
Multics Technical Bulletin MTB-173

To: Distribution

From: Bill Silver, T. H. Van Vleck, Dave Vinograd

Date: March 12, 1975

Subject: Proposed Changes to the Syserr Mechanism

INTRODUCTION

This document describes proposed changes to the syserr
mechanism. The reader is assumed to have a basic understanding
of how the current syserr mechanism functions. Relevant
information can be found in the following documents:

MTB-016
MTB-071
MTB-103

The most significant change involves the tabularization of
all syserr messages. Calls to syserr will specify a code that
identifies an ~ntry in a table of syserr messages. This table
will be used in a manner similar to the current error table .
The table of syserr messages will contain all of the information
needed to process, write, and log the syserr message. It will
also contain ~nformation that can be used to sort and interpret
syserr messages that have been saved in the syserr_log. This
table will be structured in a way that minimizes the amount of
wired main memory used. The tabularization of syserr messages
will result in greatly increased administrative control over the
use of the syserr mechanism. It will also provide a useful
source of documentation for all syserr messages. A new source
level language will be used to specify the syserr messages as a
series of source statements. A new translator will be developed
to process these source statements and produce the actual syserr
table.

This document also describes two new capabilities that will
be added to the syserr mechanism. One involves the passing of
binary data to syserr. This binary data will be put into the
syserr_log along with the syserr message. This binary data may
then be formatted by programs that process messages from the
syserr_log. A second capability involves passing an error_table_
code to syserr. The error_table_ message referenced by this
error_table_ code will be append~d to the syserr message.

Page 2 MTB-173

The
new entry
overview
these new

implementation of these changes involves adding three
points to syserr. In order to give the reader an
of the new syserr capabilities the calling sequences of
entry points are described below.

call syserr$message (syserr_table_code, arg1, ... , argn);

call syserr$binary (syserr_table_code, data_ptr, data_size,
arg1, ... , argn);

call syserr$error_code (syserr_table_code, error_table_code,
arg1, ... , argn);

This document discusses these new syserr capabilities in
detail. There are sections dealing with each of the following
subjects:

1. Tabularization of syserr messages.

2. Bina~y data.

3. Error_table_ messages.

4. A new syserr table source language.

5. An implementation plan for these changes.

THE TABULARIZATION OF SYSERR MESSAGES

Problems with the Current Syserr Mechanism

The present calling sequence to syserr involves passing as
arguments a syserr action code, a formline_ control string, and
arguments used by formline_ to expand this control string. This
calling sequence has major disadvantages in terms of storage
usage and administrative control. These disadvantages are
discussed below.

1. The calls to syserr generate too many words of object
code. Many of the calls to syserr are made from wired
programs and thus add to the total wired storage needed
by the system. Even syserr calls in paged programs may
add to system overhead. The presence of syserr calls
in a program may result in adding an extra page to the
program or splitting frequently used code over two
pages.

MTB-173 Page 3

2. The calling sequence to syserr is self contained. All
of the information needed to process a syserr message
is passed in the call to syserr. This may seem to be
an advantage in that it allows syserr messages to be
easily changed. This ease of modification is, however,
a major disadvantage of the current syserr mechanism.
Syserr messages are added, deleted, and modified so
frequently, and so unnoticed, that it is virtually
impossible to know what syserr calls are in the system
at any given time. Only by making a pass over the
source of the entire hardcore can we now generate a
list of all the installed calls to syserr. Even doing
this, however, gives us little information about the
real meaning and purpose of each call. The syserr
mechanism is a critical system function. It is used to
crash the system, communicate with the operator, and
log system information. From an administrative,
marketing, and operations point of view it is
unacceptable to have so little control over the use of
this critical system function. It is unacceptable that
we have no means of generating complete and up-to-date
documentation abotit each syserr message.

3. Although the current syserr interface makes it easy to
modify a call to syserr it makes it difficult to change
the types of information passed to syserr. Any
additional data that might be useful to have associated
with a syserr message would have to be· passed in the
call itself. We would have to modify the syserr
calling sequence, or add a new syserr entry point, or
squeeze the additional information into the current
calling sequence. MTB-071 described a cumbersome
attempt to squeeze a sorting code into the action code
argument. A better method of specifying a sorting code
is presented in this document.

The Syserr Tables

The proposed new calling sequences to syserr are designed to
solve the problems discussed above. They involve passing a
syserr_table_ code as an argument to syserr. This code is much
like an error table code. It should be declared by the calling
program as follows:- ·

dcl syserr_table_$nnnnnn fixed bin(35) exterQal;

The entry name
syserr message.
iom_manager,

"nnnnnn" is a unique name that identifies this
For example, the syserr message generated by the

"iom_manager: bad devx X supplied."

Page 4 MTB-173

might have the name, syserr_table_$bad_devx. Each call to syserr
must pass the syserr_table_ code that corresponds to the desired
syserr message. The same syserr_table_ code may be referenced by
several different calls to syserr.

The syserr_table_ codes will correspond to entries in a
source segment named syserr_table_.st. It is similar in function
to the source segment, error_table_.et. A special compiler,
syserr_table_compiler (stc), will be developed to process the
syserr_table_.st source segment. The source language used to
define a syserr message will be described in one of the later
sections.

The syserr_table_.st source segment will be translated by
syserr_table_compiler into two ALM source programs. These two
ALM programs must then be assembled into object segments. The
two object segments generated will be called syserr_table_ and
syserr_info_. The reason that we need two segments will be
explained below. An important point to note about these two
segments is that both segments are generated from the single
syserr_table_.st source segment. The syserr_table_ segment
contains references to the syserr_info_ segment. Thus the
installed version of both of these segments must have been
generated from the same source segment. To ensure this we will
require that the installed version of both of these segments be ~
generated by the same invocation of syserr_table_compiler. In
order to do this a unique ID will be placed in each of these two
segments. At system initialization time, syserr_log_init will
check that the variables syserr_table_$uid and syserr_info_$uid
are equal. If they are not equal then system initialization will
be aborted.

In order to facilitate changing the format of a
syserr_table_ or syserr_info_ entry, a version number will be
associated with each of these segments. The variables
syserr_table_$version~num and syserr_info_$version_num will
contain the version number that specifies the format of the
entries in their respective segments. These two version numbers
do not have to be equal. They will be generated by
syserr_table_compiler.

The syserr_table_ codes that will be used in calls to syserr
correspond to entries in syserr_table_. Each entry in
syserr_table_ will contain all of the information needed by
syserr_real to process a syserr call. Since syserr_real must not
take a page fault when called by a program that is wired, we must
guarantee that syserr_table_ entries referenced by wired programs
will themselves be wired. In order to do this
syserr_table_compiler will group all of the entries referenced by
wired programs at the top of syserr_table_. During system
initialization enough pages at the top of this segment to cover ~
all of these entries will be permanently wired. In order to
minimize the amount of wired storage needed by syserr_table_ the

MTB-173 Page 5

information kept in each syserr table entry will be
information absolutely necessary to syserr_real.
description of a syserr_table_ entry.

only that
Below is a

dcl 1 ste based (ste_ptr) aligned,
2 code, I* 1. *I
(3 pad bit(18), I* 2. *I

3 table_offset bit(18), I* 3. *I
2 info_offset bit(18), I* 4. *I
2 action_code fixed bin (8) , I* 5. *I
2 cstring_len fixed bin(8)) unaligned, I* 6. *I
2 cstring char(O refer(ste.cstring_len));/* 7. *I

1. table_offset This word is the value referenced by a

2.

syserr_table_ code variable such as
syserr_table_$bad_devx.

pad This half of a
reserved for future use.
it will be set to zero.

syserr_table_ code word is
In the initial implementation

3. info_offset This field contains the offset of this

4.

5.

entry in syserr_table_, i.e., its own word offset.

info_offset This field contains the offset of the
corresponding entry in syserr_info_. There is a
one-to-one correspondence between the entries in
syserr_table_ and the entries in syserr_info_. This
field provides the connection between corresponding
entries in these two tables.

action code This is the syserr action code for this
message. (For a list of the valid syserr action codes
see the section on the syserr_table_ source language.)

6. cstring_len This field specifies the length of the
formline_ control string for this syserr message.

5. cstring This field is the formline_ control string
for this syserr message.

The syserr_info_ table contains information about syserr
messages that is not needed by syserr_real. The reason for
splitting up the information about a syserr message into two
entries is to minimize· the information contained in a
syserr_table_ entry. This is important since some syserr_table_
entries are wired. Most syserr table entries will not be wired,
but for the sake of consistency-it is-desirable to make all of
the syserr_table_ entries have the same format. The reason for
putting the syserr_info_ entties into a separate segment and not
putting them in an unwired part of the syserr_table_ segment
involves system initialization considerations. That part of the

Page 6 MTB-173

syserr mechanism that writes syserr messages on the operator's
console and puts messages into the wired_log is initialized early
in collection 1. There is a critical limit to the space that is
available during collection 1. The amount of information
contained in a syserr_info_ entry may by so great that the
syserr info segment would be too large to be used during
collection 1. Thus these two segments cannot be combined. The
syserr_info_ table will not be used until collection 2 when the
syserr logging mechanism is initialized. Below is a description
of a syserr_info_ entry.

dcl 1 sie based(sie_ptr) aligned,
(2 action_code fixed bin(8), I* 1. *I

2 name len fixed bin(8), I* 2. *I -
2 desc - len fixed bin(17), I* 3. *I
2 sort code fixed bin(17), I* 4. *I -
2 format - code fixed bin(17)) unaligned, I* 5. *I
2 name char(O refer(sie.name_len)), I* 6. *I
2 description char(O refer(sie.desc_len)); I* 1. *I

1. action_code The syserr action code is duplicated in
this entry for efficiency reasons.

2. name - len This field contains the length of the
syserr message name string.

3. desc - len This field contains the length of the
syserr message description string.

4. sort_code This field contains a number that is used
to sort syserr messages that have been logged. Each
class of syserr messages device errors, audit
messages, etc - will be assigned a unique sorting code.
For those syserr messages that do not fit into any
special class a default value of O will be used. (See
the section on the user ring processing of syserr
messages.)

5. format code This field contains a number that can
be used to format any binary data associated with this
message. It should be very helpful to user ring
programs that process syserr messages from the
syserr_log. (See the section on the user ring
processing of syserr messages.)

6. name This field specifies the name of tne syserr

~

mes~age. It is identical to the entry point name used
in the declaration of a syserr_table_ code. Continuing
with our example, if this entry corresponds to the
syserr_table_ code syserr_table_$bad_devx then this
field would contain "bad_devx". ~

MTB-173 Page 7

7. description This string contains a description of
this syserr message. It may include a description of
the circumstances that cause this message to be used a
description of any variables that may appear in the
e~panded message string, a description of any action
that the operator should take in response to this
message, or any other information useful to know about
this message.

Ring Zero Syserr Processing

This section describes how the syserr_table_ and
syserr_info_ segments are used by syserr_real and syserr_logger
to process a syserr message. As an example, the calling sequence
to the syserr$message entry point is described in detail below.

syserr$message (syserr_table_code, arg1, ... , argi)

ARGUMENTS:

syserr_table_code (Input) (fixed bin(35)) This
argument specifies an offset into the segment
syserr_table_. This offset references the entry
in syserr_table_ that corresponds to this syserr
message.

arg 1 , ... , argi (Input)
that will be used
control string.

These are optional arguments
by formline_ to expand the

The entry point syserr$message is an ALM interface to the
entry point syserr_real$message. Using the syserr_table_code
argument syserr will reference the syserr_table_ entry for this
syserr message. From this entry it will get the action code for
this message. All the new syserr entry points will check to see
if any stack manipulation is needed. If the action code
specifies a fatal error and if other conditions are met then
syserr will alter the stack that it is running on so that
previous stack history information will be preserved for
debugging purposes. Then syserr will call the corresponding
entry point in syserr_real using the same argument list that it
was called with.

The syserr_real entry point that is called will also use the
syserr_table_code argument to make a pointer to the syserr_table_
entry associated with this message. It will get the action code
from this entry. It will check that this action code is valid.
Contrary to MTB-071 no log code (sorting code) value will be
derived from this action code. The control string for this
message will be copied from its syserr_table~ entry. Using this
control string and the arguments passed by the caller syserr_real

Page 8 MTB-173

will call formline to generate an expanded ASCII message. The
message will be logged. Based upon the action code, syserr_real
will write this message on the operator's console.

This message will be logged by syserr_real in basically the
same way that it does now. However, the information put into the
wired_log is somewhat different. Below is a description of the
new wired_log entry.

dcl 1 wmess based(wmess_ptr) aligned,
2 head like wmess_header, I* 1. *I
2 text char(O refer(wmess.head.text_len)), I* 2. *I
2 data(O refer(wmess.head.data size)) bit(36)' I* 3. *I
2 next_wmess bit(36); I* 4. *I

dcl wmess_header based aligned,
2 seq_num fixed bin(35), I* 5. *I

(2 info_of f bit(18)' I* 6. *I
2 text - len fixed bin(8), I* 7. *I
2 data_size fixed bin(8), I* 8. *I
2 time fixed bin(71)) unal; I* 9. *I

1. head The header of the wired_log message entry.

2. text The ASCII message that was expanded from the '4\
control string of this syserr message.

3. data The binary data that is copied into the
wired_log by syserr_real. (See the section on binary
data.)

4. next_wmess Used to calculate the address of the
next entry in the wired _log.

5. seq_num The sequence number assigned to this syserr
message by syserr_real. The sequence number count is
initialized to 1 whenever the syserr_log is
reinitialized. Due to the high number of syserr
messages that will be generated by the protection audit
mechanism this field has been expanded from its
previous size.

6. info_off Offset in syserr_info_ of the entry that
corresponds to this syserr message.

7. text_len
string.

Number of characters in the ASCII message

8. data_size Number of words of binary data copied
into this message entry. Zero implies that there is no
binary data in this entry.

,..

MTB-173 Page 9

9. time Raw clock time specifying when the syserr
message was put into the wired_log.

When handling the log interrupt, syserr_logger will copy
each entry in the wired_log into the syserr_log. It will copy
the seq_num, text, data, and time fields from the wired_log.
Using the info_off field in the wired_log entry it will generate
a pointer to the syserr_info_ entry associated with this syserr
message. From this syserr_info_ entry it will get the rest of
the data that goes into the syserr_log entry. Below is a
description of the new syserr_log entry.

dcl 1 smess based(smess_ptr) aligned,
2 head like smess_header, I* 1. *I
2 name char(O refer(smess.head.name_len)), I* 2. *I
2 text char(O refer(smess.head.test_len)), I* 3. *I
2 data(O refer(smess.head.data size)) bit (36)' I* 4. *I
2 next smess bit(36); I* 5. *I -

dcl 1 smess_header based aligned,
(2 next bit(18), I* 6. *I

2 prev bit(18)) unaligned, I* 7. *I
2 seq_num fixed bin(35), I* 8. *I

(2 action_code fixed bin(8), I* 9. *I
2 name_len fixed bin(8), I* 10. *I
2 text len fixed bin(8), I* 1 1 . *I
2 data_size fixed bin(8), I* 12. *I
2 time fixed bin(71)) unal; I* 13. *I

1. head The header of the syserr_log message entry.

2. name The name of this syserr message.

3. text The expanded ASCII message.

4. data The binary data saved for this syserr message.

5. next_smess Used to calculate the address of the
next entry in the syserr_log.

6. next The offset of the next entry in the
syserr_log.

7. prev The offset of the previous entry in the
syserr_log.

8. seq_num The sequence number of this syserr message.

9. action_code The action code of this syserr message.
It tells how syserr_real processed this message.

Page 10 MTB-173

10. name_len Number of characters in the string that
specifies the name of of this syserr message.

11. text_len
string.

Number of characters in the ASCII message

12. data_size Number of words of binary data.

13. time Raw clock time when message logged.

User Ring Syserr Processing

User ring programs may process syserr messages that have
been logged. They will be able to get syserr messages directly
from syserr_log or from one of the system log segments. They
will be able to select syserr messages based on syserr message
name, sequence number, action code, the time the message was
logged, and sort code. They may print the message text as is
since it is already in ASCII and completely expanded. If this
message has any binary data they must decioe how to format it.
This decision can be made using the format code for this message.
If the format code is 0 or if it is not known to the program then
the binary data may be formatted as if it were an octal dump.
However, if the format code is equal to some prearranged value
that the user ring programs understand then they will be able to
format the binary data in some special way. For example, a
format code of 1 may imply that the binary data is SCU data. A
format code of 2 may imply that it is history register data, etc.

Neither the sort code nor the format code are found in the
syserr_log entry. They are found in the syserr_info_ entry
associated with this syserr message. Any other program that
wants to find the syserr_info_ entry associated with a syserr_log
entry must do the following.

1. Get the syserr message name from the syserr_log entry.

2. Using this entry point name and the segment name
11 syserr_table_11 call hcs_$make_ptr to get a pointer to
the syserr_table_ entry that corresponds to this syserr
message.

3. Using the info_offset found in the syserr_table_ entry
generate a pointer to the corresponding syserr_info_
entry.

It may not be obvious to the reader why the syserr message
name is saved in the syserr_log entry instead of the offset of
the syserr_info_ entry itself. It is true that if the offset
were saved then the algorithm described above would not be ~
necessary. However, this offset is not saved in the syserr_log
entry for the following reason. Syserr messages will be saved in

MTB-173 Page 11

the syserr_log and the system log segments for long periods of
time, possibly months or even years. During this time it is
inevitable that syserr messages will be added and deleted from
the system. The syserr_table_ mechanism must be able to process
syserr messages that were generated from old versions of
syserr_table_ and syserr_info_. Unless these segments are
formatted in a very inefficient way the offsets of their syserr
message entries will change each time syserr_table_.st is
recompiled. Thus we need to put something in the syserr_log
entries that will identify a syserr message for all time. The
syserr message name is such an entity. If a program is
processing a syserr message that has become obsolete, then there
will be no corresponding entry in syserr_table_ or syserr_info_.
The call to hcs_$make_ptr will not be successful since it uses an
unknown syserr_table_ entry point name. The program will know
that this syserr message is obsolete and will use default values
for the information that it would have found in the syserr_info_
entry.

The ability to add and delete syserr messages from
syserr_table_ and syserr_info_ is an important feature. Just as
important, however, is the ability to change the information
about a syserr message that is kept in these segments.
Information relevant to a syserr message at the time it was
generated (action code, text, binary data, time) is saved in the
syserr_log entry. Information that is used at a later time to
process, interpret, and describe this syserr message is kept in
its syserr_info_ entry. Changing the description of a syserr
message means that the new description will be available for past
as well as future instances of that syserr message. At this
time, the function of the sort and format codes is not clearly
understood. What is understood, however, is that the fields in a
syserr_info_ entry such as the description, sort_code, and
format_code do not affect the ring 0 processing of syserr
messages. They represent a convention understood by the writer
of syserr_table_.st source statements, syserr_table_compiler, and
user ring programs that process syserr messages from the
syserr_log.

Advantages of the Tabularization of Syserr Messages

1. The new syserr calling sequence will generate less
object code. The main savings is due to the fact that
the formline_ control string is no longer part of the
object segment. Also, the most frequently used of the
new syserr entry points, syserr$message, has one less
argument that the current syserr entry point. Since
all calls to syserr are made with descriptors this
implies that four words will be saved in each of these
calls.

Page 12 MTB-173

2. One could say that the savings described above is
nullified by the space needed by syserr_table_ and
syserr_info_ entries. However, this is only partly
true. First, the pages used by these two segments are
only referenced when a syserr call is actually made.
This is an infrequent occurrence. Some syserr messages
are almost never used. With the old calling sequence
the space used by these calls was in the object text
and was therefore active each time the program was
executed. Secondly, some syserr messages contain the
same message. If called by two separate programs the
control string will be duplicated in the object text of
each program. The new calling sequence can eliminate
this duplication. Many syserr messages have the same
control string except for a program name. Such
messages could be changed to use the single syserr code
by having the program names specified as arguments.

3. The tabularization of syserr messages will result in a
significant improvement in the administrative control
over the use of this system function. Programmers
modifying ring 0 programs will no longer be able to
add, delete, or change syserr messages at will. They
will have to change syserr_table_.st and this should
require an MCR. Changes to syserr_table_.st should be ~
noted on the system change request form.

4. The syserr_table_.st source segment will be an instant
source of documentation about syserr messages. The
description of the syserr message will be especially
helpful. In addition to the source segment itself, a
program could be developed that would format this
source segment as an actual document. Programs could
also be developed that would return selective
information about a syserr message.

5. The format and sort codes defined for each syserr
message will be very helpful in processing syserr
messages that have been logged. New syserr message
processing features can easily be added since this
whole area of the syserr mechanism is merely a
convention among user ring programs.

BINARY DATA

Recently, certain programs have been putting large amounts
of binary data into the syserr_log. History registers (128
words) and SCU data (48 words) have been put into the syserr_log.
In the future, device status and other information associated ~
with I/O device errors will be logged. The current syserr
mechanism does not allow this to be done either conveniently or

MTB-173 Page 13

efficiently.

The major problems involved with logging binary data via the
current syserr mechanism are:

1. It is inconvenient for the calling program. It must go
through the trouble of breaking up the binary data into
pieces that syserr can handle.

2. Because the data must first be broken up, programs
usually call syserr with only four words of data at a
time. For example, in order to put all of the history
register data into the syserr_log 32 calls are made to
syserr. The multiplicity of calls that result from
giving syserr only a few words at a time is very
inefficient.

3. Due to the multiple wired_log entries generated, each
of which has header information, and due to the
conversion from binary to ASCII, the wired_log entries
for 128 words of binary data now uses 648 words. When
syserr is called from a program that is masked down to
system level the log interrupt is inhibited. If this
program repeatedly calls syserr the wired_log will
overflow and messages will be lost from the log.
Currently, if a program that is masked down to system
level attempts to put history register data into the
log most of the syserr messages will be lost from the
log. With the current implementation, in order to make
the wired_log large enough to hold all of the history
register data we would have to increase its size to 750
words, five times its current size of 150 words.

4. Since many log entries are needed to put large amounts
of data into the syserr_log, it is possible for these
entr~es to be interleaved in the syserr_log with other
entries generated by the same program while it is
simultaneously running on another processor. It is
likely that in such a case the data retrieved from the
syserr_log would not be interpretable.

In order to solve these pr,oblems the new
syserr described below will be implemented.
meet the following goals:

entry point to
It is designed to

1. The 6alling program must be able to pass binary data to
syserr in a convenient manner.

2. A reasonably large amount of data must be processed by
a single call to syserr.

Page 14 MTB-173

3. The binary data should not be converted to ASCII. It
should be put into the syserr_log in its original
binary format.

syserr$binary (syserr_table_code,
arg1, ... , argn)

data_ptr, data_size,

ARGUMENTS:

data_ptr (Input) (ptr) Pointer to the first word of
binary data to be logged.

data size (Input) (fixed bin) The number of words of
binary data to be put into the syserr_log. A
maximum data size of 128 words will be allowed.

The entry point syserr$binary is an ALM interface to the
entry point syserr_real$binary. syserr_real$binary performs all
of the functions that are performed by syserr_real$message. It
will support all of the defined syserr action codes. It will
generate an ASCII string from the formline_ control string found
in the syserr_table_ entry for this message. This ASCII string
will be placed in the wired_log and later copied into the
syserr_log. The ASCII string will be typed on the operator's
console if this is specified by the syserr action code.

In addition, syserr_real$binary will copy into the wired log
all of the binary data specified by the data_ptr and data size
arguments. This data will not be converted into ASCII. It will
not be typed on the operator's console regardless of the action
code. When syserr_logger handles the log interrupt it will copy
all of this binary data into the corresponding syserr_log entry.
The log entry header for both the wired_log and syserr_log will
be changed to include the size of the binary data that is
contained in the entry. If this value is zero then there is no
binary data. The other syserr_real entry points will always set
this field to zero.

User ring programs will have to convert any binary data
found in a log entry into a printable format. Instead of this
conversion being done by syserr_real, a critical ring O program,
it will be done in a higher ring. The format code found in the
syserr_info_ entry can be used to tell user ring prog~ams how
this binary data should be formatted. As a default the binary
data can be printed as if it were a dump.

MTB-173 Page 15

ERROR TABLE MESSAGES

Many calls to syserr contain an error table code as one of
the arguments to formline_. This code is usually converted and
printed as an octal number. This method of using error_table_
message codes within syserr messages has the following major
disadvantages.

1. It is not easy for an operator who sees such a message
typed on the operator's console to know what
error_table_ message is being referenced. He must look
in the source listing of error_table_.alm. Using the
octal entry offset obtained from the syserr message he
can then find the error_table_ message.

2. Finding the error_table_ message from these syserr
messages once they have been logged may often be
impossible. The error_table entry offsets that
reference a previous version of the error_table_ will
not be valid.

The new syserr entry point described below is ~ntended to
improve the use of error_table_ messages with syserr messages.
Since this entry point will reference the unwired segment,
error_table_, it must not be called by any programs that cannot
take page faults.

syserr$error_code (syserr_table_code,
... , argn)

error_table_code, arg1,

ARGUMENTS:

error_table_code (Input) (fixed bin(35))
error_table_ code.

A standard

The entry point syserr$error_code is an ALM interface to the
entry point syserr_real$error_code. It performs all of the
functions that are performed by syserr_real$message. In
addition, it will use the error table code argument to obtain a
message string from the system error_table_. This message string
will be appended to the expanded syserr message string. The
concatenated string will be logged. If appropriate, the
concatenated string will be typed on the operator's console.

Page 16 MTB-173

SYSERR SOURCE LANGUAGE

This section discusses the source language used to define
syserr messages. The definition of all of the syserr messages
will be combined in the single segment, syserr_table_.st. The
definition of a syserr message is comprised of several
statements. An informal description of these statements is given
below.

General Statement Syntax

<statement>::= <statement name>: <statement variable>;

NAME STATEMENT

<name statement>::= name: <syserr message name>;

A name statement must be the
definition of a syserr message. The
name of this syserr message. This name
point in the segment syserr_table_.
must be unique within syserr_table_.st.

END STATEMENT

first statement in the
statement variable is the

will become an entry
Each syserr message name

<end statement>::= end: <syserr message name>;

An end statement must be the last statement in the
definition of a syserr message. The statement variable is the
name of this syserr message. It must match the name specified
on the preceding name statement. Between the name statement and
the end statement will be all of the other statements that define
this syserr message. These statements may be in any order. Only
one statement of each type is allowed in any one syserr message
definition. The main purpose of this statement is for the
convenience of those perusing a listing of the syserr_table_.st
source segment. it identifies a syserr message definition that
has spanned one or more pages of the listing.

ACTION STATEMENT

<action statement>::= action: <action code>;
<action code>::= {fatallwritelwrite_alarmllogllog_only}

This statement defines the syserr action code for this
syserr message. This statement is not optional. Syserr messages
that use variable action codes (for example those that use DEBG
card values) must now be specified as separate messages. There
must be one message for each possible action code. This is a

MTB-173 Page 17

rare case and its use should be discouraged. The meaning of the
various action codes is given below. The reader should note that
the previously supported syserr action involving the termination
of a process is no longer supported.

fatal The message will be logged and then typed on the
operator's console with alarm. Then a "Multics Not In
Operation" message will be typed. Then Multics will be
crashed.

write - The message will be logged and then typed on the
operator's console without alarm.

write alarm The message will be logged and then typed on
the operator's console with alarm.

log The message will be logged. The message will not be
written on the operator's console. However, if the
message could not be logged due to a lack of space in
the wired_log buffer then the message will be typed on
the operator's console without alarm. The string
"*LOST" will be prefixed to the syserr message.

log_only The message will be logged. The message will
not be written on the operator's console. If the
message cannot be logged it will be lost without
notification to the operator.

CONTROL STATEMENT

<control statement>::= control: "<control string>";

The control statement is used to define the formline
control string that is to be used to expand this syserr message.
The variables defined within this formline_ control string must
match the arguments passed in the call to syserr. The control
string variable must be within quotes. Any quotes within the
control string itself must be expressed as double quotes. This
statement is not optional.

STATUS STATEMENT

<status statement>::: status: <status variable>;
<status variable>::= {wirediactiveipagedlinit}

The status statement is used to define where this syserr
message is to placed in the syserr_table_. All syserr message
entries are grouped into one of four status classes. status
classes. All of the entries from the same status class will be
packed together in syserr_table_. The wired status class entries
will be placed at the top of syserr_table_, followed by the

Page 18 MTB-173

active status class entries, followed by the paged status class
entries, and lastly followed by the init status class entries.
The number of pages in syserr_table_ used by the wired status
class entries will be calculated by syserr_table_compiler. These
pages will be permanently wired at system initialization time.
This is done in order to fulfill the requirement that all entries
in syserr_table_ that are referenced by syserr_real on behalf of
wired programs must themselves be wired. This statement is
optional. If it is missing a default status class of wired will
be assumed. The exact meaning of these four syserr message
status variables is:

wired One of the calls to syserr that references this
syserr message comes from a program that is wired.

active This syserr message will be referenced only by
paged programs. This syserr message is frequently
used. The purpose of this status class is to hopefully
put some of these frequently used paged syserr message
entries into any unused space in the last page used by
the wired syserr message entries.

paged This syserr message will be referenced solely by
paged programs.

init This syserr message will be referenced solely
during system initialization. By isolating this type
of syserr messages we can place them in pages at the
end of syserr_table_. These pages will never be
referenced after system initialization. Some calls to
syserr come from initialization programs that are
wired. However, this case occurs only during
collection 1 when all of syserr_table_ is wired. Thus
syserr messages whose status is both wired and init
should be defined as init.

DESCRIPTION STATEMENT

<description statement>::= description: ''<description string>";

This statement is used to specify a description of the
syserr message. The description string may contain any
characters suitable for printing. Quotes within this string must
be expressed as double quotes. The description string m~y be as
long as necessary to completely describe the meaning and reason
for this syserr message. If appropriate, it should include a
description of the action to be taken by the operator in response
to this syserr message. This is an optional statement. If it is
missing a null string will be used as a default.

' '

MTB-173 Page 19

SORT STATEMENT

<sort statement>::= sort: <sort code>;

The sort code variable specified in this statement must be a
non-negative decimal number. This variable specifies that this
syserr message belongs to a particular sort class. The user ring
programs may support an option that enables them to process only
those syserr messages that belong to a particular sort class.
The sort class numbers must be used according to conventions
agreed upon by the writers of syserr_table_ statements. This
statement is optional. If it is missing, a default sort code
value of 0 will be used.

FORMAT STATEMENT

<format statement>::= format: <format code>;

The format code variable specified in this statement must be
a non-negative decimal number. This variable specifies the
format to be used when printing binary data. The format codes
must be used according to conventions understood by the writers
of syserr_table_ statements and the user ring programs. This
statement is optional. If it is missing a default format code
value of 0 will be used. A format code of 0 implies that the
binary data is to be printed as an octal dump.

NOTES

Spacing characters (blanks, tabs, new line characters, new
page characters) may appear between any statement and between any
element of a statement. PL/I type comments strings, /* ... */, may
appear anywhere that a spacing character may appear. (See
Appendix A for sample definitions of syserr messages using this
source language.)

IMPLEMENTATION PLAN

1. The syserr_table_compiler must be implemented. It
probably should be coded using the reduction_compiler.

2. The syserr_table_.st source segment must be generated.
As calls to syserr are converted their syserr messages
must be defined in syserr_table_.st.

3. The programs syserr and syserr_real must be changed.
The current syserr entry point must be maintained until
all calls to syserr have been converted to use one of

Page 20 1'1TB-173

the three new entry points. Since there is no
syserr_table_code argument passed to the current syserr
entry point, default table information will be used.
In order to work with the new wired_log and syserr_log
entry formats this entry point will use dummy syserr
message entries that will be defined in
syserr_table_.st. There will be one dummy message
entry for each action code. The control strings in the
syserr_table_ entries for these dummy messages will not
be used by syserr_real. The three new syserr entry
points and their corresponding syserr_real entry points
must be implemented.

4. A change should be made to the syserr message text that
is typed on the operator's console. The sequence
number of the message should be included in the message
text. This sequence number may then be used by the
operator to obtain more information about the message.

5. The program syserr_logger must be changed to work with
the new wired_log and syserr_log entry formats.

6. The program init_collections must be changed. The
program syserr_log_init must be moved from collection 1
to collection 2.

7.

8.

The syserr_data data base must be changed.
the wired_log buff er should be doubled to
This will allow at least two syserr messages
maximum amount of binary data to be logged.

The size of
300 words.
with the

All user ring programs that
from the syserr_log must
syserr_log entry format.
process binary data and
codes that are available in

process syserr messages
be changed to use the new

They must be changed to
to use the format and sort
syserr_info_.

9. A new program should be implemented that would print
selective information from a syserr_info_ entry. It
should be able to find this entry given either a syserr
message name or a valid syserr message sequence number.

10. A new program should be implemented that can generate a
formal document from the syserr_table_.st source
segment.

11. A new program should be implemented that would merge
private versions of the syserr_table_.st source segment
into one source segment. Any number of source segments
of the type aaaaaa.st could be used as input. The ""'
result would be a new source segment with the name
syserr_table_.st.

MTB-173 Page 21

12. The programs that call syserr will have to be changed.
They do not all have to be changed at once. The syserr
calls that involve binary data should be changed first.
Then as ring 0 programs are added or changed we can
require that they use the new syserr calling sequence
in order to be installed.

Page 22 MTB-173
Appendix A

Sample Syserr Message Definitions

I* This is a sample definition of a syserr message
* using the syserr_table_compiler source language.
* call syserr$message (syserr_table_$bad_devx,devx);
*I
name: bad_devx;
action: fatal; /* Crash the system. *I
control: "iom_manager: bad devx ""o supplied.";
status: wired;
format: O; I* No binary data. *I
sort: 1; /*Sort class 1. */
description:

"This syserr message is generated when
iom_manager is called with a bad device index.
There is nothing the operator can do. ";

end: bad_devx;

I*
*I

call syserr$message (syserr table $mylock,"name",lockp);
"l\j - -

name: mylock;
action: fatal; /* Fatal error. */
control: 11 ""a: mylock error on ""p. 11 ;

status: paged; /* Fatal action => not active. */
format: O;
sort: 2; I* File system error. */
description:

"This syserr message is generated by file
system programs that find a lock already
locked to a process. ";

end: mylock;

; .

