’hsiiultics Technical Bulletin HTB - 192

Date: April 8, 1975
From: Susan Barr

Subject: Proposed user interface for FAST

It is planned to add a new subsystem to Multics that provides
inexpensive "classical timesharines" capabilities. This subsystem has
been «iven several names at various times - Limited Service Subsystenm
(LS3S), Low Level Entry Subsystem, and Fast Access 3Subsystem for
Timesharing (FAST). The currently proposed name is FAST.
This system must have the following properties; it must:

be inexpensive to use,

include both Fortran and Basic,

be easy to use.

’p. It 1is desirable for FAST to be a closed subsystem with resource
limitations (to be described in another MTB) so that lower prices may
be charged for it.

It 1is desirable for it to be similar to the Dartmouth System, DTSS:
The motivation for this is twofold:

A primary user of FAST will be General MHMotors who will
transfer a large number of DTSS users to this system.

The DTSS user interface (an extension of the orirginal GE 265

system) is very commonly available on other systems. As a
result it is well known and has proven to be easy to use.

Components of this subsystem are:
A new Fortran compiler,
The Basic conmpiler,

The system modifications that allow a process to wuse a
smaller amount of resources,

Multics Project internal working documentation. Not to be reproduced
or distributed ocutside the Multics Project.

MTB - 192 Proposed user interface for FAST

ﬂ

Prelinkinege,
MCS,

A new Command System/Fditor similar to DTSS.

Performance 1is the most important factor in desisning FAST. When
there was a choice between compatibility with DTSS and performance,
FAST did not simulate DTSS. Features should not be added to FAST that
will degrade performance, since the user requiring a more powerful
system could log in under the full Hultics system.

The remainder of this document concerns itself with the command system

interface and the issues that are encountered in its relation to other
components of the system.

Proposed implementation:

DTSS has a simple editor that is entered at command level. This

editor uses two temporary files, The "current" file which contains

the file being edited and the "alter" file which contains replacement
lines or additional lines to be added to the file when a merge is

done, Lines that bergin with a number are added to the "alter" file. “~
All other lines are assumed to be commands. This editor works on a
complete line each time, It allows the user to add, delete or change
a line and to list the file being created.

—

The "current" file is used for input and output for many commands that
use files., If the user calls a command that normally reads the
"current" file, the "alter" file and the "current" file will be merged
and the result stored in the "current" file before the command is
called., No nermanent files are created in the user’s catalog unless
the files are explicitly saved., This approach will be used for BFAST.

FAST will be different from the DTSS operating svstem in those cases
where compatibility with tlultics conventions 1is necessary. There are
three major areas where DTSS and Hultics are not compatible: access
mechanism; search procedures; typing conventions and terminal
control. The DTSS operating system has several editors that provide
similar functions. FAST will include the EDIT command and a version
of the Multics editor edm. The DTSS command DEBUG cannot be
implemented with the current Basic compiler so the Hultics debuzger
probe will be provided instead.

Proposed user interface for FAST ' Th - 192

”\ System commands (from DTSS) to be included:

File and edit System Terminal
APPEHD BILL DIRECT
BUILD BRIEF FULLDUPLEX
IGHORE BYE HALFDUPLEX
LIST CATALOG KEYBOARD
OLD GOODBYE TAPE
RENAME HELLO

REPLACE - LENGTH

SAVE HBRIEF

SCRATCH SYSTEL!

SORT TTY

UNSAVE USERS

EDIT

PRINT

Compilers

COMPILE (for rFortran and Basic)
RUH

The followinz Multics commands will be added:

Access lMisc,

set_acl edm (special version)
list_acl gedx

set_iacl_seg probe

list_iacl_ser change_wdir

Access control:

DTSS has two types of access associated with each segment., Access
with a password entered by a user and access without a password. Some
of the access is for the convenience of the user and does not protect
the segment or its information., (See Appendix I for DTSS access
codes.) For example, LIST access means the segment is ascii and can
be listed with the LIST command. This feature does not require a
separate access code and a check for non-ascii segments can be built

into the LIST command for FAST. The APPEND access 1s not compatible
with Multics.

lfTultics access control is very different from DTSS access control,
All DTSS access except for APPENHD is available on IHultics. Instead of
simulating DT3S access, it is proposed to use llultics access and

’-\ 'lultics access control commands (set_acl, list_acl etc.)

MTB - 192

Proposed user interface for FAST

Two alternate proposals were supzested:

1.

Use Multics access and allow the user to specify additional
access with the SAVE and REPLACE commands.

DTSS: SAVE ; RXP,RXP PUBLIC access
AST: SAVE ,re #*, % # PUBLIC access

If no access was specified, the user would get the same
default as the full Multics today.

Use Ptultics access, but allow the user to specify with DTSS
conventions where applicable.

SAVE; RXP,RXP would map into
set_acl current_name re #,% ¥

Search rules:

DTSS does not use search rules.

an exact pathname., DTSS does not remember and use initiated
segments. There are many ways to implement FAST that are
dependent on other choices that are described in sections below,
such as the naming conventions, the implementation of the DTSS
LIBRARY statement, and the imnlementation of the call statement
in Fortran and Basic. If subroutine calls are to source code,
this is not an issue,.

It is proposed that calls are to object code,

used to find procedures needed by Basic, Fortran and the command
processor. This will be done for efficiency and so that the
standard_system library will not have to be in the user’s search
rules. There will be search rules that include special FAST
system libraries, but not initiated segments.

There is an alternate proposal to simulate DTSS and to have no
search rules. Prelinking would still be used for the compilers
and the command processor.

Tvpine conventions and input:

DTSS uses different erase and kill characters and has more
control in some areas of input than Multiecs. It is proposed to
use llultics conventions. FAST will have the following
differences from DTSS:

1.

Erase will be "#" instead of "(CTRL) Z2'".
Kill will be "@" instead of "(CTRL) X".

Every filename reference implies

Prelinking will be

A\

‘\

~

Proposed user interface for FAST iy - 192

Case

2.

The

The internal representation of source sersments will use the
lfultics convention of one character (new-line) tor the end of
the line. DTSS uses a two character string (carriapge return
followed by a line-feed) for the end of the line. This
change should be invisible to users, since this is
implementation dependent knowledge rather than part of the
Basic or Fortran languages.

following DTSS features will not be implemented on lultics.

When a line is deleted using the DTSS kill character, the
word "DELETED" is printed and the carriage is positioned at
the start of the next line. On Multics there is no echo for
the kill character.

DTSS permits the user to suppress the normal even parity
generation. In this mode, the eighth bit is transmitted as
generated by the program causins the information to bhe
transmitted to the terminal. This is used for special
purpose terminals. There are plans to implement this feature
on Multics in the future.

The DTSS system allows the user to skip blocks of output

(about 256 characters) by typing CTRL X while the terminal is
printing,

conventions:

DTSS and Multics differ in the use of case conventions. DTSS
stores input from uppercase only terminals as uppercase, but
Multics maps input from those terminals into lowercase. The DTSS
printer uses uppercase only. FAST should be easy for users to

learn, If a user has always seen procrams in uppercase, the use
of lowercase can be confusing,

1.

Case conventions for filenames on DTSS:

a. Filenames can be up to 8 characters long and consist of
these characters:

A-Z
0-9
hyphen
period

b. Command Processor

The user can set the current name to use lowercase by
using OLD, NEW, or REMAME. This name is shown as it was
typed by the user, but when it is used in a SAVE or

HTB - 192 Proposed user interface for ©AST

REPLACE command, the current name is mapped to uppercase
and the filename convention is enforced.

c. Basic

Basic maps filenames to uppercase. For example, the
LIBRARY statement has quoted strincs for arsuments. Fach
string is the name of a file where subroutines used in
the program may be found. These filenames will be mapped
into uppercase, but the actual subroutine names may use
upper and lowercase, There may be several subroutines in
one file.

d. Fortran

Fortran maps all characters not in quoted strings to
uppercase, as a result filenames are in uppercase.

2. Case conventions for non-filename use on DTSS:
a. Command Processor

The contents of user files are left as the user created
them so upper and lowercase distinctions are preserved.

b. Basic

1. Upper and lowercase is significant within quoted
strinzs, For example, the subprogram name must
exactly matech the name given on the CALL statement.
In both cases an upper and lowercase distinction is
made.,

2. The upper and lowercase distinction is not made
outside of quoted strings. (i.e. CALL, CaLl, and
call are all treated as a CALL statement)

c. Fortran
Fortran maps all characters into uppercase.

d. Printer
The DTSS printer can only print with uppercase. That is
a deficiency of that system since users can create files

and Baslic programs where the distinction of upper and
lowercase is sirnificant.

It is oroposed to handle upper and lowercase by using Multics
conventions, but allow the user some visual aids. FAST will hav?‘?
these features:

Proposed user interface for FAST Hrg - 192

d.

The input from uppercase only terminals will be mapped into
lowercase as is the ilultics convention. The users of these
terminals will enter uppercase letters by preceding the
letter by an escape character.

System library names will be lowercase. (An alternative
would be for these segments to have both upper and lower case
names; I think this i1s unnecessary.) Segment names will not
be mapped into uppercase by the compilers and the command
processor. These names will be used as given.

A new command, "uppercase" will be supplied for users who
would like to see only uppercase characters on a two case
terminal. This command could be requested when the user is
at command level. It would make a modes call to the tty_

dim. (It has also been sugpgested that this be a login
option.)

usage: uppcrecase (edit]

If the "edit" option is given, all letters will bhe printed as
uppercase. Hon-printins characters will be deleted.

If the "edit" option is not given, the following conventions
will be used.

1. Lower case letters will be mapped into uppercase.

2. Uppercase letters will be preceded by an escane
character.

3. Non-printing characters will cause the string "\nnn"

to be printed to give the octal representation of the
character.

The FAST implementation of the PRINT command, which lists on
a line printer, will have an uppercase option.

There is an alternate proposal to simulate the DTSS conventions.

a. The command processor would enforce the uppercase sergment
name convention with the SAVE and REPLACE commands.

b. Basic and Fortran would recognize segment name references
and map segment names to uppercase,

c. Uppercase only terminals would not have input mapped to
lowercase. By system 3.1, t#IC3 would allow the FAST
process overseer to change the conversion tables so that

uppercase would be mapped to lowercase on uppercase only
terminals.

HTB - 192 Proposed user interface for FAST

“~N

Comparison:

The use of Hultics conventions with the extra uppercase option
seems to solve the problem and it remains compatible with the
full Multics systerm. The user’ s concern is only with how the
contents of segments appear, not their internal representation.

This proposal has the advantage that a user can create a progran
on an uppercase only terminal and be able to edit the segment on
a two case terminal without having to use the shift key to keep

the contents of the segment consistent.

Use of external subroutines:

1. Basic

DTSS does not use dynamic linking. The COMPILE command tries
to compile the current file. The source code for external
subprograms is found at compile time using the LIBRARY
statement. The LIBRARY statement gives the names of files to
be searched for the source code of subprograms referenced in
the current file but not found there., These subprograms are
compiled as if they had been part of the current file.

The LIBRARY statement may give one or more files to be
searched for the subprogram source code,. A file may contain
more than one subprogran.

2. Fortran works differently. The current file can be compiled
separately without the subroutines it references. When the
prorcram 1s executed and the subroutine is called, it is then
compiled and executed.

It is proposed to use Multics conventions. Users would have to
learn these incompatible Hultics conventions:

a. J3ource sesments need a languare suffix.

b. Object serments can not be renamed arbitrarily. On DTS
the user can gfive an object segment any name since there
is only one entry name for an object program. On
Multics, the object segment can have several entry
points, so the name of the source segment without the
lansuare suffix is used as the principle entry name,
Then a call to "name" is assumed to be a call to the
principle entry point, "name$name",.

¢. Subroutines can be linked to at runtime.

Proposed user interface for FAST N - 192

’h There are two additional proposals:
1. Sinmulate DTSS:
a. basic

The Basic compiler would use the LIBRARY statement to
search for the source code for the subprograms not
found in the current file. There would be no dynamic
linking to object subprograms.

b. Fortran

The Fortran compiler would use the LIBRARY satement
to search for the source code or object code for the
subprograms not tound in the current file. There
would be no dynamic linking.

2. Use a combination of the DTSS LIBRARY statement and
Multics dynamic linking,

The previous proposal would be implemented with an
additional search, Subroutines not found in the source
seecment and not found with the LIBRARY statement would be
assumed to be object sesments to be found at runtime.

~
Comparison of the proposals:
The DTSS simulation has some advantages in terms of storage. The
user does not need to keep the object code of each subprogram in
a separate segment which must use a minimum of one record. The
user does not even need to keep object code for subprograms. The
source code for several subprograms may be stored in one seegment.
This could be a large saving if the user has many small
subprograms.
This method has the disadvantage of increased compile time,.
Every time a change is made in the main program or any subprorcram
all the source code must be recompiled. If the user stores
several subprosrams in one segment then editors and the prepass
for Basic will be more costly. DTSS simulation means Basic
programs will not be able to call Fortran subroutines, since
calls are to source code at compile time.
The advantage of following Hultics conventions are: FAST and
full Multics will be compatible; no prepass is required; the user
can use several small object segments instead of one large one;
subprograms don’t have to be compiled every time some other part
of the prozgram is changed.

~

MTB - 192 Proposed user interface for FAST

«

Pathname conventions:

DTSS uses different pathname conventions from Hulties. It is
proposed that Multics pathnames be used. The following list
shous DTSS pathnames and the equivalent Multics pathname.

71. <{name>
The file is in the user’s catalogs.

(On HMultics: (wd]>name)

2. *<user_no.>:<name>
The file is in the main catalog of user with account number
user _no.’

(On Multics: >udd>projectid>nane The user must know
the project name and user name instead of a user no.)

3. <naned>#%#s#
The file is in DLIBRARY

(On Multics: >ldd>dlibrary>name)
4, :DLIBRARY:<sublibrary>:<name>
{sublibrary>##f:{name>
The file is in the sublibrary off the DLIBRARY off the main
library DLIBRARY.
(On Multies: >ldd>dlibrary>sublibrary>name)

5. The user’ s "working'" catalor can be changed to be one of his
subcatalogs or to a system catalog.

ENTER {subcatalog> Chanse to sub cataloeg.

(On Yultics: cwd subdir)

EMNTER ~M1YCAT Use main catalog of user,

(On !ultics: cwd)
There were these alternate propnocsals to allow the users to
continue using DTSS pathnames:
1. Have FAST do the conversion to llultics pathnames at runtime.

This could be done with a spcial version of the MHultics
subroutine expand_path.

~

Proposed user interface for rAST MTB - 192

2. Have the ¥AST compilers do the conversion to ilultics
pathnames at compile time., If this is done, then object code
produced under FAST and the full fultics system would be the
same with respect to pathnanes.

3. Supply a FAST command that reads a source fille and converts
DTSS pathnames to [fultics pathnames.

flaming conventions:

On DTSS filenames are arbitrary names given by the user, The
user can rename a program after it has been compiled. The naning
convention used by FAST is dependent on the previous choice of
implementing external subroutines.

If Multics dynamic linking is used, then it makes sense to use
Multies namine conventions. Users would have to learn these
Multiecs conventions:

a. Source code must have a lanruage suffix.
b, Object segments can not be renamed.

An alternative proposal could be implemented if external
subroutines are found at compile time, All programs compiled
under FAST would have the same entry name. The source code for
the COMPILE command would be a temporary segment (called the
current file on DTSS) in the process directory. This segment
would have the name "main.basic" or "main.fortran" so that the
compilers would use "main" for the entry name. The compillers
would store the object code in a segment in the process
directory. When the user copies this segment into his working
directory using the SAVE command, he can give it an arbitrary
name. ihen the user calls the EXECUTE command with an object

segment "name", the command would call "namefmain".
Data chaining:
Chaining is used on DTSS for two reasons: to provide an overlay

mechanism in order that a program that exceeds the core maximun

can be divided; and to allow users to pass files from one progran
to another,

The DTSS command EXECUTE uses chaining to pass the current file
and a scratch file to programs (as files #1 and #2) There 1is a
method to signal the command processor to exchange these two
files when a program returns to command level. This allows users

-—_ 1] ==

MTB - 192 Proposed user interface for FAST

ﬂ

to edit the current file without having to reference it by nane.
Information about the file position is also passed.

Chaining will be implemented for both Basiec and Fortran.

Background:
The BACKGROUHND command in DTSS allows user s to run "batch" jobs.
This would not be consistent with the idea of the fast limited
systen because it would allow users to have two jobs being
nrocessed.

DTS5 users must use BACKGROUND to list sesments on the line
printer. FAST would supply a replacement for the BACXKGROUND
PRINT request.

Editors:

The DTSS EDIT operates on the current file and does one request
for each call to the editor. It permits the user to merge
several files, to move blocks of lines within the file, to
resequence the file, and to convert the file to a "string'" data
file for input to Basic prograns. “N
The DTSS TEXT and STRING editors operate on the "current" file
but continue to read edit requests until an "exit" request. TEXT
recognizes both Basic line numbers and strings in 1its edit
requests. STRING uses only character strings. The function of
these editors could be replaced by a version of the Hultics
editor edm. A new entry could be added to edm, whicn would pass
a pointer to the "current" file. All edm requests would be
permitted. The write request would not allow a2 name argument and
would be interpreted as a write to the "current" file. This
chanze to the installed edm is necessary to prevent the user from
chanzinz a file in his cataloc from within an editor.

QD 1s very similar to the Multics editor gedx. There are
different conventions for the escape characters and differences
in some forms of addressinsg. The Multics editor gedx will be
substituted.

Catalopr:

The CATALOG command prints information about the user’s catalog.
On FAST the user will use a subset of the iMultics list command
arcsuments with the CATALOG command. MNo attempt will be made to

™oy

format the resulting output to look like DTSS.

e -

T3S

192

Proposed user interface for FAST

Appendix I

access conventions:

append
compile
icteh

(SN @R

Troup
list
public
read
write
execute

oo Q

o=

Command

BACK
COMPILE
LIST
OLD

PUNCH
RENAME
REPLACE
RUN
SAVE
SCRATCH
UNSAVE

2]

tatem

nt

FILE

INPUT
PRINT
READ
SCRATCH
WRITE

length may be extended
is compiled object code
may be used in program from different user
number

available to users in
may be listed

may be copiled by any
may be read from
previous contents may be replaced
is executable machine code

same group

user

Access needed on "current" file

RA

R

RL

R or X, also G or P or rif file is in another
catalog

RL

R

RWA on file being replaced

R or X

R

RWA

RWA on file being unsaved

Access needed on file referenced

R or W or A (F alsoc needed if saved in another
user s catalog)

R

A

R

WA

A if file is lencthened
W if some elements in tile are destroyed

-- 13 --

