fast fs_move function In certain cases. 
When and If thls ls availab1e, new primitives will be proposed. 
An example of asking the wrong Question arises when segment 
status ls reQuested. The new storage system ls potentially more 
expensive when returning comptete status especially lf the status 
for all segments in a directory ls requested. For this reason, 
the default for ullst• etc., should be changed to work In the 
most eff lcient way. 

The storage syste• primitives are divided into the fol lowing 
classes: 

1· creatirlg prl1111tlves 
2· naming prl~ltlves 
3. deleting prl~ltlves 
4. status prlmltlves 
5. set primitives <attribute changing> 
6. acl prlmitlves 
7. Quota primitives 
6. truncation prlmltlves 
9. utilltv primitives 

The following primitives create an entry in a directory. A 
ma1or functional change from what ls available today ls that a 
user may specify al I the reasonable attributes to be applied to a 
segment. This ls because a user with append permission on a 
directory who does not have modify permission as well, must be 
able to say everything about the branch being created in the 
create_ call. <Another Independent proposal would require 
awarding append permission on a directory only if modify 
permission ls awarded.> A secona functional change ls the 
addition of the concept of multlsegment flies Into the storage 
system. This ls done by providing a mechanism for converting 
segments to arld from multlsegment fites and by enforcing some 
consistency on HSF•s in. g,1.c.a'-.tW::r. '-.201C..l21• (For example, making 
an MSF known should return a (warning) status and creating and 
deleting HSF components should be special cased. For detaits of 
the MSF implementation proposals see the actual descriptions of 
the primitives below.) 

Eo.!c.r.a create_ (par_segno, ename, struc_ptr, kSUUll 

This prlmitive creates a vanilla ftavored, single segment 
f i I e. The parameter struc_ptr points to the fol I owing structure& 



Page 14 HTB- 1$S 

def 1 crl aligned based, 
• 2 version fixed bin, 
• 2 options, 

3 change_3ttributes_lf_exlsts blt<t> unal, 
3 dont_use_inacl blt <i> unal, 
3 truncate blt (1) unat, 
3 m b z b I t C 3 3 > un a I , 

• 2 mode llke mode, 
• 2 set_array llke set_array, 
• 2 set_lnfo IJke set_lnfo; 

dcl 1 set_array aligned based, 
2 blt_count blt <1> unal, 
2 rlng_brackets bit <1> unal, 
2 entry_bound bit <l> unal, 
2 access_class blt Ci> unal, 
2 max_lengtn bit <1> unal, 
2 mbz bit (31) unal; 

dcl 1 set_lnfo aligned based, 
2 switches, 

3 safety bit <1> unal, 
3 copy_on_•rite bit (1) unat, 
3 entry_bound blt (1) unal, 
3 multlple_class bit <t> unal, 
3 111bz bit (32) unat, 

2 bit_count fixed bin (24), 
2 rlng_brackets(3) fixed bln (3), 
2 rlng_bracket_code fixed bl~ CJS), 
2 entrv_bound fixed bln C14), 
2 max_lengtn fixed bin (35), 
2 access_class bit<72>; 

This prl111itlve creates the named segment and sets the 
various attributes as specified. If the segment exists and 
"change_attrlbutes_lf_exlsts" ls ON, the prl111itlve Morks llke the 
set primitive and merely updates the attributes. Si•llarty, if 
the seg•ent exists and "truncate" ls ON, the segment . wilt be 
truncated. The "dont_use_inact• switch instructs the primitive 
not to use the initial ACL. The primitive will, in any case, 
p I ace an ACL entry on the segment consisting of the 11ode 
speclfled (for the calling process•s user ID>. 

The "set_array" field instructs the pri•ltlve 
specified item from the input structure. If a blt 
set_array fleld, the corresponding attribute ls set 
For example, the ring brackets would be set 
crl.set_array.ring_brackets were OFF. 

to use the 
ls OFF ln the 

by def au It. 
to cv,v,v) 1 f 



HTB-198 Page 15 

Eo.tc~• create_Sdlr (par_segno, ename, struc_ptr, ~~e> 

This orlmltive creates a directory branch ln the specified 
directory. The inout pointer struc_otr points to the follo•lng 
structures 

dcl 1 
.. 2 
.. 2 

cdi aligned based, 
version f lxed bin, 
options, 

.. 
• 

.. 
• 
.. 

3 change_attrlbutes_lf_exlsts bit 
3 dont_use_lnact bit <t> unat, 
3 m b z b i t ( 3 4) un a J , 

2 mode llke dlr11ode, 
2 set_array, 

3 mbz bit (1) unat, 
3 ring_brackets bit Ct> unal, 
3 11bz blt (34) unal, 

2 quota f lxed bin, 
2 quota_code fixed bln (35), 
2 access_class blt <72>, 
2 access_class_code fixed bin CJ5), 
2 ring_brackets (2) fixed bin (3), 

2 rlng_brackets_code flxed bln (JSt; 

dcl 1 dirmode aligned based, 
2 status blt Ct) unal, 
2 mod 1 f v b 1 t ( U una I, 
Z append bit (1) unal, 
2 11bz bit '33> unat; 

(1) unal, 

An ACL of ••mode .. for the cal I Ing process•s user to ls set. 

create_Sllnk (par_segno, ename, llnkname, ~QQ.e> 

This 
specified. 
ls alloMed 

prlmltlve creates a llnk entry in the directory 
Since links are not interpreted ln ring o, llnkname 

to be any blnarv data of up to 1&8•9 bits in length. 

Eo..lc.x.• create_Smsf (par_segno, ena~e, struc_ptr, ~~) 

This primitive creates an HSF 
specif led. Like create_, lt ls not a 
already exists. However, if the entry 
segment file lt ls converted to an 
mapplngsl 

entry ln the 
fatal error lf 
ls lnitlally 

11SF Mith the 

directory 
the entry 
a single 
following 

1• The ACL on the MSF component ls set ·to the specified 
mode; the ACL on the MSF directory ls copled from the 
ACL of the parent dlrectory, 

2. The max_length for the MSF, lf not speclfled by the 
user, ls set to svs_lnfo_Smax_msf _slze, and 



Page 1& MTB-198 

3. The segment lnltlal ACL for the HSF directory ls set to 
the segment lnltlal ACL from the HSF•s parent directory. 
(The directory lnltlal ACL ls set null.) 

En!J::xi create_smsf _component (par_segno, ename, comp_no, ~) 

Thls prlmltlve w11 I create the comp_no•th component of an 
MSF. Several components may be created in order to ensure the 
consistency <contiguity) of the HSF. All attributes on the 
segment created are set to those of the other components of the 
MSF (guarenteed consistent by the other prlmitlves of directory 
control). The parameter comp_no ls an Integer which must be 
greater than the current number of components ln the HSF and less 
than the maximum number of allowed components. 

An HSF component can be created by any 
permlsslon on the HSF as long as the max_length 
exceeded. (Any user with modify permlsslon on 
can change the max_tengtn.> 

user with write 
of the HSF ls not 
the HSF directory 

When a segment Cdlr, llnk, MSF) ls lnltlally created, a 
single name ls associated wlth it. This name ls the orlmarv ~ 
and wlll remain the primary name untll lt ls removed no matter 
how many other names are subsequently added or deleted. The 
following prlmltlves are used to change names. To find all 
names, see the status_ prlmltives. 

names_Sadd (par_segno, ename, newname, ~) 
names_Sadd_ptr Cseg_ptr, newname, ~~gA) 

Thls prlmltlve adds the name newname to the list of names 
associated wlth the 9lven segment (dlr, llnk, HSF>. 

names_Sdelete (par_segno, ename, delname, ~> 
names_Sdelete_ptr <seg_ptr, delname, ~) 

This prlmltlve removes the given name from the given segment 
Cdir, link, MSF). If delname ls the last name on the entry it ls 
not removed and an error code is returned. If detname ls the 
prlmarv name, a new prJmary name ls chosen by the primitive. 

names_Schange Cpar_segno, ename, oldname, newname, ~) 
names_Schange_ptr (seg_ptr, oldname, newname, k5Ulil> 

Thls prlmltlve replaces the name oldname wlth the name 
newname. If oldname ls the prlmarv name, the primary name ls 
changed to newname. 



MTB- 198 

The following prl•ltlves are used to delete 
directories. All reQulre modlfy permission 
directory. 

del_ (par_segno, ename, ~a> 
del_Sptr (seg_ptr, k2~) 

This prlmltlve deletes the speclfled segment. 

Enl.c.lt• del_Sdlr (par_segno, ename, k~.ciJI.) 
del_Sdlr_ptr (dlr_segno, "2g~> 

Page 17 

entries 
on the 

fro• 
parent 

This primitive deletes the specified directory. If the 
directory has any branches ln lt, lt ls not deleted and an error 
ls returned. 

del_Slink (par_segno, ename, k~) 

This primitive deletes the specified link from the specified 
directory. 

del_Smsf (par_segno, ename, k~) 

This primitive deletes the MSF named ename from the 
directory whose segment number ls par_segno. 

There are two maJor changes to the status primitives. 
First, the star convention ls not recognized. Theref.ore llstlng 
programs must be returned an entire dlrectory•s contents. 
Second, because of neM storage system considerations, there w111 
be Just two forms of returned status, brief and long. Basically, 
brief status contains Information about the seg•ent independent 
of Its size or use. 

Recall that thls ~TB does not propose replacements for the 
backup primitives. Hence, the status primitives described below 
should not be eKpected' to be acceptable for backup use. 

One last point to mention ls that the prlmltlves belo" are 
the hardcore primitives. Additional, user-rlng primitives <such 
as those in hes_) "ill augment the hardcore prlmltlves to make a 
more usable set. 

The status pri•ltlves are divided lnto two classes, those 
whlch return what are called "directory• attributes and those 
"hlch are called "seg~ent" attributes. To use the primitives 
which return directory attributes, status permission on the 
containing directory ls reQulred; for segment attributes all 



Page 16 HTB- 198 

that ls required ls nonnutl access on the segment. <Thls means 
that to get status of a llnk, status permission ls required on 
the containing directory -- slnce links do not have ACLs.) 

status_ (par_segno, enaMe, struc_ptr, names_ptr, ~> 
status_Sptr Cseg_ptr, struc_ptr, names_ptr, ~a> 

Thls primitive returns selected status about a segment (dlr, 
link, HSFJ useful to normal users. It requires status permlsslon 
on the containing directory. Either struc_ptr or names_ptr may 
be null. If either ls, the associated information ls not 
returned. If struc_ptr ls nonnull lt polnts to the folloMlng 
structure. The lte•s starting with "dtu" on to the end of the 
structure are all set to o. 

dcl 1 stl aligned based, 
• 2 version fixed bin, 
• 2 slze_al located fixed bin, 
• 2 control, 

3 primary_name_onty blt (1) unat, 
3 mbz bit (35> unat, 

z data like status_lnfo; 

dcl 1 status_lnfo allgned based, 
2 type fixed bln, 
2 nnames fixed bln, 
2 ptr_to_flrst_name ptr unal, 
2 (dte11, dted> bit <36>, 
2 uld bit (3&), 
2 author char (32) var 
2 effmode like mode, 
2 bit_count_msf_lnd fixed bln (24) 1 

2 switches, 
3 safety bit <1> unal, 
3 copy_on_wrlte blt (1) unal, 
3 entry_bound bit <1> unal, 
3 multlple_class blt (1) unal, 
3 ~bz blt (JZ> unal, 

2 rlng_brackets (3) fJ.xed bin (3), 
2 bit_count_author char (32) var, 
2 entry_bound fixed bin (14t, 
2 access_class blt (72), 
2 devlce_name char (32> var, 
2 eK_effmode bit (36), 

2 (dtu, dhh dtd) blt (361, 
2 ~ecords f!Ked bin (9), 
2 cur_tength fixed bin (35), 
2 max_length fixed bin (35>, 
2 mbz (13) fixed bin (35); 

The tvpe ele~ent of the status_info structure ls lnterpreted 
as follows: 



MTB- 198 

0 
1 
2 
3 

I Ink 
segment 
directory 
HSF 

Page 19 

This primitive is used by first filling in the starred items 
and then calling ring o. If the entrv of interest ls a link, 
type ls set to O and struc_ptr will be assumed to point to the 
following structure& 

• 
dcl 1 

2 
2 
2 

• 
• 

lkl aligned based, 
version fixed bln, 
slze_allocated fixed bln, 
control, 
3 prlmary_na11e_only bit (1) 
3 m b z b i t C 3 5) un a I , 

2 type fixed bin, 
2 nnames fixed bin, 
2 ptr_to_f lrst_name ptr unal, 
2 (dtem, dtd) bl t (3&>, 
2 uld bit (36), 
2 author char (32) var, 
2 llnkna11e char (168) var, 
2 mbz (ft) fixed bin (35); 

unal, 

If the entry of interest ls a dlrectorv, type ls set to 2 
and struc_ptr will be assumed to point to the same structure as a 
nondlrectory segment. However, certain items are not define~. 

The pointer na•es_ptr, if nonnull, should point to the 
fol lowing structure a 

dcl 1 na11es_str a1lgned based, 
• 2 size_allocated fixed bin, 

2 names (1) cnar (32) varying; 

The variable •ptr_to_first_name" in the status structure 
Points to one of the names In the above array. As before, the 
starred items should be filled In before the call. The variable 
slze_allocated ls In words. If the flag "primary_name_only" is 
set ON in the control array, onlv the primary name will be 
returned. In any case, "ptr_to_flrst_name" will always point to 
the primary name. 

ED.!c~a status_Slong (par_segno, ename, struc_ptr, names_ptr, 
k.QAA) 
status_Slong_ptr (seg_ptr, struc_ptr, names_ptr, ~> 

This primitive ls the same as status_ except the 1ast items 
(from •dtu" onward) are also returned. With the new storage 
syste~, this primitive is potentially more expensive than the 
status_ primitive. 



Page 20 MTB- 198 

Eni~• status_Sall (par_segno, ename, struc_ptr, names_ptr, 
kg.st~) 
status_Sall_ptr (dir_segno, struc_ptr, na•es_ptr, ~A.I) 

Thls primitive ls called to return status information about 
all entries of a directory. <Anv star reduction of the 
Information ls done after this call in the user ring.) When 
this entry ls cal led names_ptr ls generally not null and oolnts 
to the same structure as for the status_ call. ·The struc_ptr 
parameter may not be null and must point to the following 
structure I 

dcl 1 all_stl allgned based, 
• 2 version fixed bin, 
• 2 slze_allocated fixed bln, 
• 2 control, 

3 prlmary_name_only blt (1) unal, 
3 totals_only blt Ci> unal, 
3 not_this_type (013) bit Cl) unal, 
3 mbz blt (30) unal, 

2 num_entrles fixed bln, 
Z num_tnls_type (013) fixed bln, 
2 num_names f lxed bin, 
2 num_names_this_type (013) f lxed bln, 
Z data (1) like status_lnfo; 

(Due to the potentially large amount of storage needed to dump 
large directories it will Quite often be useful to acquire a 
temporary segment for the returned information.) 

If "totals_onlyM ls set ON, only the number of segments, 
directories, etc., wil I be returned. <In this case names_ptr may 
be null>. The items •num_entrles" and "num_thls_type" are always 
returned. If "not_thls_tyoe Cl>" ls ON, information about the 
speclfled entries ls not returned. 

En.1c~• status_$all_long (par_segno, ename, struc_ptr, names_ptr, 

~~~· status_$all_long_ptr (dir_segno, struc_ptr, names_ptr, 
""Jl) 

Thls primitive ~orks as the status_Sal1 prlmltlve except 
that the last items ln the status_info structure also also 
returned. As above this may be more expensive ~lth the new 
storage system. 

seg_status_ (par_segno, ename, struc_ptr, .kSlQ.e> 
seg_status_Sr>tr Cseg_ptr, struc_pt,.., '-2.QJl) 

This primitive ls called to return segment attributes of a 
segment and therefore requires nonnull access on the segment. 
The parameter struc_ptr points to the following structures 



MTS- 198 

• 
de I 1 

z 
2 
2 
2 
2 
2 
2 
2 

segstl aligned based, 
version f lxed bin, 
type fixed bJ.n, 
ef fmode like mode 1 

blt_count r1xed bin (24), 
entry_bound fixed bin (14) 1 

records f lxed bln 1 

cur_length fixed bln (35), 
max_length fixed bin (35); 

Page 21 

The specified entry must be a segment or a multlseg~ent 
file. 

The above entries are used by the following hes_ entrlesa 

hcs_Sfs_get_brackets 
hcs_Sfs_get_mode, 
hcs_Sget_author1 

hcs_Sget_bc_autnor 
hcs_Sget_dlr_rlng_brackets 
hcs_Sget_•ax_tength 
hcs_Sget_max_length_seg 
hcs_Sget_rlng_brackets 
hcs_Sget_saf ety_sw 
hcs_Sget_saf ety_sw_seg 
hcs_Sstar_ 
hcs_sstar _I ist _ 
hcs_Sstatus 
hcs_Sstatus_ 
hcs_$status_long 
hcs_Sstatus_mlnf 
hcs_Sstatus_mins 

The following set of prlmltlves ls used for changing 
attributes of an entry. As with the status primitives, the 
distinction ls made between directory attributes <requiring 
status permission on the containing directory) and segment 
attributes (requlrln~ "rite access on the segment). 

E~!c~a set_ (par_segno, ename, struc_ptr, ~-> 
set_Sptr (se~_ptr, struc_ptr, ~~· 

This prlmltive reQuires modlry permission on the contalnlng 
directory. The parameter struc_ptr points to the following 
structure I 

dcl 1 setl aligned based, 
• 2 version f lxed bin, 
• Z control llke set_array, 
• 2 lnfo llke set_lnfo; 



Page 22 

"here set_lnfo and set_control are speclfled 
description of the create_ orlmltlves. 

seg_set_ (par_segno, ename, struc_ptr, ~> 
seg_set_Sptr Cseg_ptr, struc_ptr, ~~~) 

HTB-198 

ln the 

This primitive wilt change segment attributes on a segment 
and hence does not reQuire as much access as the set_ prlmltlve. 
Cit reQulres write permlsslon wlth respect to the seg•ent.) The 
parameter struc_ptr points to the foltoMlng structures 

dcl 1 sseti allgned based, 
• 2 version fixed bln, 
• 2 control llke set_array, 
• 2 bit_count fixed bin (24), 
• 2 entr,_bound fixed bin C14); 

This set of primitives ls used to add, delete, replace and 
list ACLs on segments or dlrectories. The dlstlnctlon is made 
between directories and segments because, although the structures 
are Quite similar today, we should not get trapped by thls. 
(HSFs are treated as segments.) There are four cf asses of 
orlmltlves each of wnlch has an entrypoint for adding, deleting, 
listing and replacing ACL entries. The four prlmitlve classes 
are found ln acl_, dir_acl_, lnacl_ and dlr_lnacl_. 

Ellie.~• acl_Sadd (par_segno, ename, acl_ptr, ~suit> 
acl_Sadd_ptr Cseg_ptr, acl_ptr, ~> 

This prlmltlve adds the specified ACLs to the specified 
entrv. If a userld ls encountered which ls atready on the ACL 
for the entry the ACL entry is replaced. In this. and ln atl of 
the ACL manlpulatlng entries. the parameter acl_ptr ~ust point to 
the following structures 

dcl 1 aclJ. all gned based, 
• 2 version flx:ed bln, 
• 2 n_acls_atlocated f lxed bln. 

(•) 2 count fl xed bl n, ,., 2 acla ( 1) ' 
3 userld, 

I+ personi d char (22) unal, 
4 proJectld char ( 9) unat, 
4 tag char ( 1) unal, 

3 mode llke mode, 1• or like dlrmode •1 
3 exmode bit (JG)' 
3 code fixed bin (35>; 



. 

MTB-198 Page 23 

Enicx• act_idelete <~ar_segno, ename, acl_ptr, ~> 
acl_Sdetete_ptr <seg_ptr, acl_ptr, k2s:I.~) 

Thls primitive deletes any ACL entries from the specified 
branch that eKactly match one of the userld flelds ln the input 
ACL structure. If a specified userld ls not on the ACL of the 
branch the associated code ls set and the code parameter ls also 
set. 

EDicxa acl_Slist (par_segno, ename, acl_ptr, ~) 
acl_Slist_ptr <seg_otr, acl_ptr, ~ga> 

This prlmltive will return ACL lnformatlon about the 
speclfied branch. All ACLs are to be listed and acli.count ls 
sett~ the number listed. If there ls not enough space allocated 
to llst all of the ACL entries, as many as can be returned are 
and an error code is returned. 

En.tcx• acl_Sreplace (par_segno, ename, acl_ptr, '-SUiA) 
acf_Sreplace_ptr (seg_ptr, acl_ptr, k2~> 

This primitive wlll replace the entire ACL by the ACL 
specif led ln the input ACL structure. 

The folloMlng ACL primitives work analogously and are listed 
here for completeness• 

dlr_acl_Sadd (dlr_segno, acl, kAdA) 
dlr_acl_Sdelete Cdlr_segno, acl, ~A> 
dlr_acl_Sllst (dlr_segno, acl, ~siA) 
dlr_acl_Sreplace (dir_segno, acl, ~g~) 
lnacl_Sadd (dlr_segno, acl_ptr, rlng, ~~) 
lnacl_Sdelete (dlr_segno, acl_ptr, ring, ~d•> 
lnacl_Stlst (dlr_segno, acl_ptr, rlng, ~stA> 
lnacl_Sreplace (dir_segno, acl_ptr, ring, ~~) 
dir_lnacl_Sadd (dlr_segno, act_ptr, ring, ~2~~) 
dir_lnac1_Sdelete (dir_segno, acl_ptr, ring, ~wa> 
dlr_lnacl_Sllst (dlr_segno, acl_ptr, rlng, ~fJJlt 

dlr_inacl_Sreptace Cdlr_segno, acl_ptr, rlng, ~) 

There are three primitives currently being proposed for 
manipulating Quota. (The newly proposed directory record quota 
of the new storage system ls not covered here.> The primltlve to 
move Quota from a directory to its parent or vlce versa lsJ 

Eo.J.cx• Quota_Smove (par_segno, ename, quota, k~) 
Quota_$move_ptr (dlr_segno, QJota, ~2d.A) 

This primitive wlll accept a positive or negative value for 
quota. If Quota ls positive, that many records of Quota are 
moved from the oarent of the directory ename to ename itself. If 



Page 24 HTB-198 

quota ls negative, the absolute value of quota records are moved 
from the directorv ename to lts parent. 

quota_Sget (par_segno, ename, struc_ptr, ~) 
quota_Sget_ptr (dlr_segno, struc_ptr, ~e> 

This primitive returns quota information about the directory 
ename. The parameter struc_ptr points to the following 
structure I 

dcl 1 Qi aligned based, 
• 2 version fixed bin, 

z quota fixed bin, 
Z used fixed bln, 
2 time_record_product fixed bln (71), 
2 time_updated fixed bln (71)1 
2 lnferlor_quotas fixed bln, 
2 ter•lnal_~uota blt (1); 

E.ri!c.~• hpquota_Sse t C par_segno, enaae, quo ta, '-~) 
hpquota_Sset_ptr (dlr_segno, Quota, '-Jl~) 

This prlmltlve ls privileged to system administrators and 
provides a means of specifying the quota for a directory without 
moving lt from the parent directory. It is the only means Cother 
than backup prlMitlves not mentioned nere) of •generating" quota. 

The fol lo~dng 
segments and HSF•s. 
associated segment. 

set of prlmlti~es are used for truncating 
They require only write per•lsslon on the 

Eri!c.~: truncate_ (par_segno, ename, offset, ~) 
truncate_Sptr (seg_ptr, offset, ~e> 

This prlmiti~e truncates the single-segment file specified. 
The parameter o.ffset specifies the first ~ord truncated. 

En1c~• truncate_Smsf (par_segno, ename, offset, ~) 

This primitive t~uncates the speclfled ~SF. As ~any HSF 
components as are necessary are deleted in order to brlng the HSF 
doMn to the speclfle1 size. The first component, however, ls not 
deleted. 



MTB-198 Page ZS 

The following pri~itlves do not fall into a well deflned 
group and are listed here to co~plete the list of Storage System 
pr i ml t1 ves. 

Enic~• user_effMode_ (par_segno, ename, userld, .m.suf~, ~) 
user_effmode_Sptr (seg_ptr, userld, ~2Wl• ~) 

fQ!C~I level_Sset Clevel) 

The following set of prlmltlves wlll be used by the linker. 
They will inltlally be available Conly) ln ring o, but will be 
moved to the user rlng when name space management and the tinker 
Itself are. The primitives below are used by the foltowlng hes_ 
entries Cmany of which are not used and are oosolete)I 

hcs_Sasslgn_llnkage 
hcs_Sts_search_get_wdlr 
hcs_Sf s_search_set_wdlr 
hcs_Sget_count_llnkage 
hcs_Sget_defname_ 
hcs_Sget _ 11 nk a<Je 
hcs_Sget_lp 
hcs_Sget_rel_segment 
hcs_Sget_search_rules 
hcs_Sget_seg_count 
hcs_sget_segment 
hcs_Shigh_low_seg_count 
hcs_slnitiate_search_rules 
hcs_Sllnk_force 
hcs_Smake_ptr 
hcs_Srest_of_datmk_ 
hcs_sset_tp 
hcs_sunsn ap_ser v lee 



Page 26 HTB- 198 

The tollo"lng ·declarations apply to parameters used by the 
linker primitives• 

storage_ptr 

size 

.. orklng_dir 

wdir_segno 

sof tcore_segno 

flrst_user_segno 

last_valld_segno 

stack_segno 

I as t _used_segno 

ptr a pointer to a region of 
storage allocated for the user 

fixed bln(18) the size, ln words, of storage 
to be allocated 

char<•>varylng ls .a character string 
representation of the current 
working directory. When used 
as an output Quantity lt ls an 
absolute pathname; when used 
as an input quantity lt mav be 
a relative pathname. 

fixed bin(t5> ls the segment number of the 
current working directory. 

f lxed bin<t5) ls the segment number ot the 
first softcore segment. 

f lxed blnC15> ls the segment number of the 
first user-ring segaent beyond 
the softcore segments. 

f lxed bln(15) ls the 
numl>er 
process. 

I ast val ld 
av all ab I e 

segment 
to the 

fixed bln(t5> ls the segment number of the 
<standard) stack segment for 
the calling ring. 

f11<ed bln(15) ls the largest segment nu111ber 
used by the process. 

This primitive allocates size words of storage Con an even 
word boundary) in a process•s combined linkage segment. A new 
segment wilt be created lf there is not enough room left in the 
current segment (or reglont. 

unasslgn_storage_ <storage_ptr, slze, ~) 

Thls prlmltl~e returns the given storage to the rlng•s free 
poof of storage •. Cinltlalty, this function wllt have no effect.> 



HTB- 198 Page Z.7 

~ Thls prlmltlve returns the character string representation 
of the working directory for the current ring. 

Thls primitive returns the segment number of the current 
rlng•s working directory. 

E.n..1Cl(I wdir_Sset <~orking_dlr, ~QS;l&) 

This primitive sets the working directory for the current 
rlng glven a <relatlve) pathname. 

wdlr_Sset_ptr (wdlr_segno, k2~A) 

This prlmltlve sets the working directory for the current 
rlng given the segment number of the directory. 

ED.it:l(I segno_lim1ts_ <~~gee s~Q2• LLc.~1-~c:_~Jl5m2• 
lill_ll.lli5L~Jl!l!l2' ill.1-Ui.~litl2 l 

This prlmltlve returns values of useful segment number 
ranges. 

get_stack_segno_ <~1A~&9!l2) 

This primitive returns the segment number of the (first) 
stack segment (created bV the supervisor) for the calling rlng. 
Thls and segno_llmlts_ are the ontv two linker primltlves that 
will remain in the supervisor. 

E.n..1c~• search_rules_Sget <struc_ptr, ~.!2Jlil) 

This prlmltlve returns the character string for•s for the 
search rules ln effect for the current ring. The parameter 
struc_ptr points to the following structures 

dcl 1 search_rutes aligned based, 
• Z count_allocated fixed bin, 

2 count_returned fixed bln, 
2 rules (1 refer <search_rules.count_returned)l 

char (1&8) varying; 

Enic~• search_rutes_Sget_ptr <struc_ptr, ~~, 

This primltlve returns the directory segment numbers for the 
directories in the current search rules. The follo~lng artiflclal 
segment number mappings (of todav> appf y to keywords• 



Page 28 

Kev111ord 

lnltlated_segments 
referenclng_dir 
workll'lg_dlr 

Segment Number 

1 
2 
3 

The parameter struc_ptr points to the following structures 

dcl 1 search_ptrs al lgned based, 
• 2 count_al located fixed bin, 

z count_returned f lxed bln, 
z rules (1 refer (search_ptrs.count_returnedl) 

f 1 xed bin US); 

Eoit:x• search_rules_Sset <struc_ptr, ~) 

HTB- 198 

This prlmltive sets the search rules for the current ring 
glven (relative) pathnames and keywords in an ordered array. The 
parameter struc_ptr points to the same structure used in the 
search_rutes_Sget prl•ltive. 

E.n.!cx• search_rules_Sset_ptr Cstruc_ptr, ~) 

Thls prlmitlve sets the search rules for the current ring 
given segment numbers Creal and artlflclal> of the dlrectorles to 
search. The para•eter struc_ptr points to the same structure as 
used ln the search_rules_Sget_ptr primitive. 

The following set of prlmltlves will be Identical to the 
current IPC primitives in function. The entries are currently in 
hes (which will become a user-ring program) and hence the new 
gate below ls provided. The hes_ entries and the new prl•ltlves 
map as folloi.s: 

hcs_Sasslgn_channel 
hcs_Sblock 
hcs_Sdetete_channel 
hcs_Sfblock 
hcs_Slpc_lnlt 
hcs_$read_events 
hcs_Ssfbl ock 
hcs_Swakeup 

hclpc_Sasslgn_channel 
hclpc_Sblock 
hclpc_$delete_channel 
hclpc_Sfbtock 
hcJ.pc_Sipc_lnlt 
hclpc_Sread_events 
hclpc_Ssfblock 
hcipc_s~al<euo 

,Al\ 



HTB- 198 Page 29 

The fotlowlng primitives execute in ring o and hence a new 
gate to ring O must be provlded for them. The following direct 
mapping <renaming, etc.> will be used& 

hcs_Scpu_time_and_paglng_ 
hcs_Sget_alarm_tlmer 
hcs_Sget_page_trace 
hcs_Sget_process_usage 
hcs_Sget_usage_values 
hcs_SPre_.page_lnfo 
hcs_Sproc_lnfo 
hcs_sreset_Morking_set 
hcs_Sset_atar111 
hcs_Sset_alarm_tlmer 
hcs_Sset_cpu_tlmer 
hcs_sset_pll_machine_•ode 
hcs_Sset_timer 
hcs_Sstop_process 
hcs_StotaJ_cpu_time_ 
hcs_Strace_•arker 
hcs_Stry_to_unlock_tock 
hcs_susage_values 
ncs_Svlrtual_cpu_time_ 

cpu_tlme_and_paging_ 
alarm_tlmer_Sget_alarm_tlmer 
hcu_Sget_page_trace 
get_process_usage_ 
OBSOLETE 
OBSOLETE 
hcu_Sproc_info 
OBSOLETE 
OBSOLETE 
alarm_tlmer_Sset_alarm_tlmer 
cpu_tlmer_Sset_cpu_tlmer 
0 BSOLETE 
OBSOLETE 
hcu_Sstop_process 
total_cpu_tlme_ 
hcu_Strace_•arker 
hcu_Stry_to_unlock_lock 
OBSOLETE 
vlrtual_cpu_tlme_ 

The program hcu_ (for hardcore utlllty) Mill be 
gate for calling primitives In the supervisor which do 

a hardcore 
not easily 
that are 
this gate. 

fall into another category. Only prlmltlves 
lntrlnslcally hardcore In nature should be placed ln 
It ls the replacement for hes_. 

The OBSOLETE Interfaces wlll no longer be supported in ring 
o, but rather by user-ring wrltearounds (in hes_> • 

. 
ec.J.ml11~~2C-lo..l.JlCA.c2~ss-il9Da!1lng 

The following· primitives replace the hes_ prlmltlves for IPS 
management. Thev are currently ldentl~al to the hes_ entrles ln 
functlon. 

hcs_Sget_ips_mask. 
hcs_Smask_lps 
hcs_$reset_1ps_mask 
hcs_sset_auto~atic_lps_mask 

hcs_Sset_lps_mask 
ncs_sunmask_lps 

lps_$get_1ps_mask 
lps_$mask_lps 
lps_Sreset_lps_mask 
lps_Sset_automatlc_lps_mask 
1ps_$set_lps_mask 
lps_Sunmask_lps 



Page 30 

The following primitives wlll be moved from hes_ to the 
lndlcated gates 

hcs_Sloam_llst 
hcs_Sloam_release 
hcs_Sloam_status 

loam_$1oam_llst 
loam_Sloam_release 
loam_Sloam_status 

The above three primitives will become obsolete when the full RCP 
management becomes available. 

hcs_Stty_abor-t 
hcs_Sttv_attach 
hcs_Stty_detach 
hcs_stty_detach_new_oroc 
hcs_Stty_event 
hcs_Sttv_inde>< 
hcs_stty_order 
hcs_stty_read 
hcs_Stty_state 
hcs_Stty_wrlte 

tty_gate_Stty_abort 
tty_gate_Stty_attach 
tty_gate_Stty_detach 
tty_gate_Stty_detach_new_proc 
tty_gate_Stty_event 
tty_gate_Stty_index 
tty_gate_Stty_order 
tty_gate_$tty_read 
tty_gate_Stty_state 
tty_gate_Stty_write 

The following prlmitlves are obsolete and will not be --
replaced when hes_ ls removed from ring 01 

hcs_Sdel_dlr_tree 
hcs_Sfs_move.flJe 
hcs_Sfs_move_seg 
hcs_Sget_llnk_target 
hcs_Sstar _ 
hcs_Sstar_llst_ 

All of these Prlmltlves will be supported to so•e degree ln the 
user rlng. 

Of the more than 150 hes_ entries currently available, many 
wilt be replaced by new hardcore gates white others will be moved 
to the user ring. Initially, the following names should be added 
to hes_ <they will eventually be moved to a new hardcore gate 
segment) I 

hcipc_ 
cpu_tlme_and_pa9lng_ 
alarrn_t!mer_ 
hcu_ 
get_process_usa~e-



r 
ttTB- 198 

cpu_tlmer_ 
totat_cpu_tlme_ 
vlrtual_cpu_tlme_ 
lps_ 
loam_ 
tty_gate_ 

Page 31 

When the full converslon ls complete, there wlll be about 100 
hardcore interfaces and another 30 in the user rlng that replace 
the functions of hes_. 

A new hardcore gate should be added soon with the folloMing 
names on lta 

• 
• 
• 

• 
• .. 

• 

rer_na•e_ 
get_oathname_ 
f lnd_dl r _se gno_ 
blnd_segno_ 
unb 1 nd_segn o_ 
create_ 
na11es_ 
det_ 
status._ 
seg_status_ 
set_ 
seg_set_ 
acl_ 
dlr _act_ 
I nae I_ 
dlr_lnacl_ 
quota_ 
tr-uncate_ 
user _e ff 11od e_ 
level_ 
asslgn_storaga_ 
unasslgn_storage_ 
Mdlr_ 
segno_tlmlts_ 
get_stacl<_segno_ 
search_rules_ 

The starred items •ill eventually be removed from rlng O (by 
renaming, etc.>. 

Thls section proposes a few user-level subroutines to be 
used by system com•ands and subroutines as welt as by general 
user-written programs. There have been many interesting 
lnterfaces proposed over the years Dut only a few are mentioned 
here. One purpose for proposing any new subroutines ls to show 
how the new storage system primitives might be used. Another 



Page 32 HTB- 198 

reason ls to try to provide subroutines that might be useful ln 
any reprogramming being done. 

The following subroutines would be used by many commands. 
Their input ls lntentlally suited for commands whlch are passed 
varying character strings by the command processor. 

The fotlo•lng ls a llst of arguments used by these 
subroutines I 

rel_path char (•) varying 

par_segno f lxed bln (15) 

ename char (32) varying 

struc_ptr ptr 

suf flx char (16> varying 

seg_ptr fixed bln (15) 

ptr 

star_na11es ,., char (32> var 

The subroutines area 

ls a varying character string 
which ls typically a command 
line argument. 

ls the seg•ent number of a 
containing directory. 

ls an entryname ln a 
directory. 

points to a 
containing input 
lnfor11at Ion. 

structure 
and output 

ls a command name or other 
ldentlfylng name to be used 
when generating the na•e to be 
used for a temporary segment. 

ls a pointer to a segment. 

points to a structure used by 
the star_ subroutine 
(described belo•>• 

ls an array of star names to 
be used by the star_ 
sut»rou tine. 

expand_arg_ C rel _path, ULilSUlih ADilJU., ~.slil) 

This subrouutlne converts the input relative (absolute) 
pathname lnto a directory segment n~mber and entry name. It ls 
analogous to expand_path_ which converts a relative pathna•e into 
an absolute pathna•e. 



HTB- 198 Page 33 

co•~and_utll_Sopen (rel_path, struc_ptr, ~2~• 

This general purpose subroutine performs •any functions. 
Flags ln the input/output structure control the actions taken and 
the a111ount of Information returned, The parameter struc_ptr 
points to the following structures 

where I 

dcl 1 cul aligned based, 
• 2 version f lked bln, 
• 2 control, 

3 dont_cnase bit C1> unal, 
3 dont_get_seg_ptr bit (1) unal, 
3 create blt (1) unal, 
3 new_uld blt (1) unal, 
3 truncate bit (1) unat, 
3 delete bit <1> unal, 
3 set_mode bit (1) unal, 
3 want_sufflx bit (1) unal, 
3 set_bc blt (1) unal, 
3 set_cc bit (1) unal, 
3 mbz bit (27) unal, 

• 2 mode like •ode, 
2 status, 

3 seg_known bit <1> unal, 
3 link blt (1) unal, 
3 no_read bit (1) unal, 
3 no_ekecute bit (1) unal, 
3 no_wrlte bit Ct) unal, 
3 mbz blt (31) unal, 

Z seg_ptr ptr, 
2 bit_count fixed bin (24), 
2 char_count fixed bin (21t, 
2 par_segno fixed bin (15), 
2 ename char (3Z) var, 
2 suf f lx char (12> var; 

1. dont_chase if ON and rel_path Indicates a link, 
don•t chase the link; if OFF, chase the 
link and return lnfor•atlon about the 
ultimate target. 

2· dont_get_seg_ptr 

3. create 

if ON a pointer to the indicated seg•ent 
ls not returned (the seg•ent ls not •ade 
known>. Information about the segment, 
however, ls returned. If OFF, the 
segment ls made known and a pointer to 
J.t returned. 

lf ON and the segMent ls not found, lt 
ls created; lf OFF, the seg•ent ls not 



Page 3'+ 

It. truncate 

s. delete 

&. set _mode 

7. want_suffl>e 

8. set_bc, set_cc 

9. mode 

10. status 

11• seg_known 

12• link 

13. no_read, etc. 

HTB- 198 

also ON 
IO will 
thereby 

created. If the flag 
(along wlth create) a 
be assigned to the 
effectively deleting 
recreating lt. 

new_uld ls 
new unique 

segment 
the old and 

if ON the segment ls truncated. Thls 
action will be taken only if a pointer 
to the segment ls asked for. This 
controf blt applies for both the open 
and close entrypolnts. 

ls used by the close entrypolnt. If ON, 
the segment ls deleted after being made 
unknown. 

ls used by the close entrypolnt. It 
specif les that the value of cul.mode ls 
to be placed ln the calling process•s 
ACL entry for the segment. 

lf ON indicates that the caller wants 
suf flx processing to be performed. 

are used by the close entrypolnt to set 
the bl t count. 

ls the desired mode for the ~egaent. An 
ACL entry for the calling process with 
this mode ls placed on the ACL for the 
segment. (The mode can also be set again 
by the close entrypolnt as mentioned 
above.) 

If the access on the segment ls not 
initially at least the desired access, 
an attempt ls made to change the ACL. 
If thls falls, the mode status bl ts 
<no_read, etc.) are set. 

ls a structure of returned status 
information of probable interest to the 
caller but not deemed fatal enough to 
warrent a nonzero code return value. 

ls set ON lf the segment being made 
known was already known. 

ls set ON lf a llnk was chased. 

are set ON lf the desired access cou•d 
not be given to the caller. 



MTB-198 

14. seg_ptr 

15. bit_count 

16. char _count 

11. par_segno 

18. ename 

1'3. suffix 

Page 35 

ls returned bV the open entrvpolnt and 
ls set to point to the speclfled 
segment. The close entrvpolnt uses this 
variable to know which segment to make 
unknown. 

ls returned by the open entrypolnt. If 
desired, lt can be Input to the close 
entrypolnt as lndlcated by the set_bc 
f I ag. 

ls returned by the open entrypolnt. If 
desired, it can be lnput to the close 
entrypolnt as indicated by the set_cc 
f I ag. 

Only one of set_bc and set_cc should be 
ON. 

ls returned oy the open 
represents the segment 
containing directory. 

entrypolnt. It 
number of the 

ls returned by the open entrypolnt. 8oth 
oar_segno and ename Mill be set to the 
target segment lf a link ls chased. If 
suffix processing ls performed, ename 
will contain the aooroprlate suffix. 

ls the desired suffix to be used when 
suffix processing ls called for. 

The structure pointed to by struc_ptr above ls typical fy 
shared by the open and close entrypoints and serves as a storage 
buffer for information of interest to both entrypoints. Suffix 
processing consists of making sure the specified suffix exists on 
the name of the segment passed to the hardcore interfaces. If 
adding the specified suffix will make the entrvname too long, a 
status ls returned. 

f.oit.:t.1 command_util_$close (struc_otr, ~~~) 

This entrypoJnt ls used to "clean up" after use of a 
segment. The segment can be truncated, deleted, etc. under 
control of the flags In the cul structure as mentioned above. 

Note that the co11mand_utll_ entrypolnts remove nearly alt 
name management tasks from the user prograMs. The segment ls made 
known and automatical IV made unknoMn Clf appropriate) by these 
calls. No reference name operations are performed at alt. 



Page 36 HTB- 198 

This subroutine returns a pointer to a zero length buffer 
<temporary) segment ln the process directory. An ACL entry of 
REW (for the calllng process> ls placed on the ACL of the 
segment. The name of the segment ls a unique name generated using 
un!Que_chars_ and also contalnlng the Input suff lx. A pointer to 
the segment ls returned ln seg_ptr. 

retease_temp_seg_ <seg_ptr, ~Sis) 

Thls subroutine truncates the speclf ied segment, makes it 
unkno•n, but does not delete lt from the process directory. The 
segment ls placed ln a poot of free buffer segments for later use 
by callers of get_temp_seg_. <These subsequent calls change tne 
name and make lt kno~n again.) 

star_ <struc_ptr, names_ptr, sptr2, star_names, ~) 

This subroutine scans the names specif led by struc_ptr and 
names_ptr (as returned by status_Sall or status_Sall_long) and 
creates an array of indices into the orlglnal status structure of 
matching entrles. 

dcl 1 sml aligned based, 
• 2 slze_al located f lxed bin, 

z num_matcnlng_entrles f lxed bin, 
2 data (t refer <sml.num_matchlng_entrles)), 

3 strx fixed bln, 
3 star_na•e_lndex fixed bin; 

where I 

1. strx 

star _name_lndex 

index into the status array 
to by struc_ptr thereby 
the entrv which the star name 

ls an 
pointed 
indicating 
matched. 

specifies which star name 
star_names array was matched. 

of the 


