MULTICS TECHNICAL BULLETIN MTB-193

To! MTB Distributlon
Froms Re Mulleny Te. Casey
Datel 19 May 1975

Subjects Priority Scheduler
INTRODUCTION

This document describes the functions and proposed lmplementation
of a scheduler for Multics which wlit atiow more flexlble
administrative control ot the aliocatlon of the cpu time resource
to system users and groups of users.

It Is not an objective of thls proposal to attempt to achleve
greater throughput In any numerjical sense. However, It Is an
explicit objective that throughput of }Jobs deemed most valuable
by a system administrator wlil be increased. To that extent, the
value of Multics as a computer utillty Is enhanced. Of course,
every effort will be made to ensure the efficiency of the deslgn
and [implementation of the prlority scheduter,

THE PROBLEM

Currently, the Answering Service provides a mechanism (load
control) tor classitylng users Into groupsy and glvling each group
a specifled share of the system (by {(imiting the number of users
from each group that may be logged in concurrentiyl).

However, except for the setting of the per-process parameter,
timaxs no control over the rate of consumption of cpu resources
by any user or group of users Is provlided. (Briefly stated,
there Is a parameter, tls associated wlith each processy which |[s
roughiy proportional to the amount of cpu time used by the
process slnce [t last Interacteds If the value of t1 for a
process ever exceeds timaxy lIt is set to tlimax. The process with
the t{owest value of ti s almays selected for eiigibitity.) In
practice, the conslderable advantage glven to a process by a
{ower-than-normal value of tlmax has prevented all processes but
the Initlallizer (and sometimes Backup) from being given timax®s
tower than the default value,

THE SOLUTION

This MTB proposes that the scheduter allow the grouplng of
processes Into work classesy and provide each work cltass wlth a
guaranteed percentage of avallable cpu time. Conceptualtly, each
work class will be assigned a virtual processor of

Multics Prolect 1internal mworking documentatlon. Not to be
reproduced or distributed outside the Multics Prolject.

Page ?2 MTB8-193

administratively defined computational power, available to
members of the approprlate work class on demand. Any cpu time
‘not needed by a work class willi be made avallable to other work
classesy and cannot be reclaimed at a later time. In this
respect each virtual processor Is ilke a real processort time
unused is time lost forever. :

In its idealized forms the scheduler proposed here provides each
work class with a specifled computatlonal power on an
Instantaneous basis. The ldeallzed scheduler has a time constant
(or Integrating time) approachling zero seconds. The service and
function provided by the ideallzed scheduler are known constants,
not subject to being bent out of shape by previous transients In
per-workclass {oads.

The actual scheduler wili for reasons of system efficiency,
scheduter efficliency and response, necessarlly have a time
constant on the order of several secondse. As an example,

consider the time constant required to smoothly provide service
to a work <ciass which has been assigned 20 percent of a single
cpu contiguratlon and whose members are generally provided wilith
an ellglblliity quantum of 2 seconds. It the scheduler functlons

correctiy, some process in the work class wiil be glven a two
virtual second quantum every 10 virtual seconds, or approxlmately
every 20 real secondse. Thls implties that in some way the

scheduter must be Integrating over the past 20 real seconds for
such a work class. Averaging over a consliderably shorter period
would require signiflcantly shorter gquanta and result in
lIncreased scheduler and paging overhead. Averaglng over longer
perliods ot time moves away from the ldeallized scheduter and
toward a sScheduler whose behavior |Is ,more dependent than
necessary on the past hlstory of the system.

The ability to Ilmit the number of processes In each work cilass
Is <clearly desirable, if not an absolute necesslity, and the
abllity to assign each process to a speclflc work ctass lIs
obviously needed.

To have two separate and Iindependentily-functionlng mechanlsms for
classifying users 1Into groups and {imiting the number from each
group that may be logged In concurrentiy ls at best unnecessaryy
and at worst, confusing and full of hldden problenms.

Theretorey, there must be a close refatjionship between work
classes and foad control groupss and a3 singlfe algorithm must be
used to determine a process's membership In both classlfications.
For exampley, there could elther be a one-to-one correspondence
betnween work ctasses and load control groupsy or else the work
class of a process could be a function of [ts load control group,
with posslibly more than one {oad control group belonging to one
Work classSe He have chosen the tatter, more generatl,
alternative.

ﬂ

MTB-193 Page 3

It wliilt be posslbie for the system administrator to speclfy the
number of work cltassas (a limit of 16 wlll be Imposed by the
scheduler), and the guaranteed percentage of each work class.

The admlnistrator wili be able to define the membership of each
work class. It will be possible to define such work classes as!
all IO daemonsy the B8ackup daemony all wusers on a certaln
project, or one Individual user. In each of those grouplings, it
will be possible to assign absentee and Interactlive processes
either to the same or to dlifterent work classese.

The set of work class parameters, and the membership of each witl
be able to be changed automatlcally (at each shlft change) and
manualily (by the system administrator, who may Install a new
table at any tlme). Thus, the work classes of exlsting processes
can change.

HARDCORE SCHEDULER

The new scheduler wllil maintaln an ellglible queue consisting of
eligible processes onfy and witl manage 16 ready queuesy one for
each work class. Each ready queue wli! be managed Just as the
non-eligible portlon of the current ready gqueue [s managed ---
that Is the queues wlill each be Internally sorted by tl1 values
and favor the most Interactive users within the work class. The
current method of maintalning a ready queue 1ls chosen for the new
scheduler for three reasonst

i. It [s response orientedy and Iin fact has been proven to
provide the minlaum mean respose time,

2e It such a gqueue consists of processes all with ti = timax,
the the queue |[s largely run as a pushdown stack. Thls
teads to very deslirable paglng behavior 1In that the most
recently run process (the process most likety to have [ts
norking set still In core or on the paglng device) wltl
often be the next process to be run.

3. Use of already exlisting code witt simptlty the
implementation effort required.

To contain informatlion pertaining to each work class, tc_data
wlll contaln {6 work_class_table_entries (WHCTE*Ss) ™ Each HCTE
wlit contain a thread-word for accessing the members of the work
class which are ready, and all parameters and metering data
relating to the work classe. Thls uwlil Include the total amount
of virtuat cpu time used by the work class, the total number of
times eliglibitity was granted to a member, the fraction ot
virtual cpu time which the work class Is to recelvey, and the
response time seen by [ts members.

Page 4 MTB~193

The actual algorithm used to enforce the proper sharing of the
cpu resource will be as follows, Imagine the existance of a
system virtual clock which Increments as virtual tlme [s used by
non-idie processes. Imaglne also that each work class has a
store of credits (in units of microseconds) which is continualty
growing at a rate proportional to the speed of the virtual clock
muitiptied by the fractlon of cpu resources which the work class
is to recelve. Suppose further that the store of credlts for the
Wwork class lIs decremented as members actually consume virtual cpu
time. Clearly [t is undesirable to altow credits +o bulild up
Indefinitely for a mwork class wlth no processes ready, SO 3
maximum value [Is set on the number of credlits which can be
accumuiated. In addition the vatue 1Is restricted from ever
becoming negatlve. The ailgorithm for choslng the next work class
from which to choose a process to which to award ellglbliity may
then be as simple as c¢choosing that work class which has
accumutated the maximum number of creditse.

A worthwhile retfinement would be to choose the work class for
whilch the ratio of the number of credlits to the quantum to be
awarged (je. to the top member of the glven ready queue) Is a
maximume. Thils tends to favor the prompt scheduling of the most
Interactlve users across all work classes. It does not cause
non=interactive work ctasses to fatl far behind since eventually
the interactive work classes choke off. This Is because they are
temporarlty using credits taster than they are galning them, and
witl eventually have a ratlo which Is arbltrarily ltow --- and not
be chosene.

It foltows that the maximum bulld up of <credlts to be allowed
must be greater than the maximum quantum alflowed. It shoutd
probably be at least double that amount.

The computation requlred for such an algorithm wilt amount to
about 300 microseconds per eliglbliity grantedy less [f fenwer
than 16 work classes are deflned. If eligliblilty Is awarded 10
times per second (a high figure) on a one cpu confliguration, the
1oss In system throughput may be about .3%Z. Thls 1Is somewhat
reduced by the fact that all sorting operations into the ready
queue wllt be repltaced by sorts Into shorter queuese.

HARDCORE INTERFACE
The interfaces to the hardcore scheduler will be the following?

1. A gate to define (or redeflne) the set of work classes and
thelr guaranteed percentages of cpu ¢time. This gate Is
tentatlvely catted hphcs_Sdeflne_work_classes. The target
of this gate wlit be a new procedure (tc.plt1) whlch wlii
check the consistancy ot |[ts arguments, use existing
subroutines to wire and mask, and fock the APT before
modifying the work class table. Because thils procedure witl

ﬂ

MTB8-193 Page 5

not be heavlly used it will call wire_procgwire_me rather
than belng permanently wired. It will be Iltiegal to
undefine a work class that currantly has processes in 1it.
It that Is attempted, the processlid and work class number of
one of the "offendlng" processes wiil be returned, In order
that appropriate action can be taken.

2e A gate to reasslign one exlstlng process to a different work
class. It will refuse to change the work class if the new
one is not det ined. It ls tentatively called

hphcs_8set_process_mwork_classe The target of this gate wili
be pxss3set_work_classe.

3. An additional parameter In the create_Info structure passed
to hphcs_g%create_proc: the inltial work ctass. It witl be
Ittegat to speclfy a work class that 1s not defined. it
wiil be necessary for act_proc, the target of
hphcs_$create_proc, to catl pxssidset_work_class, to Ilnsure
that the wWork class being assligned to the new process
currently existse

A primitive to simultaneously redeflne the work classes and
reset the work ctass of each process ls nelther required by
toglcal conslderations nor justlitied by efficlency
conslderations. Furthermore such a primitive would not be able
to handie an arbltrarlly targe number of processes.

In order to redefine the work classes In the general case, it
wlll be necessary flrst to deflne a transitlional set of work
classes and percentages (Including both old and new work
classes), then to reset the work class of each process to the
new values and flnatly to define the new set of work classese. A
procedure to do this will be implemented In the answering
service.

SUMMARY OF CURRENT LOAD CONTROL SOFTHARE

Since work class membership will be a functlon of toad control
group membershlips work class definitions wlil be stored In the
MGTs and the I[mplementation of the answering service and
administrator interface to the prilorlty scheduler wliil consist
malnly of modifications to the current load control software, a
summary of that software, as It now exlsts, Is presented here.

Load control group membership ls specitied In the SAT entry for
each project. In additlon, each project®s SAT entry contains an
absolute max wuser flgure for that project that Is enforced
Independently of the load control group limlts.

Absentee and daemon processes are not subject to t(toad control.
They are ailways logged In on requeste They are assigned to the
foad control group corresponding to theilr projectsy but thelir
group meambershilp Is lgnored by everyone.

Page b MTB-193

Load control groups are defined In the master_group_tabte (MGT),
which Is a binary table maintained by an editor (ed_mgt), and Is
not subject to the Install discliptine. {(1) Thls table contalns
timit parameters for each groups, set by the system adminlstrator,
and It Is also used to hold current load flgures for each group,
during a session.

The group limits are defined in units of user weight, rather than
number of wusers. (There are, howevery, (lmits In units of users,
for the system as a whoie, and for each projecte.) 8y default,
each wuser has a welght of 10, S0 max_units s ten tlmes
max_users. Welght is a functlon of the process overseer, and |Iis
determined by an array of welghts kept in the SAT header.

There are two sets of limit parameters per groups one used to
compute primary_max_units, the other, to compute
absolute_max_unitse. Each set contalins three parameterst a
constant (which may be zero)ly, and a numerator and denominator of
a fraction. The formula for absolute_max_unlts for a group ls?

absolute_max_units = absolute_constant +
{avallable_max_units*absolute_numerator)/absolute_denomlnator

where avallable_max_unlits Is the system_max_units less the unjits
used by the absentee and daemon processes who are not sublect to
toad controt. The formula for primary_max_unlts is the same, but
using primary_constant, primary_numerator, and
primary_denominator,

These calculations are performed for all groups each time a user
attempts to 109 Iny s0 changes fo unlts used by absentee or
daemons, changes to system_max_unlits, or changes In the MGT made
by the system adminlstrator are atl taken Into account
immediately.

The system_max_units flgure [s elthert
1. taken from the SAT header, for a speclal sesslon, or

2. set by the operator, using the maxu command, In which case
automatlc maxunits settlng ls turned off, or

3. set automatlically at each shlft change and whenever the maxu
auto command ls given by the operator. The automatic setting
fooks up the current shift and configuration In the contfig
array In Installatlon_parms, and chooses the corresponding

(1) The Instalt dlscipiine is a method used for Installing
certain crltilcal tables, whereby the Answerlng Service Instatlls
the table, when requested by a system or projlect adminlstrator,
ensuring that the Answering Service will not attempt to reference
the table whlle It 1ls being updated.

MTB-193 Page 7

values fors system_max_unlits, max_absentee_users,
max_absentee_queue, and response_hlgh and response_low. (The
latter two flgures are used by the load leveler (when it |s
enabled by the maxu tevel! command)ly, which readjusts
system_max_unlts at every 15-minute accounting update, to
keep response between the hlgh and low flgures.)

The {oad control decision 1is rather complexy when speclal
privileges iike guaranteed {oglny, the nobump attribute, and
protection from preemption for a specifled grace time are taken
Into account. But baslcally, 1t the system s full (as measured
by system_max_unlits or system_max_users) then someone must be
bumped or else the user is refused login. If the system Is not
fulty, but the group or the project Is full (as measured by the
group®s absolute_max_units or the prolect®s max_users), then
someone In the group or project must be bumped, or else the user
Ils refused logln. It the group®s primary_max_unlts are atl
allocated but 11ts absotlute_max_unlts are not, then the user Iis
logged In as a secondary user, subject to preemption, Secondary
users (ln any group) are the flrst to be bumped (otdest flrst)
when some primary user wants to log In, foltltowed by primary users
{In the same group) whose grace time has explred, followed by
practlcally anybodyy, when a user wlith the guaranteed (ogin
attribute is trylng to log ine '

The load control group membership of a process never changes, but
both the proportlion of the avaltable_max_unjits that each group
gets, and the number ltselt, can vary with the
avallabte_max_unlts (which varlies with shitt, confliguratlon, and
absentee and daemon load), because of the max_units formula
described above.

NEW ANSWERING SERVICE AND ADMINISTRATOR INTERFACE

The MGT witl be reformatted to hold work cltass definitions as
wellt as 1load control group definitlons. Since there will be a
maximum of 16 work cltassesy but there Is currently no restriction
on the number of load control groups, the new MGT will consist of
a header, followed by a ftixed-length array of 16 work class
definitlionsy, folfowed by a varliable-tength array of load control

group definitlions. The header and the load control group
detinltions will remaln essentlialty unchanged, except that each
foad control! group definition will contain two additional
8-element arrayss speclfylng the work classes to which

Interactlive and absentee users In that toad control group betlong
on each shift. ’

One or more {oad control groups can belong to each work classe.
The max_users and max_unlts flgures for each work ctass wilt be
the sum of the corresponding fligures for the load control groups
that make up the work class. The work class maxima will not
actually be computed and stored anywhere by the answering
service, but they wil! be dlsplayed by ed_mgt to asslst the

Page 8 MTB-193

system adminjistrator In assigning reasonably consistent
percentages fto the work classes and max user and unit ftlgures to
the load control groupse. The normail operatlon of load controi,
as descrlibed abovey, wlil timlt the number of processes in each
work classe.

The ed_mgt command will be modifled tn be abte to store and
modify the work class parameters, to verlfy, on request, the
correctnessy, reasonablenessy, and conslstency ot work class
parameters and the corresponding {oad control group definitions,
and to print work class deflnltlons and a cross reterence showing
the correspondence between toad control groups and work classes.
The changes to ed_mgt are described In detail In a later section.

The Install command will be modlifled (and a new procedure,
up_mgt_, will be written) so that the MGT can be Instalied white
the system |s up and users are logged In. up_mgt_ wlil have to,

In generaty, reset the work class of all exlsting processes to the
work class speclfled In the newly-installied MGT.

The answer table (and daemon and absentee user tables), and the
create_Iinfo structure passed to hphcs_g8create_proc, wili have a
new varlable, work_class, added.

toad_ctl_sload_cti_inlt wiil call hphcs_$deflne_nork_classesy to
define the work classes to be used by the scheduler, durlng
answering service Initlatizations. (Thils cal! must be made before
the daemons are {ogged Iine.)

foad_ctl_s$set_maxunlts, which Is called at each shlft change (as
well as during the second halt of answering service
Iinitiatlizatliony, and whenever the operator command “maxu auto™ Is
glven) wilt redefine the work classesy, as specifed for the
current shift In the MGV, and will reset the work ciass of each
exlsting process as reqguired.

Since the functlon of redefining the current work classes and
resetting the work classes of all existlng processes must be
per formed both at shlft change and whenever a new MGT s
Instattedy, it will be Implemented as a separate procedure, calted
in both situatlionse.

To support the asslignment of work classes on the basls of person
as well as projecty, the SAT and POT, and the procedures which
complle, edlty and Instaltl themy, Wwlill be modlfled to aliow a load
control group to be specifled for an individual user rather than
just tor a whole project.

A nenw attribute, lgroup (indivlidual group)y wWlil be created. When
that attrilbute Is on in the SAT entry for a project, 1t permits
the load control group for users on that project to be speclfled
Iin the PDT entry for any user on that project. (If that attribute
Is not on In the SAT entry, then all users on the project wiil

MTB-193 Page 9

continue to belong to the toad control group specified In the
project®s SAT entry.) When the lgroup attrlbute Is on In the PDT
entry for an indivldual user, It Indicates that a 1{oad control
group Is specified In that user®s POT entry. (If igroup [Is not

on In a user®*s POT entry, that user wlil contlnue to be a member
of ¢the load controt! group specifled In the project®s SAT entry.)
The name of the individual user®s 10ad control group will be

stored 1In a presently unused pad fletd ln the PDT entry. Thils,
plus the use of Igroup In the PDT entry as a poslitive indication
that a group is speclfledy, wiltl! allow thls change to be Instalied
without requirling that any exlstlng POT®s be reformatted or
reinstaliede.

lg_cti_ will be modifled to asslign a load controi group on the
baslis of person as well as project, as described above.

load_cti_ witl be modified to use the (oad control group of each
process to assign [t to the work cliass speclifled In the MGT for
absentee or interactive wusers In that group, on the current
shift. (Daemon processes wlil be treated as Interactlve, for the
purpose of work class asslignment.) The asslgned work class wllil
be stored In the answer tabie {or absentee or daemon user table)
entry for the processe.

cpg_ will copy the work class from the answer table entry Into
the create_info structure,s, before calling hphcs_3create_proce.

INSTALLATION PROCEDURE

The hardcore system contalning the prlority schedufer, and the
answnering service containing the above modlflcatlions, can be
Instatted In ejther order. It hphcs_gsdeflne_work_classes Is not
calledy, a slngle work class (work class 1} wlill exist by default,
and will have a percentage of 100%Z. The verslon number of the
create Info structure wlll atlow act_proc (the rlng zero
procedure calied vlia hphcs_g%create_proc) to determine If the new
versiony, contalning the work classy has been passed. If the oid
version of create_lnfo ls used, act_proc wll!l asslgn processes to
work class {1 by default. This allows the hardcore system to be
installed first.

The new answerling service wlll check for the otd format M6GT, and

It it Ils found, none of the new gates wili be calltedy, and every
process wlilt Dbe assligned to work class 1+ Independent of their
load control group membershipe. Further, a switch In the

reformatted MGV, settable by ed_mgt, wlill altiow this mode of
operatlon to be specifled by the system administrator after the
MGT Is reformatted. Finally, a check for the existence of
hphcs_gdefline_work_ciasses wll! be made durlng answerling service
inltiatlzationy and 1f 1t 1Is not presents the old mode of
operation wliil be usede This wiil make the new answering service
compatibie with oider system tapes. It wilt also cause the
system to run as it does nowe wlith oniy one work class, when both

Page 10 MTB~-193

the new answering service and the new hardcore system are
Instatied. The new scheduler mwili not be turned on untlii{ the MGT
ls reformattad, and the system administrator explicitiy enables
1ta

The system administrator wlit, of courses, be Informed of atl thls
in release documentation. The first time he uses the new ed_mgt,
it wlil recognize the old format MGT, reformat [t automatically,
define a single work class (work class 1) wlth a percentage of
100%Zy make all load control groups members of It, and then Invite
the system administrator to define more work classes and reasslgn
the 1load control g3Jroups to them. It witi not be required that
the administrator do soy, but ed_mgt will keep reminding him,
every time he uses Ity until he does.

Since the MGYT wli! now be subject to the Install discipline, the
reformatted copy can not be put back In >sci. When the *"w"™
request Is glveny, the reformatted MGT (named MGT.mgt) will be
vritten In the working directory of the administrator (which
should be >udd>sa>admin). The adminlstrator wlill be told about
this by ed_mgt. Except for the Instance when the MGT Is
reformattedy, the edlted MGT will be written back into the Input
MGTy as ls done now. Honever, the system administrator wliit not
be editling the »sci copy any more. As a convenlence, after
writing the edited copy back into the originaly, ed_mgt witill
always ask "Install?™, and It the answer ls yesy [t will Invoke
the instatl command. The administrator wlit of course be able to
lnvoke it directlye.

The instatiatlon procedures descrlbed above wliil make testing and
Initial instaltlatlon of the system very convenient, and It will
also allow the system administrator at each customer site to turn
on the priority schedufer at hls convenjience, Instead of forcing
him to deflne some (possibly lii-consldered) work classes, Jjust
to get the new system release to run.

CHANGES TO ed_mgt
Summary of Current ed_mgt

The following summary describes oniy those features that are
belng changed. The MGT, as seen by a user of ed_mgt, ls an array
ot load control group definitions. The find (f) request poslitions
the current polnter to the speclifled group. The next {(n), top
(t)y ana - (minus sign) requests move the current pointer forward
or backward in the array. The <change (c) request changes
parameters of the current group. The print (p) request prints all
information about the current group. The pall {pa, pP*) request
prints aty information about all groups. Only the find and change
requests take arguments. Thelr formats aret

tinga <group hame>
change <code> <new value> [<code> <new value> ...] *

)

MTB-193 Page 11

where <code> ls the name of the parameter to be changed. Typling
these requests without arguments causes ed_mgt to prompt the user
for them. The change request puts ed_mgt Into the change
subcommand, In whlch <code> <new vatue> palrs are accepted. The
asterlsk at the end of the line exits from the change subcommand
and returns to ed_mgt request level.

Summary of New Features

The tind request will be modifled so that a <group name>
consisting of one of the Integers 1 through 16 will refer to the
correspondling work classe.

The nexts topy and - requests wit! be modified to print the name
and type of ¢the entry belnyg polnted at after the pointer |Is
moved.

The change request will be modified so that the set of codes
accepted will be dlfferent, dependlng on which type of entry
(work class or toad controt group) the current pointer s
polnting at. New codes and other arguments wlll be added, to
alliow parameters of work classes, and the work class membershilp
of load contro! groupsy to be edlted.

A new request, global_change (gc), wili be addeds to atlow the
same (set of) changel(s) to be made to all work classes or to all
toad control groups.

A new request, verify (v)y wlll be addedy to request that ed_mgt
check all the work-class-related parameters In the edited MGT,
and report any errors or warnings that would be recelved If the
MGT were to be instalfled.

The print and pall requests wlli be changed to print the new
parameters, and the pall request will take arguments, requesting
that all work classesys or all load controi groupss or both, be
printedy, or that a cross reference of work classes and toad
control groups be printed.
Detalled Descriotions of New Features
Two new formats for the change request will be added:

change <code> [<shlift specliflicatlon>] <one or more values>

change <code> [<shift spec.>] <interactivelabsentee> <valuel{s)>

The tlrst s used when editing work class parameters; the second,
while changlng the work class membership of a load control groupe.

Page 12 MTB-193

The following new <code>*s can be used In the above requests?

percent {pct,y, %)
absentee {abs)
defined (def)

work_class (wc)

The first three are used with the first form of the change
raquesty, to edlt work class parameters. The fourth [s used with
the second form, to change the work class membership of a Iload
control group.

The tormat ot the <shift speclification> 1s the word “shlf¢™
follovwed by a shitt number or a range of shift numbers (two
numbers separated by a hyphen, the second greater than the
tirst)t

shift <number>! <number>-<number>

The shlft speclfication 1s optionat. It [t IIs omitted, the
default 1is a tunction of how many values are suppliied. If one
value s supplledy it Is asslgned to all B8 shifts. If a tlst of
values 1s supnliledy, they are assigned to shlfts 0y 19 eees
respectivelyy, and shifts for whlch values are not suppllied are
not changed.

The following reftationshlp exlsts between the shlft specification
and the 1ist of valuest when a range of shifts ls specifled, a
slngie data value Is expectedy and lIs assigned to ail shifts In
that range; when a singie shift is speclfled, one or more values
may be supplledy and they are assigned to shlfts, In order,
starting with the spacifled shift.

<interactivelabsentee> can bet

Interactive (int)
absentee (abs)

This argument ls wused when setting the work ctltass of a load
control groupe. Separate work classes may be specifled for
interactive and absentee processes In the load control group, on
each shitt. If this argument |s omlttedy, but the work class
value{s) are glveny, the default is interactive.

The work <class parameters ™"deflned™ and ™absentee™ can have
values of “ott"™ or "on”™ (or ™"0" or ™1"). They are per-shift
switches, that Indlcate respectively, whether the work class Is
deflned on the given shlft, and whether absentee processes are
permitted in it on that shift.

MTB-193 Page 13

The format of the global_change request will bet
gc <type> <arguments acceptable to the change request>
where <type> can be?

load_control_group (lcg}
work_class {wc)

The effect of this command wlll be to make each change (speciftled
by a change subcommand) to all entries of the speclifled type.

The format of the paltl (print att) request will bet
pall <type>

where <type> can be?
load_control _group (icg)
work_class (wc)

cross_reference {cret,y, xref)

It <type> [Is omlttedy, the default will be to print atl three sets
of informatione.

Examplest
change % 10 « .
change %4 shift 0 10 10 40 10 10 10 10 10 .
change pct shift 0-7 10 .

The above are equlvalent ways of assligning 10%Z to the current
work class on atll shitts.

change Z shift t 50 % shift 2-4 30 .
The above request s equivalent to the followling two requestst

change X shift 1 50 .
change % shift 2-4 38 .

c wc Int shift 41 3 wc shift 2=-4 Int 2 wec abs 1 .

The above sets the Interactlve work ciass of the current (oad
control group to 3 on shift § and to 2 on shifts 2-4, and the
absentee work class on alt 8 shitts to 1. Notlce that the shit?t
specificatlon and the Interactlvelabsentee Indicator may appear
In elther order.

gc wc defined shlft 0 off defined shlft 5-7 off .

The above wlll set all work classes to undeflined except on shlfts
i-4. This would be usefui at an Instaltatlon where only shlfts

Page 1& MTB-193

1~-4 were In use, to simplify the output of the print and pall
commandse, since jinformatlon about undeflned shifts Is not
printed.

Note thaty, In the examplesy a perlod Is used to terminate the
change request tines Instead of an asterlisk. In the new ed_mgt, a
perliod witi be accepted for that function, In addition to an
asterisk, for compatlibliilty with other Multics edltors.

The examples show all requlired arguments supplled on a single
ilne. ed_mgt wilt prompt for missing values. The example above,
In which the percents for shifts 1 and 2-4 were changed, would
fook t]lke thls If the user typed only what was requested (!
Indjcates prompting messages)!

? typel
change

L code!
4

H shitts
i

H value(s):
50

! code?l
%

H shifts
2-4

! valuet
30

H codel

! typel

