
MULTICS TECHNICAL BULLETIN MTB-183

Date: 10 April 75

Distribution

From: M. D. MacLaren

Subject: Converting from ios_ to iox_

This MTB contains a draft of a proposed
conversion from ios ·to iox • Not all the recipes
tested. It is planned to-make the information in
available to users.

cookbook for
are kitchen

this document

This
programs
they will
also wish

document contains information relevant to converting
that currently call the old I/O system (ios_) so that
call only the new I/O system (iox_). The reader may
to consult the following documents:

1) Interim supplement to Multics Programmers' Manual for
MR 2.1.

2) MTB-136, tape_mul t_ I/O Module.

Comments on this document should be addressed to Don
MacLaren; information about the use of iox_ itself can be
obtained from Steve Herbst; information about individual I/O
modules can be obtained from their authors.

Note that no conversion is required for programs that do all
their i/o through the i/o facilities in a programming language
and/or subroutines such as ioa_. Only programs that directly
call ios_ need be converted.

For purposes of convertin~ to iox_, dims (device interface
modules) supported through ios_ may be divided into three
classes:

1) dims for which the Multics system contains a compatible
iox-type I/O module. Conversions involving these are
covered in this document.

2) dims for tape I/O.
another document

For conversions involving such dims
will be available sometime in the

Pap;e 1

future.

3) all other dims. When a program uses a dim in this
class, the dim must be replaced by an iox-type I/O
module, and the program must be converted to call this
module.

"Read ptr and Write ptr"

Programs that use only ios_$read_ptr and ios_$write_ptr are
an especially simple case.

The calls:

call ios_$write_ptr(buff_ptr, O, buff_len);
call ios_$read_ptr(buff_ptr, buff_len, nelemt);

should be mapped into:

call iox_$put_chars(iox_$user_output, buff_ptr, buff_len,
code); I* replaces call to write_ptr *I

call iox_$get_line(iox_$user_input, buff_ptr, buff_len,
nelemt, code); I* replaces call to read_ptr*/

The applicable declarations are:

dcl iox_$user_output external ptr;
dcl iox_$user_input external ptr;
dcl buff_ptr ptr, code fixed bin(35);
dcl (buff_len, nelemt) fixed bin(21);
dcl iox_$put_chars entry(ptr, ptr, fixed bin(21),

fixed bin(35));
dcl iox_$get_line entry (ptr, ptr, fixed bin (21),

fixed bin(21), fixed bin(35));

The argument.code is a standard Multics status code, not a
72-bit status code as with ios_. The code should be tested. A
non-zero code indicates an error, except that for a call to
iox_$get_line, the code error_table_$long_record is returned if
the buffer is filled without encountering a read delimiter. Note
that nelemt (the number of characters actually read into the
buffer) must be redeclared as ''fixed bin(21)" to match the
parameter descriptor in iox_$get_line.

The mapping above does not cover the case where
write_ptr .specifies a nonzero offset in the buffer.
have:

Page 2

a call to
Suppose we

dcl offset fixed bin;
/*other declarations as above*/

call ios_$write_ptr(buff_ptr, offset, buff_len);

The call should be replaced by:

dcl buffer(0:1048575) char(1) based; /*01048575
is the longest possible buffer*/

call iox_$put_chars (iox_$user_output,
addr(buff_ptr-> buffer(offset)), buff_len, code);

Switches, Streams and Control Blocks

In the terminology used for iox_, an ios_ stream is called
an I/O switch. Each I/O switch has an associated control block
(called an iocb for short), and most calls to iox_ pass a pointer
to the iocb to specify the switch that is the source/target for
input/output. Given a switchname (i~e., a stream name in ios
terminolo~y), a pointer to the iocb may be obtained by callin~
iox_$find_iocb. For example:

declare iox_$find_iocb entry(char(*), ptr, fixed bin(35));
call iox_$find_iocb("foo", iocb_ptr, code);
call iox_$put_chars(iocb_ptr, buff_ptr, 20, code);

writes 20 characters from a buffer (pointed to by buff_ptr)
through the switch named "foo". The routine iox_$put_chars
consists of a few instructions that transfer t"o the actual I/O
routine through a transfer vector in the iocb. In most programs,
only one call is needed to iox_$find_iocb to cover a sequence of
I/O requests. Thus repeated table lookups on the switchname are
avoided.

External pointers are provided for the standard switches, so
there is no need to call iox_$find_iocb when using these
switches.

declare iox_$user_io ptr external; /*user_i/o*/
declare iox_$user_input ptr external; /*user_input*/
declare iox_$user_output ptr external; /*user_output*/
declare iox_$error_output ptr external; /*error_output*/

Switches and ioa

There
iocb.

are two new entries in ioa_ that take a pointer to an

dcl ioa_$ioa_switch entry options (variable);
dcl ioa_$ioa_switch_nnl entry options (variable);

Page 3

call ioa_$ioa_switch (iocb_ptr, control_string,
a r g 1 , •.. a r gn) ;

call ioa_$ioa_switch_nnl (iocb_ptr, control_string,
argl, ••. argn);

Except for taking an iocb pointer rather than a
(stream name), these entries do the same
ioa_$ioa_stream and ioa_$ioa_stream_nnl, respectively.

Compatible Dims

switch/name
things as

The following dims have compatible iox-type I/O modules:
syn, tw_, ntw_, absentee_dim_, mrd_, oc_, tek_, exec_com_, and
discard_output_. For these dims there is a simple mapping of
calls to ios into calls to iox_. Such a mapping also exists for
file in cases where it: 1) is used with default delimiters and
defa~lt element sizes, 2) reading and writing are not both done
in a single attach~ent, and 3) ios_$seek and ios_$tell are not
used.

The mapping of a call to ios_$attach depends on the dim as
is explained in the next section of this info segment. All other
calls map independently of the dim involved (except for detaching
a syn attach).

Attachment

The call:

call ios_$attach (stream_name, dim_name, device,
modes_1, status);

should be mapped into the following calls
(not all used in all cases)

call iox_$attach_ioname (stream_name,
iocb_ptr, attach_descrip, code);

call iox_$open (iocb_ptr, opening_mode, "O"b, code);
call iox_$modes (iocb_ptr, ~odes_2, "", code);

where:
.

1) attach~descrip is a character string depending on the
dim. It is described below.

2) iocb_ptr points to the I/O control block. It is set by
~~e ~all to iox_$attach_ioname and is used by all other
calls.

Page 4

3) opening_mode is an integer specifying the use of the
attachment as follows:

opening_mode = 1, strearn_input, which corresponds
to the ios mode "read".

opening_mode = 2, stream_output, which corresponds
to the ios mode "write".

opening_rnode = 3, stream_input_output, which corresponds
to the ios modes "read" and "write".

4) code is a standard Multics status code.

5) modes_2 is a string containing those modes other than
"read" and/or "write" that were specified by modes_1 in
the call to ios_$attach.

Notes Qil. Attach Calls

1) The call to iox_$open is omitted when the dim involved
is syn.

2) The call to iox_$modes is made only when modes_1
specifies modes other than "read" and/or "write".

3) If the dim is file_, opening mode = 3 is not allowed.

4) If the iocb_ptr is already known, the call to
iox_$attach_ioname may be replaced by:

call iox_$attach_iocb(iocb_ptr, attach_descrip, code);

Declarations for Attach ~alls

declare iox_$attach_ioname entry(char(*), ptr,
char(*), fixed bin(35));

declare iox_$attach_iocb entry(ptr, char(*), fixed bin(35));
declare iox_$open entry(ptr, fixed bin, bit(1) aligned,

fixed bin(35));
declare iox_$modes entry(ptr, char(*),

char(*), fixed bin(35));

Attach Descriptions

.The attach descriptions to be used
iox_$attach_ioname are now given in
corresponding_attach_description. Note that
string that is an argument to ios_$attach.

Page 5

in
the

the
form

calls to
dim_name

"device" is the

syn syn_
tw - tty_ device
ntw netd device - -
absentee dim abs device - -
mrd mr device
oc ocd device - -
tek tekd device -
exec com ec device - - -
discard _output_ discard -
file vf ile device -extend - -

For example:

call ios_$attach (" foo", "file_", "my_file",
"read", status);

should be mapped into:

call iox_$attach_ioname ("foo", iocb_ptr,
"vfile_, my_file -extend", code);

call iox_$open (iocb_ptr,1, "o"b, code);

Mapping Other Calls

The remainder of this info segment explains how the other
calls to ios_ (for compatible dims) are mapped into calls to
iox_. The declarations of buff_ptr, buff_len, nelemt, and code
are as given above under "Read_ptr and Write_ptr", The argument
iocb_ptr is a pointer to the I/O control block for the
stream_name given in the calls to ios_.

The calls:

call ios_$read(stream_name, buff_ptr, O,
buff_len, neleCTt, status);

call ios_$write(stream_name, buff_ptr, O,
buff_len, nelemt, status);

should be mapped into:

call iox_$get_line(iocb_ptr, buff_ptr, buff_len,
nelemt, code);

call iox_$put_chars(iocb_ptr, buff_ptr, buff_len,
code) ;

If a nonzero offset is given as the third argument of the
call to ios_, the method given for ios_$write_ptr may be used to
pass the correct buff _ptr to iox_.

Page 6

syn.

The call:

call ios_$detach(stream_name, device, disposal, status);

should be mapped in to: ·

call iox_$close(iocb_ptr, code);
call iox_$detach_iocb(iocb_ptr, code);

The call to iox_$close is omitted when the dim involved is

The declarations for the above calls are:

declare iox_$get_line entry(ptr, ptr, fixed bin(21),
fixed bin(21), fixed bin(35));

declare iox_$put_chars entry (ptr, ptr,
fixed bin(21), fixed bin(35));

declare iox_$close entry(ptr, fixed bin(35));
declare iox_$detach entry(ptr, fixed bin(35));

The calls:

call ios_$resetread(stream_name, status);
call ios_$resetwrite(stream_name, status);
call ios_$abort(stream_name, ""b, status);
call ios_$order(stream_name, order, info_ptr, status);

should be changed to, respectively,

call iox_$control(iocb_ptr,
call iox_$control(iocb_ptr,
call iox_$control(iocb_ptr,
call iox_$control(iocb_ptr,

The call:

"resetread", null, code);
"resetwr i te", nul 1, code);
"abort" null code)·

' ' ' order, info_ptr, code);

call ios_$changemode(stream_name, new_modes,
old_modes, status)

should be changed to:

call iox_$modes(iocb_ptr, new_modes, old_modes, code);

The declarations for the above calls are:

Pap;e 7

declare iox_$control entry(ptr, char(*), ptr,
fixed bin(35));

declare iox_$modes entry(ptr, char(*), char(*),
fixed bin(35));

Page 8

