
--
Multics Technical Bulletin MTB-186

To: Distribution

From: Steve Webber

Date: 04/29/75

Subject: Proposed Redefinition of the Copy Switch

This MTB proposes redefinition of the copy switch item in a
directory branch. The prime reasons for wanting to do this are~

1. to make a more consistent and simpler
available to users,

2. to simplify the supervisor, and

mechanism

3. as a part of the implementation of copy_on_write.

Currently the copy switch is used by the initiate primitives
to provide a pointer to a copy of a segment (which .is potentially
nonshareable) rather than to the segment itself. This means that
the supervisor must do a good deal of work (in ring 0) implicitly
(such as create a segment in the process directory, make it
known, initiate a reference name, etc.). This work would better
be done in the user ring either implicitly as in response to a
copy_on_write fault or explicitly as when a user initiates a
segment so that he gets a copy regardless of the setting of the
branch item.

The proposal is to:

1. implement copy_on_write in the user ring with system
software, and

2. control when a copy_on_write is to take place with the
branch item "copy_switch".

The copy_on_write mechanism is simple and would work as
follows:

1. If a potentially copiable segment is initiated, a
pointer to the original segment is returned, even if
the copy switch is ON.

2. If an attempt is made to write into the original and
the user does not have write permission to the segment,

~ Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

Page 2 MTB-186

and the copy switch is ON the following actions are
taken:

A. Create a segment in the process directory with the
name "!unique ... etc.copy_of •.. " Give the calling
process REW access to the segment.

B. Make this segment known.

C. Copy the original segment into this segment.

D. Make the original segment unknown but reserve its
segment number.

E. Make the copy unknown.

F. Make the copy known with the reserved segment
number.

No action is taken on reference names. (It is assumed that
reference names have already been dissociated from KSTE's.)
Hence, the reference names which were associated with the
original segment are now associated with the copy as the copy has
the original segment's segment number.

It may be worth the effort to create
manager primitive to perform actions D,
single call.

an address space
E, and F above in a

The copy_on_write handler which performs the above tasks
would be invoked when a "no_write_permission" fault occurs. The
signal_ program will special case this before searching the
stack. If the segment does not have the copy switch ON,
no_write_permission is signalled in the usual way. If the
copy_switch is ON, the copy is created, etc. and the fault is
restarted immediately without searching the stack.

Clearly there must be a mechanism for allowing users to take
whatever action they want to--possibly to ignore copy_on~write
events. This can be done today by the user replacing the signal
pointer in the stack header. Another possibility is proposed in
an upcoming MTB on "Handling System Conditions".

This entire change is incompatible and users will need to be
told about it in advance. It additipn, a consistent replacement
must be provided which is as similar to what we have to.day as is
possible. The new actions taken by the hardcore primitives are
proposed below:

--
MTB-186 Page 3

1. hcs_$initiate This primitive will not create
a copy as it does today.
Indeed, the primitive will not
even look at the copy switch in
the branch. Since a value of 2
to the current copy_ctl_switch
parameter will not be
meaningful, specifying this
value will result in failure to
initiate as reflected by a new
status code. The values of 0
and 1 will be allowed and
handled, but no action will be
taken until (if ever) a
copy-on-write fault occurs.

2. hcs_$initiate_count This primitive will act exactly
as the hcs_$initiate primitive
does with respect to the copy
switch.

3. hcs_$delentry_file (_seg) These primitives will look at
the copy switch and treat the
copy switch exactly as it
treats the safety switch, i.e.,
an attempt to delete the
segment will fail as long as
the copy switch is ON.

4. hcs~$status (etc.) No chan~e

5. hcs_$append (etc.) No change.

6. hcs_$add_acl_entries (etc.) No change.

7. hcs_$set~bc (etc.) No change.

8. hcs_$fs_move_file (_sg) No change.

9. hcs_$terminate_file No change.

10. hcs_$truncate_file If the copy switch is ON, take
no action. If the copy switch
is OFF, truncate as usual.

11. hcs_$truncate_seg If the copy switch is ON, cause
the effect of a copy_on_write
(i.e., if no write permission,
create a copy with the same
segment number) to occur and
truncate the copy. If the copy
switch is OFF, truncate the

Page 4

These mappings provide
uses of the copy switch
with a value of 2 specified
This effect can easily
user-ring code.

MTB-186

segment.

a consistent mapping of all potential
known to me except the initiate calls
in the copy_ctl_switch parameters.
be duplicated by straight forward

Note that segments created as copies of other segments will,
in general, not have the copy switch ON and will be writeable.
Hence, it is very unlikely for a copy_on_write fault to occur on
one of these segments.

A problem arises when a pr'ogram of today initiates a segment
known to have the copy switch ON. This program can depend on the
fact that the pointer returned to him points to a copy and hence
actions such as truncate and delete will not have any effect on
the original. With the new proposal, however, the returned
pointer will point to the original until (if ever) an attempt is
made to write into it. Hence, such programs, if they never do
modify the original, will perform their cleanup actions intended
for the copy on the original. This is why the truncate and
delete primitives will be changed to treat the copy switch
specially. An incompatible problem arises here if no
modifications are performed as an error code will be returned
when an attempt to delete the original is made. Note, however,
that all known uses of the copy switch work with no change in
behavior a.s modifications are always done (that is why the copy
switch is ON).

It would probably be useful, as noted in MTB-169, to issue
warnings when 1) the copy switch is set ON for a segment with
write permission granted to some user, and 2) when write
permission is granted to a segment whose copy switch is ON.

