
MULTICS TECHNICAL BULLEil'IN MrB-195

To: Distribution

From: J. W. Gintell

Date: May 8, 1975

Subject: Technical paper describing MCS

The attached document was developed by Warren Johnson (Multics Marketing
in Phoenix) to be given to Multics customers. It gives a technical overview
of MCS and broadly describes the present and future plans.

Multics Project internal documentation. Not to be reproduced or distributed
outside the Multics Projec.t.

•'

Honeywell MULTICS COMMUNICATIONS SYSTEM

' I

** ** **
*** *** ** **
** * * ** ** *" ... * ** ... * ** ** **
** ** ** '** >f* ** ** ****** ******
** ** ** '** *'* ** ** iU **
** ** ** ** "* ** ** ** ****
** ** ** ** ** ** **' ** **
** ** ****** 1ht *** "* ***'*** ***"**

Multics Communications System

May 1975

Multics Project Office

Large Systems Sales Support

Phoenix, Arizona

(V 1975, Honeywell Information Systems Inc.

BACKGROUND

When Multics first became operational on the Honeywell Model

645, user terminals (as well as other peripherals) were connected

to the system ~hrough a device called the "Generalized , '

Input/Output Ctirit~oller 11 • (GIOC). The hard-wired GIOC could

respond to connect instructions from a processor, find and

interpret data control words (DCWs), transfer data to and from

main memory, post status words, and signal termination to a

processor via an interrupt; but the GIOC did not possess any

capabilities to intelligently handle the wide variety of

terminals available. Thus, all terminal support capabilities

were imbedded within Multics itself.

This remained the case as Multics migrated from the

Honeywell Model 645 hardware to the Model 6180. A simulation of

the GIOC was created for the DATANET Front-End Network Processor

(FEP), even though it was capable of assuming many of the

terminal support duties. Hence, Multics initially treated the

FEP as a physical line-control device only and continued to

support a limited number of terminal types within itself. This

GIOC simulation was unnecessarily slow, inefficient, and

cumbersome. A single FEP only was supported, and it was

difficult to adapt the code to handle different terminal types.

- 1 -

GOALS

The Multics Communications System (MCS) is designed to take

advantage of the processing power 6f the FEP. By allowing the

FEP to handle such functions as line control and line protocol, . '
the centr~l system· is ~free to do other things. Also, the

redesign of the communications software allows the new code to

take advantage of such hardware features as the Extended

Instruction Set (EIS). These features add up to an overall

improvement in system performance. Furthermore, MCS is designed

to allow for easy implementation of new devices as well as to

support multiple FEPs.

All changes are transparent to the Multics user. Terminal

types and configurations previously supported continue to be

supported. Also, many new terminal types and options are

supported under MCS.

In general, MCS does not pretend ~o be all things to all

people. It is intended to take maximum advantage of the current

hardware offering and to be flexible enough to allow additions

and modifications to be made easily.

- 2 -

MCS TIMETABLE

The following lists outline the features MCS is designed to

provide, along with some ideas for future enhancements. The

Multics Release Number is indicated because the following

·sections are written as if MCS development were complete.

MULTICS RELEASE 3.0, SEPTEMBER 1975

NEW FEATURES

1. Correspondence code IBM 2741s
2. Uppercase only terminals at all baud rates
3. Support for GE TermiNet 1200 or similar devices on Bell

202C modem, with ETX type line control
4. -Support for dialup synchronous lines, 2400 to 9600 baud
5. Multiple FEPs
6. Login control argument to specify terminal type
7. Block input, i.e., full screen, for video terminals
8. Non-readahead mode for non-interruptible terminals
9. Continuous input mode

10. White space canonicalization for output
11. Support for

a. 7-bit ASCII character set
b. 7-bit ASCII uppercase only character set
c. 6-bit ASCII character set

12. New modes: tabecho, lfecho, echoplex

DEVICE CLASS

ASCII

EXAMPLES

Teletype Models 37, 38, GE TermiNet 300
IBM 1050 1050

2741
ARDS
SYNC

IBM 2741, Trendata 1000
ARDS, Tektronix
Mohawk 2400

- 3 -

BAUD RATE
110
134.5
150
300
600

1200
. 1800
2000
2400
4800
7200
9600

'. . ..

ASYNCHRONOUS
LSLA,HSLA
LSLA,HSLA
LSLA,HSLA
LSLA,HSLA
HSLA
HSLA
HSLA

I I

NEW CENTRAL SYSTEM SOFTWARE

SYNCHRONOUS

HSLA
HSLA
HSLA
HSLA
HSLA

1. Old interrupt handler and lirie-control interpreter,
tty_inter is eliminated

2. Line-control table deleted, function moved to FEP
3. New DIA interface module handle~ FEP interrupts and

controls DIA traffic
4. Segment tty_ctl contains only the code conversion tables

and is paged
5. Terminal type changeable by· the user to any other

system-recognized type ""'
5. New buffering strategy with smaller wired buffer area

NEW FEP SOFTWARE

1. New Multics/FEP interface, less DIA I/O
2~ Major redesign of FEP software
3. Table-driven line control, easily modified and expanded
4. New LSLA and HSLA device handlers; HSLA handler

designed for high-speed input and output
5. Decreased hardware-error sensitivity

a. DIA parity errors
b. LSLA sync errors
c. Reporting of all errors to operator

6. Better crash analysis and data

- 4 -

r- FEATURES PLANNED FOR RELEASES AFTER MR3.0

1. Improved code conversion tables, designed for use with EIS
2. Improved tty_read and tty_write to make full use of new code

conversion tables
3. User-supplied code-conversion tables
4. User-specified erase and kill characters
5. User-specifi~d delay~ti~~ng tables
6. G115 remote computer· interface to be handled by FEP
7. Automatic· haud rate detection for HSLAs at 110-600 baud
8. Improved handling of hangups by answering service, including

optional reconnection to process
9. Fail-soft operation of FEP, i.e., FEP failures will not

result in Multics crashes; hangups will be sent for all
users of that FEP, and it will be dumped and rebooted

10. Improved handling of multiple terminals per process, with
better detection of which terminal caused a QUIT, etc.

FEATURES UNDER CONSIDERATION

1. Support for bisync line protocol, and terminals that use it,
e.g., IBM 2780, IBM 3270, etc.

2. Support for EBCDIC code terminals at all baud rates, e.g.,
IBM 3767

3. Support for HDLC line protocol
4. Support for remote terminal concentrators, e.g., RNP700 and

others
5. Support for "transparent data" mode where 8-bit bytes are

sent and received without parity
6. Online T&D for FEP and communications channels

- 5 -

user

system

ring 4

ring O

)

tty_
g115_
Multics Graphics

System·

tty_read
' tty_write

translation tables

buffers

· FEP inter face
module

buffer control
module

CENTRAL SYSTEM

:
I processor
I control
I functions

terminal & line
control tables/
interpreter

utility routines
& buffer
management
module

Direct Channel/DIAi DIA Interface
' module ~~~~~~~~~~~ .I

I
I
I
I

HSLA
ma .. nager

I
I
I

H
s
L
A

I 1

L
s

LSLA I L
manager I A

I I
I
I
I
I
I I I I

FEP

) J

MCS DESIGN

There were several explicit

software under the GIOC simulation.

functions performed by the

While these functibns still

exist in MCS, they are performed differently. The FEP still

manages control ·of. its-'co'mmunications adaptors: the Low Speed

Line Adaptor (LSLA) and High Speed Line Adaptor (HSLA). In

addition, it now contains the software necessary to drive each of

the types of terminals that can be connected to Multics. This

function was previously performed in the central system by

tty_inter and its associated set of terminal control tables,

tty_ctl.

Another functional entity is buffer control within the

central system. This includes input buffering of type-ahead data

and output buffering of write-behind data. Previously, a fixed

size (at bootload time) buffer pool, consisting of several small

buffers, was used. These buffers were usually filled with data

and the necessary GIOC DCWs to transmit the data or receive it

into the buffer. While the buffering function stays in the

central system and.in ring O, the strategy for performing the I/O ·

buffering has been changed. For example, the buffers only

contain data and not DCWs. Furthermore, the previous strategy of

allocating a new small input buffer while the current small input

buffer was being filled by a transmitting terminal has been

changed since it precluded the use of high-speed terminals on

Multics. (These terminals transmitted faster than the software

- 7 -

could-answer interrupts and allocate new buffers.) This type of

device buffering has been moved to the FEP. Buffering between

the FEP and the central system consists of buffers of data .

. Provisions have been made for the case when either machine is

unable to accept a buffer of data.

Another function that wa's altered is output data format ting,
" ...

which was previously handled in ring 0 by tty_write. This

function has been moved out of ring O with only a few minor

changes. In a similar vein, the formatting and canonicalization

of input data previously performed by tty_read and tty_con has

been moved out of ring O, again with only a few minor changes.

Basically, these small changes consisted of the removal of DCWs

from buffers and the addition of non-ring 0 device-code

translation tables that can be easily changed by the individual

user process.

Finally, the large block of code in both tty_read and

tty_write concerned with the ARDS graphics capabilities has been

totally removed from the standard central system software and

replaced by the new Multics Graphics System.

- 8 -

NEW CENTRAL SYSTEM SOFTWARE

As indicated earlier, the central system software no longer

concerns itself with terminal control, but instead has

responsibility only for the conversion of data from a user's

process into device-specific code and for the inverse conversion
,. ,

of data received from the various terminals. The central system

software is no longer exclusively in the supervisor ring,

graphics is no longer incorporated into the main flow, and

various new features have· been added. In spite of all this, the

user interface remains essentially unchanged.

Some of the new features are briefly described below:

1) A control function to change erase, escape, and kill

characters.

2) A control function to change the break character (currently

the newline character - 012). A break character is defined

as a character that sends a wakeup to a process that is

blocked on input, limits the effect of kill and

canonicalization, and limits a read. The user is allowed to

specify a new break character or a list of break characters.

Users may also specify that the input line should be

terminated one character after the specified break

character. (This is for devices that send an end of data

cha~acter like EOT or ETX followed immediately by a

longitudinal parity check character.) Finally, users are

- 9 -

allowed to specify breaking on every character (for full

duplex echoing from a process) or no breaking at all (for

devices that are not really typewriters but perhaps small

computers that plan to send data in 8-bit bytes).

3) An expande~ "set_tab~e~ pontrol function that allows users

to rea11y·· supply their own translation tables in the user

ring .. These translation tables have approximately the same

format as before, but they correctly translate any output

from Multics that is played back as input. This means that

line-control characters (EOA, STX, etc.) and tab or carriage

return delay characters are properly stripped off on input.

4) A control function to allow users to change their terminal

type (also a login line option as described later). In

order to describe the meaning of this control function, it

must be pointed out that there are two notions of "terminal

type." From the point of view of. the FEP, terminals are

divided not into types but into "device classes" based upon

the fact that special control functions are required for

that device .class. Hence, all slow-speed ASCII terminals

(e.g., GE TermiNet 300, Teletype Models 37, 38, and 35)

currently supported by Multics are in one device class.

Devices resembling an IBM 2741 are in another device class.

From the Multics view however, terminals are divided into

types based upon different criteria. Thus, a Trendata 1000,

Dura 1021, IBM 2741 can all be considered different types.

- 10 -

The various terminal types are installation definable. It

is this terminal type rather than the device class

recognized by the FEP that the user specifies in the control

call.

5) A control function that allows a user to switch his terminal , ,
into ,what ·might be ·called "no-control mode." Th,is mode is

provided for the user who wants the FEP to ·do no line

control or device control whatsoever. For example, assume

that a user has dialed into a 134.5-baud port on a

minicomputer whose line-control procedures are different

enough from an IBM 2741 that the standard line-control

procedures employed by · the FEP cause the device to behave

incorrectly. The user could enter no-control mode to cause

the FEP to stop any control of his terminal. The FEP acts

only as a transmitter and receiver of characters. It will

be up to the user's process to do device control by sending

special commands to the FEP.

6) A control function to change carriage return and tab delay

formulae (the coefficients for the formulae are currently

kept on a device type/baud rate basis).

7) A mode call that allows users to enter echoplex mode so that

characters typed on the user's terminal are echoed by the

FEP rather than by local echoing at the terminal. Of

course, this mode is only honored for those devices

possessing full duplex capabilities.

- 11 -

8) 'A control function to place terminals into "polite mode."

This means thaJ output sent to a terminal is not transmitted

by the FEP until the carriage is at the left margin. If a

user in.polite mode wants to send a message to his terminal

regardless of carriage position, he must bracket the write
. ~ I I

call by ~ont~ol calls to reset and then set polite mode.

While the user is in polite mode, a timer is set each time

the carriage leaves the left margin. If the carriage does

not return to the left margin within a specified time, any

waiting output is sent to the terminal, regardless of

current carriage position.

9) A control function that allows the user to "sense carriage

position and lock keyboard.'' This control function requests

the FEP to return (to the central system) any input from the

terminal (even if the break character has not yet been

typed) and to lock the keyboard if possible. This call

allows the us~r to gather up any input, lock the keyboard,

interrupt the input with an output message, and then

"replay" the input on the terminal so the typist whose

typing activity was interrupted is able to continue. (Of

course, this call is not necessary when in echoplex mode.)

Sense carriage position may also be use to compute how much

room is left on the carriage for the the first line of

output (i.e., the length of the first line·of output equals

the line length minus the number of characters input).

- 12 -

-~

. ' '

10). A new mode, lfecho, that causes the FEP to echo a line-feed

character upon receipt of a carriage-return character.

11) A mode, tabecho, that causes the FEP to echo spaces upon

receipt of a tab character. This mode is useful for

terminals that have no hardware tab capability.
' I . ,.

12) A mode call to allow users to specify that· keyboard locking

is to take place prior to ~ending output. The default for

this mode is no locking for ASCII-type terminals and locking

for IBM-type terminals. This allows users of ASCII-type

terminals that do have a locking feature to turn on this

facility.

Foreign terminals present some problem~ on Multics. Since

Multics only recognizes a limited number of terminal types, it is

desirable for the user to b~ able to specify as soon as possible

after. dialing up that he has a partic~lar terminal type. If a

terminal is so different that the user cannot even go through the

standard handshaking procedure with Multics, he is out of luck.

But if he can manpge to get the answering service to issue the

login prompting lines, a new login line argument is provided to

allow him to specify his terminal type (e.g.,

login Grady -tt TN300).

Another potential problem is the initializer typing messages

on. a user~s terminal after the user has switched translation

tables (e.g., the user may have switched tables when he changed

- 13 -

his typing element). When the initializer types a message on the

user's terminal, the message will be garbage since the

initializer cannot know about the translation table change. To

solve this problem, the new send_message facility is used and the

message is typed by the user's process using the correct
' I .

translation ta.bles. If t·he user does not have the send_message

segment, the initializer is forced to send a message to the

terminal using a default translation table.

Another issue is the specification of terminal types by the

answering service. Currently there is code in the answering

service to declare a terminal to be a particular type based upon

its answerback coding (which is read by the answering service

rather than by ring 0 as with the former ttydim). This makes it

difficult to add new terminal types at the local installation.

To solve this problem and to allow easy addition of new terminal

types, the terminal identification procedure and specification of

the various characteristics for each terminal type is tabularized

within the answering service. There are two tables: the first

table specifies the way in which the initial terminal type is to

be set up; the other table specifies the device characteristics

for each terminal type. These tables can be replaced while the

system is running.

- 14 -

' '

,... NEW FEP SOFTWARE

Each FEP attached to the central system has ari area in main

memory called a mailbox that it uses to communicate with the

central system. This mailbox is divided into a header area , ;

followed , by · 16 · submailboxes. Each submailbox is used to

communicate information between the two machines. When the

central system wants to send some type of command to the FEP, it

selects a submailbox, places the command and any associated data

in the submailbox, and then tells the FEP to read that submailbox

by interrupting the FEP on one of 16 interrupt levels (the one

corresponding to the submailbox number). Similarly, when the FEP

wants to send some information to the central system, it requests

the central system to select one of the 16 submailboxes. The

central system will do so and then place a command in that

submailbox that will indicate to the FEP that it may use this

submailbox. Then the central system sends an interrupt whose

level number corresponds to the number of the selected submailbox

as described above. The FEP may then fill that submailbox with

the information it wanted to send and write the submailbox back

into the central system.

The FEP interface module is called from two sources. The

user ring software calls it (through a gate) to pass several

types of control function and mode calls on to the FEP for

implementation. The puffer management programs call the

,.... interface module to cause output data to be sent to the FEP for

- 15 -

transmission. Of course, the FEP calls it indirectly by

generating interrupts to cause the interface module to look at a

submailbox for the data passed with the "call."

The FEP software is functionally divided into four groups of

modules dealing with: the FEP hardware (HSLA, LSLA, etc), the
t I

modules re,sponsible for supervisory control of the FEP itself,

actual terminal control, and utility functions.

There are three hardware managers: one for the HSLAs, one

for the LSLAs, and one for the Direct Interface Adaptor (DIA).

The HSLA and LSLA managers are responsible for assembling

messages to be passed to the terminal control modules and for

transmitting messages from the terminal control modules. The DIA

module is responsible for supporting the FEP side of the

FEP/central system interface as described above.

The terminal control modules consist of a macro-built table,

for device control state/transition data similar to the tty_ctl

module in the former ttydim, and a program to "execute"

(interpret) these tables. Terminal control was performed by

tty_inter in the previous ttydim. The FEP device control tables

contain control information for the following seven device

classes:

ASCII

1050

2741

NO-CONTROL

ARDS

Teletype Models 37, 38 and GE TermiNet 300

IBM 1050

IBM 2741, Trendata 1000

as discussed previously

ARDS, Tektronix

- 16 -

..

SYNC

BI SYNC

Mohawk 2400

Various IBM devices

The table-interpreting program also contains the algorithms

for determining the device speed of terminals dialing up on

asynchronous HSLA lines· at up to 600 baud and for the dynamic

configuring of these HSLA subchannels to match the baud rate of

the incoming terminal.

The supervisory control modules are responsible for

scheduling program executions, dispatching interrupts, managing

buffers, and the scheduling of delayed (timer initiated) program

executions.

The utility modules take care of post-boot load

initialization, use of the attached FEP control console, dumping

the FEP, printer tracing of system activity, etc.

The FEP was previously bootloaded by a BOS program prior to

every· Multics bootload. This created two problems. First,

bootloading the -FEP and its subsequent initialization caused all

lines to be hung· up. Second, every time the FEP software

changed, a new BOS tape had to be created. Both of the problems

are solved by having the FEP software on the Multics tape and

bootloading the FEP from Multics during a regular bootload.

However, before bootloading the FEP, Multics interrogates it to

see if it is up; if up, the FEP purges any software queues and

sends a message to the central system indicating that it is ready

to run. (Of course it is always possible to force a FEP bootload

even though the FEP claims it is up.) The FEP will also be

- 17 -

informed when Multics crashes to prevent. the ~EP from trying to

talk to Multics. It is possible for the Multics operator to load

the FEP with a precanned message, in all the popular device

codes, which the FEP sends to any terminal dialing up. The

message could be enough to inform the user that Multics is
• I

currently unavail~ble.

Another operational issue is FEP crashes. In the event of

an FEP failure, all users dialed in through that FEP when it

crashes are logged out, the FEP is rebooted, and dialups are

allowed. This is especially desirable when there are multiple

FEPs. If the initializer happens to be one of the consoles

dialed up through that FEP, the message coordinator leaves all

messages in a file until the initializer reconnects. Also, the

FEP can be dumped before it is reloaded, so that analysis of the

FEP failure can be performed.

- 18 -

