
Multics Technical Bulletin MTB-185 

To: Distribution 

From: Steve Webber 

Subject: Handling System Conditions 

Date: 4/23/75 

Proposed Changes to Handling System Conditions 

There are several system events that occur today in a 
Multics process that do not fit well into the PL/I condition 
mechanism but were implemented as part of it for lack of a better 
approach.. Typical examples are: 

1.- events that are always handled (by default) by the same 
procedure and are independent of stack history, etc .. , 

2.- events that are frequent and do not want to incur the 
overhead of the signalling mechanism, and 

3.- events that are to be signalled normally but 
to be monitored regardless of the value 
"continue" parameter in a call to a handler .. 

Examples in the first class are: 

1.. alrm 
2,, cput 
3.- mme2 
4 .- a small set handled by defaul t_error _handler_.-

Examples in the second class are: 

1. linkage faults (when removed from ring O) 
2.- lot faults, isot faults (for prelinking) 
3.- copy-on-write faults 

that 
of 

are 
the 

Examples in the third class are more vague but might arise 
in an attempt to monitor the action of a process .. 

There have been many attempts to solve these problems using 
techniques often called "static handlers"•' The proposals in the 
past, however, have been very general and attempted to solve all 
problems associated with such a scheme.. The proposal presented 

Multics Project internal working documentation.. Not to 
reproduced or distributed outside the Multics Project .. 

·, .. 

be 



Page 2 MTB-185 

here is, on the contrary, quite simple and hence does not provide 
a general solution# It does, however, provide an efficient, 
workable solution which, when its limitations are understood and 
handled, I think, can be useful.- The scheme would work as 
follows: 

1. A system condition table (SCT) is allocated (when 
needed) possibly in a combined linkage segment.-

2.- An index into this table will be saved as part of the 
machine conditions.- (This index will be the same index 
used today to select the condition name to be 
signalled .. ) 

4 .. 

The system will record and know 
which can be signalled from ring 
precisely the ones signalled today 
to accommodate new features within 

about 50-75 events 
0.- These events are 
with a few additions 
the system.-

The standard signal_ program will call a program to 
examine the entry in the SCT for the condition being 
signalled (if machine conditions are pro~ided).- If the 
SCT entry is nonnull, the handler specified therein is 
invoked.- If the SCT entry is null, signal_ proceeds to 
scan the stack for handlers as today.-

5.- Entries will be provided to get and set the value of an 
SCT entry.- The value of an SCT entry is a pointer to a 
handler and may be null.- There is no need for the SCT 
entry to contain an "entry" value because a property of 
static handlers is that they cannot depend on any 
automatic storage of a parent block.-

6.- The calling sequence for all SCT handlers will be 
simply: 

call handler (mc_ptr, condition_name, continue); 

If the handler sets continue to "O"b, signal_ will not 
scan the stack.- Otherwise, signal_ will scan the stack 
as is done today .. 

If a program wants to set up a static handler in this way it 
should probably first get the previous value of the SCT entry for 
the condition of interest, and then set up its own value in the 
SCT.- The new handler has the option of calling the previous 
handler but this, of course, can not be guaranteed to work 
beacause.- of problems such as the old handler being deleted 
(terminated, etc) unbeknownst to the current handler.- Users of 
this mechanism must have complete knowledge of the execution 
environment under consideration.-



MTB-185 Page 3 

'6' With this brief overview, then, the following subroutines 
are proposed: 

sct_manager_$get_handler (handler, index) 

sct_manager_$set_handler (handler, index) 

sct_manager_$call_handler (mc_ptr, condition_name, continue) 

where: 

handler is of type entry and is the entry to call 
when the condition occurs# 

index is fixed bin and specifies which static 
handler is being set or returned# 

mc_ptr is a pointer to the machine conditions for 
the fault (event) being signalled .. 

condition_name 

continue 

is the name of the event being "signalled" 

is set to "1"b if the stack should also be 
searched for a handler and to "O"b if no 
further processing should be done# 

The entry point sct_manager_$call_handler is called by 
signal_ and is little more than a call forwarder if the SCT entry 
is nonnull)# The program sct_manager_ alone would know the 
location a9d format of the SCT .. 

It is useful to list features and qualities of a condition 
or event which would cause that event to be unacceptible to be 
handled by a static handler .. The following are such cases: 

1# if the necessary handler for the event requires 
automatic information from an ancestor block in the 
stack history (overflow fault, for example), or 

2.. if more than one program wants to know of the event, 
i .. e .. , if any user program will likely have a handler 
for the event (such as "quit")~ 

In contrast, handlers that require no previous stack 
history, require no new storage other than automatic, and have 
complete and sole interest in an event are possible candidates 
for static handlers .. The following events, currently signalled, 
are thus likely candidates for static handlers: 

al rm 
cput 
mme2 



Page 4 MTB-185 

New events that are good candidates for static handling are: 

linkage_fault (when the linker is out of ring 0) 
lot_fault 
isot_fault 
copy-on-write fault (no_write_permission) 

These events are indeed static in nature# Were the events 
handled in ring 0, as linkage faults are today, the handler would 
be so static that it would be directly called by the fault 
intercept module# The fact that the handler can now be removed 
to the user ring does not change the event in such a way that the 
full condition mechanism is required~ The events are still system 
events and hence the handlers are system programs# There is no 
need to search the stack for a user handler, 

As mentioned earlier, however, the proposed implementation 
would allow (hopefully knowledgeable) users to provide their own 
static handlers that might, for example, turn the continue bit ON 
so that the stack will be searched# The use~-ring implementation, 
thus, provides more freedom -- the defaults have the effect of 
today# 


