MULTICS TECHNICAL BULLETIN MTB-183

Date: 10 April 75

To: Distribution

From: 1. D. MacLaren

Subject Converting from ios_ to iox_

This MTB contains a draft of a proposed cookbook for
conversion from ios_ to iox_. Not all the recipes are kitchen
tested. It is planned to make the information in this document
available to users.

This document contains information relevant to converting
programs that currently call the old I/0 system (ios_) so that
they will call only the new I/0 system (iox_). The reader may
also wish to consult the following documents:

1) Interim supplement to Multics Programmers” Manual for
MR 2.1.

2) MTB-136, tape_mult_ I/0 Module.

Comments on this document should be addressed to Don
MacLaren; information about the wuse of 1ox_ 1itself can be
obtained from Steve Herbst; information about individual 1/0
modules can be obtained from their authors.

Note that no conversion is required for programs that do all
their i/o through the i/o facilities in a programming language
and/or subroutines such as ioa_. Only programs that directly
call ios_ need be converted.

For purposes of converting to iox_, dims (device interface
modules) supported through ios_ may be divided into three
classes:

1) dims for which the Multics system contains a compatible
iox-type I/0 module. Conversions involving these are
covered in this document.

2) dims for tape I/0. For conversions involving such dims
another document will be available sometime in the

Pare 1

future,

3) all other dims. When a program uses a dim in this
class, the dim must be replaced by an iox-type I/0
module, and the program must be converted to call this
module,

"Read ptr and Write ptr"

Programs that use only ios_$read_ptr and ios_3%write_ptr are
an especially simple case.

The calls:

call ios_s$write_ptr(buff_ptr, 0, buff_len);
call ios_$read_ptr(buff_ptr, buff_len, nelemt);

should be mapped into:

call iox_$put_chars(iox_$user_output, buff_ptr, buff_len,
code); /* replaces call to write_ptr ¥/

call iox_$get_line(iox_$user_input, buff_ptr, buff_len,
nelemt, code); /% replaces call to read_ptr¥*/

The applicable declarations are:

del iox_$user_output external ptr;

del iox_3%user_input external ptr;

del buff_ptr ptr, code fixed bin(35);

del (buff_len, nelemt) fixed bin(21);

del iox_$put_chars entry(ptr, ptr, fixed bin(21),
fixed bin(35));

del iox_%$get _line entry (ptr, ptr, fixed bin (21),
fixed bin(21), fixed bin(35));

The argument code is a standard Multics status code, not a
72-bit status code as with ios_. The code should be tested. A
non-zero code indicates an error, except that for a call to
iox_¢$get_line, the code error_table_$long record is returned if
the buffer is filled without encountering a read delimiter. Note
that nelemt (the number of characters actually read into the
buffer) must be redeclared as "fixed bin(21)" to match the
parameter descriptor in ilox_$get_line.

The mapping above does not cover the case where a call to

write_ptr specifies a nonzero offset in the buffer. Suppose we
have: :

Page 2

del offset fixed bin;
/*other declarations as above¥*/
call ios_$write_ptr(buff_ptr, offset, buff_len);

The call should be replaced by:
del buffer(0:1048575) char(1) based; /#01048575
is the longest possible buffer¥*/

call iox_$put_chars (iox_$user_output,
addr(buff_ptr-> buffer(offset)), buff_len, code);

Switches, Streams and Control Blogcks

In the terminology used for iox_, an ios_ stream 1is called
an I/0 switch. Each I/0 switch has an associated control block
(called an iocb for short), and most calls to iox_ pass a pointer
to the iocb to specify the switch that is the source/target for
input/output. Given a switchname (i.e., a stream name in ios
terminology), a pointer to the iocb may be obtained by calling
iox_$%$find_iocb. For example:

declare iox_$find_iocb entry(char(*), ptr, fixed »in(35));
call iox_$find_iocb("foo", iocb_ptr, code);
call iox_$put_chars(ioeb_ptr, buff_ptr, 20, code);

writes 20 characters from a buffer (pointed to by buff_ptr)
through the switch named "foo". The routine 1iox_$put_chars
consists of a few instructions that transfer to the actual I/0
routine through a transfer vector in the iocb. In most programs,
only one call is needed to iox_$find_iocb to cover a sequence of

I/0 requests. Thus repeated table lookups on the switchname are
avoided.

External pointers are provided for the standard switches, so
there is no need to call iox_$find_iocb when wusing these
switches,

declare iox_$user_io ptr external; /*user_i/o#*/

declare iox_$user_input ptr external; /¥*user_input#*/
declare iox_$user_output ptr external; /*user_output*/
declare iox_$error_output ptr external; /*error_output¥*/

Switches and ioa

There are two new entries in ioa_ that take a pointer to an
iocehb. .

decl ioa_$ioca_switeh entry options (variable);
del ioca_$ioa_switch_nnl entry options (variable);

Page 3

call ioca_$ioa_switch (ioeb_ptr, control_string,
argl,...argn);

call ioa_$ioa_switch_nnl (ioeb_ptr, control_string,
argl,...argn);

Except for taking an iocb pointer rather than a switch/name
(stream name), t hese entries do - the same things as
ioa_$ioa_stream and ioa_$ioa_stream_nnl, respectively.

Compatible Dims

The following dims have compatible iox-type I/0 modules:
syn, tw_, ntw_, absentee_dim_, mrd_, oc_, tek_, exec¢_com_, and

discard_output_. For these dims there is a simple mapping of
calls to ios_ into calls to iox_. Such a mapping also exists for
file_ 1in cases where it: 1) is used with default delimiters and

default element sizes, 2) reading and writing are not both done
in a single attachment, and 3) ios_$seek and ios_$tell are not
used,

The mapping of a call to ios_$attach depends on the dim as
is explained in the next section of this info segment. All other
calls map independently of the dim involved (except for detaching
a syn attach),.

Attachment

The call:

call ios_$attach (stream_name, dim_name, device,
modes_1, status);

should be mapped into the following calls
(not all used in all cases)

call iox_$attach_ioname (stream_name,

ioeb_ptr, attach_descrip, code);
call iox_$open (iocb_ptr, opening_mode, "O"b, code);
call iox_$modes (iocb_ptr, modes_2, "", code);

where:

1) attach _descrip is a character string dependlng on the
dim, It is described below.

2) 1iocb_ptr points to the I/0 control block. It is set by

tne call to iox_$attach_ioname and is used by all other
calls.

Page 4

3) opening _mode is an integer specifying the wuse of the
attachment as follows:

opening _mode = 1, stream_input, which corresponds
to the ios mode "read". b

opening_mode = 2, stream_output, which corresponds
to the ios mode "write'.

opening _mode = 3, stream_input_output, which corresponds

to the ios modes "read" and "write",
4) code is a standard Multics status code.
5) modes_2 is a string containing those modes other than

"read" and/or "write" that were specified by modes_1 in
the call to ios_$attach.

1) The call to iox_$open is omitted when the dim involved
is syn.

2) The call to iox_$modes 1is made only when modes_1
specifies modes other than "read" and/or "write",

3) If the dim is file_, opening mode = 3 is not allowed.

4) If the iocb_ptr is already Kknown, the call to
iox_$attach_ioname may be replaced by:

call iox_$attach_iocb(iocb_ptr, attach_descrip, code);

Declarations for Attach Calls

declare iox_$attach_ioname entry(char(*), ptr,
char(*), fixed bin(35));
declare iox_$attach_iocb entry(ptr, char(#*), fixed bin(35));
declare iox_$open entry(ptr, fixed bin, bit(1) aligned,
fixed bin(35));
declare iox_$modes entry(ptr, char(*),
char(#), fixed bin(35));

Attach Descriptions

The attach descriptions to be wused in the calls to
iox_$attach_ioname are now given in the form dim_name
corresponding_attach_description. Note that 'device" 1is the

string that is an argument to ios_3%attach.

Page

1

syn syn_

tw_ tty_ device

ntw_ netd_ device
absentee_dim__ abs_ device

mrd_ mr__ device

oc__ ocd__ device

tek_ tekd_ devicce

exec_com_ ec_ device
discard_output_ discard_

file_ viile_ device -extend

For example:

call ios_$attach ("foo", "file_", "my_file",
"read", status);

should be mapped into:
call iox_$attach_ioname ("foo", iocb_ptr,

"vfile_, my_file ~extend", code);
call iox_$open (ioecb_ptr,1, "o"b, code);

Mapping Other Calls

The remainder of this info segment explains how the other

calls to ios_ (for compatible dims) are mapped into calls to

iox_.

The declarations of buff_ptr, buff_len, nelemt, and code

are as given above under "Read_ptr and Write_ptr". The argument
iocb_ptr is a pointer to the I1I/0 control Dblock for. the
stream_name given in the calls to ios_.

call

The calls:

call ios_$read(stream_name, buff_ptr, O,
buff_len, nelemt, status);

call ios_$write(stream_name, buff_ptr, O,
buff_len, nelemt, status);

should be mapped into:

call iox_%$get_line(iocb_ptr, buff_ptr, buff_len,
nelemt, code);

call iox_$put_chars(iocb_ptr, buff_ptr, buff_len,
code);

If a nonzero offset is given as the third argument of the
to ios_, the method given for ios_$write_ptr may be used to

pass the correct buff_ptr to iox_.

Page 6

syn.

The call:

‘call ios_$detach(stream_name, device, disposal, status);

should be mapped into:
call iox_$close(iocb_ptr, code);
call iox_$detach_iocb(iocb_ptr, code);

The call to iox_$close is omitted when the dim involved

The declarations for the above calls are:

declare iox_$get_line entry(ptr, ptr, fixed bin(21),
fixed bin(21), fixed bin(35));
declare iox_$put_chars entry (ptr, ptr,
fixed bin(21), fixed bin(35));
declare iox_$close entry(ptr, fixed bin(35));
declare iox_$detach entry(ptr, fixed bin(35));

The calls:

call ios_$resetread(stream_name, status);

call ios_$resetwrite(stream_name, status);

call ios_$abort(stream_name, ""b, status);

call ios_$order(stream_name, order, info_ptr, status);
should be changed to, respectively,

call iox_$control(iocb_ptr, "resetread", null, code);

call iox_$control(iocb_ptr, "resetwrite", null, code);
call iox_$control(iocb_ptr, "abort", null, code);

call iox_$control(iocb_ptr, order, info_ptr, code);

The call:

call ios_$changemode(stream_name, new_modes,
old_modes, status)

should be changed to:
call iox_$modes(iocb_ptr, new_modes, old_modes, code);

The declarations for the above calls are:

Page 7T

is

declare iox_$control entry(ptr, char(#*), ptr,
fixed bin(35));

declare iox_$modes entry(ptr, char(¥*), char(¥),
fixed bin(35));

Page 8

