MULTICS TECHNICAL BULLETIN MTB - 154

Tot Distribution
Fromt! Richard G, Bratt
Date: 12/712/74

Sublectt A Proposal for Removing Name Space Management from Ring
lero,.

Multics allows oblects in its storage system hierarchy
to be referencea by three aistinct classes of names: path names,
reference names, and segment numbers. The binding of these names
to oblects in the hierarchy iIs controllied by directory control,
name space control, and address space contro! respectively.
Currentiy the modules In the hardcore supervisor that implement
these tunctlons are. more interconnected than need be. This MT8
proposes a8 restructuring of address and name space control which
allows name space control to be removed from the security kernel
of Multics. Together wlth Phit Jansons previousliy completed
user-ring linker this design produces a simpler, smaller
supervisor with a slmpler Interface.

Currentiy a process® name space has two distinct
componentst: a segment name space and a dlrectory name space. The
segment name space associates names with non-directory segments.
This name space is under explicit wuser control. That is, the
process Is free to assoclate gpny name or group of names wlth a
segment. Furthermore, a process may dynamically modify its
segment name space. The dlrectory name space which assoclates
names with directory segments, however, Is not sublect to
explicit wuser control. Instead, it is managed by ring zero which
constralns names of dlrectorilies to be absolute pathnames of the
girectory.

The aistinction between segment reference names and
directory reference names seems Somewhat artifical. A process
shoulc be free to associate any name it chooses with a directory.
Consider how easlly the working directory and search directory
concepts fit Into such a schenme. We could bind the name
“working_dir® to a process® worklng directory ana "search_air_n"
to its n*th search directory. A process could then reference
these directories by name using the normal name space management
mechanisms.

The primary goat of the deslgn presented in thls MTB is
to remove name space management from the security kernel of

Multics Prolect Internal working documentation. Not to be
reproduced or distributed outside the Multics Prolect,

Multics. It has been argued that 2 serlous consequence of any
scheme which realizes this goal is that a process® name space can
no longer reflect name changes in the hlerarchy. Thls argument
Is bases on a confusion between reference names and directory
entry names. If seems obvious that a process does not want its
name space to change without lts consent. Changlng a segment®s
name goes not change a process' access to it. A prime advantage
of reference names 1is precisely this abitity to insulate a
process from name changes in the hlerarchyes We shouid
distingulsh reference names from directory entry names. A
reference name is a name we temporarify bind to a segment. A
directory entry name Is a selector of a partlcular entry In a
directory. We neec directory entry names only to physically
select a branch for the first time; after that we should be free
to call it whatever we choose, If any vaild reason exlsts for
notlifing a process that the names on a segment or directory that
it is wusing have changed, the system couid signal a
name_change_on segment_x conditione. This would require the
adcéition of some sort of KST trailer mechanism to the system.
This may eventually be necessary if for no other reason than
Multics witl eventually run for extremely long wuninterupted
stretches. It a oprocess were to stay permanently loggea in it
would require notification of on=tine instatllations. This in
[tselt is & difficutt problem which I do not intend to address
here. The only polnt I wish to make is that the process and not
the system should control the duration of name bindings.

White there does not appear to be any Intrinslc need
for the Muitics securlty kernel to support name space management,
its removal from ring zero lIs compiicated by the fact that the
current Multics adcress space managery, which provides a
legitimate kernzl function, depends on the name Sspace manager,
Specifically, the address space manager uses the name space
manager to manage 3an assoclative memory of {directory pathname,
segment number) pairs. It is therefore necessary to decouple
address space management from name space management before the
iatter can be removed from ring zero.

The dependence ot address space control on name space
contro! manitests [tself iIn the recursive procecure find_ which
the address space manager uses to map directory pathnames into
directory segment numbers. When find_ Is Invoked [t <cails the
name space manager with the pathname it [s glven. If the name
space manager returns a segment number then f$ind_ 1is done.
Otherwise, filnd_ splits the pathname [nto a pathname of the
parent clrectory of the target aglrectory and the name of the
target directory. It then calis itse!lf recursively to obtain a
seaqament number for the parent directory. Using thils segment
number as a pointer to the parent directory, flnda_ attempts to
initiate the target directory. If it suceeds it adds the pair
{(path name of target, segment number of target) to the name space
manager"s data base and returns.

This ©proposail suggests a radical change In the ring
Zero adcoress space manager. The essentlal result of this change
is that find_, as described above, need no longer be called by
the address space manager. Thils allows both flnd_ and name space
managenent to be removed from ring zero.

Currentiy, determining whether a process should ba
permitted to Initjate an arbitrary directory Is qulte difficult
since we wish to prevent a process from detecting whether or not
38 glven directory exlsts unless [t has access to that aclrectory.
This difficulty stems from the fact that the ACL of a branch and
its ophysical storage map reside in its parent. Since we wish the
ACL of s branch to exerclse compliete control over access to that
branch, we must permlt a process te Initiate all superiors of
accessible segments independent of access to these superiors! To
avold this difficulty, Multics Inexorably couples the initlation
of a8 dlrectory with Initlating an Inferlor segment. This
inability to Initiate directories directly has lead to many
needlessiy complex mechanlisms for manipulating directories. In
addalition it has forced us always to refer to directories by
pathname, Not only is this inefficient, but it requires that the
address space manager be able to call find_. If we could
Initiate directories directiy then we could use segment numbers
as directory specifiers. Address space control could then take a
segment number [nstead of taklng a pathname as a directory
specifiers Since address space control would no longer need to
call find_ it could move out of ring zero along with name space
management without compromising the securlity of address space
control.

Actuallys coupling directory and segment initiation
does not solve the problem. Since a process cannot read the
access control fist of a segment until its parent is known, the
system still must permit a process to inltiate directories which
it may not have the right to know exist! By causing the
initiation of these superior airectories to occur In a single,
indivisable ring zero cally the system couldy In principle,
prevent security teaks. This could be accomplished by terminating
those intermediate directories which had to be initiated only to
tind that the process had no access to the terminal segment,
bpefore returning to the caller. Unfortunately, the current system
does not do so. This allows any process to determine the
exlstence of any postulated directory. Certainly one approach |is
to correct this flaw In the current system. However, there seem
to be many ways of forcing such a scheme to compromise
Information. For example, sSsuppose a process ftitled up Its
agdress space Intentionatty and then called ring zero to Inltiate
>secret>x. If ring zero was not very careful it might cause thsa
process to die due to a KST overfiow if and only 1f »>secret
exlstea. This would aliow the existence of >secret to be inferred
by whether or not the process died.

I opropose that we decouple segment and directory

initiation. As was noted earlier the basic problem to be solved
is how can the system declde whether a process should be aillowed
to initiate a given directory. There are essentiailiy four
schemes for making this decision. The first scheme involives
recognizing that [f the access control list of a dlrectory ls to
completely express access to that directory we must make explicit
the now "hidden"™ permission to Initiate a directory If some
descendent of the directory is accessliblie to the process. The
obvlious way to accomplish +this is to Invent a new directory
access mode called ®"initiate". This mode aliows the named
principal to Initlate a directory and to use the [nformation 1t
conteins which Is relevent to accessing descendents of that
directory. This makes the declision of whether or not a process
should be allowed to Inltiate a directory gqulite simple. If the

process has non~-nuiltl access to the cgirectory then It may Inltiate
it. Otherwise, it may not. Unfortunately, this scheme defeats
our desire to have the access control list of a segment or

directory completely express what processes may access that
segment or directory,

A second way to declde whether a process may Inltlate a
directory is to search the hlerarchy subtree rooted at that

directory. If the process has non=null access to any member of
this subtree then the process shoulc be allowead to [nitiate the
directory in aquestion. Naturatly, this scheme is far too

ilnefficlent to consider serlousiy.

A third method of <decialng whether & process may

initiate a directory is to require non-=-nul i access to the
dlrectory. This scheme has the disadvantages sharea by the first
scheme discussedy, 0f preventing the access control tist of a
directory or segment from belng the sole arbiter of access to
that clrectory or segment. Inorder to initlate a segment a
process would need non-null access to the superiors of that
segment.

I propose that we take a forth approach to the problem
of initiating directories. Instead of worrvying about whether or
not a process has the right to initiate a dlrectory let us ailiow
all processes to initiate any directory = wmhether or not it
exists?! The key to this scheme s preventing the user from
detecting any dlifference between an lnitlated alrectory which
does not exist and an initlated directory which exists but which
the wuser has not proven hls right to know exists. How this [s to

be ocone will be discussed later. The ring zero adaress space
manager interface resulting from this approach seems qulte
naturat. Ring zero no longer concerns ftself with pathnames.

Insteac, It accepts «alrectory segment numbers for directory
specifliers.s To allow this scheme to bootstrap Itseif we wlii
define the segment number of the parent of the root to be zero.
Initiation of segments and directories wili be controlled by
initiate_ which wliit accept a parameter speclfing whether a
segment or directory ls to be initited. The ratlonaie behind

distingulshlng dlrectory and segment Initiatlion Is that a process
usually has a preconceived idea about the type of a branch it
wishes to Initiate. When reality does not support this
preconcelved ldea the process Is usually in error. Forcing the
process to make explliclt the type of branch it Is expectling
altows ring zero to Immealately catch alt such errors. This
prevents a careless process from bumbling along thinking all is
wel i only to dle when it attempts to access a dlrectory as a
segment or vice versa.

An important consequence of not handling pathnames in
rlng zero Ils that flle system llnks can no longer be interpreted
In ring zero. This requires that finks be readable in the outer
rings which ralses the questlon of what, If any, access control
shoula be placed on reading tinkse The simple approachsy which 1is
taken in the current system, is to make links completely publicy,
readable In all rings by all processes. Thils has the disadvantage
that If some process can guess the pathname of a3 real |link then
it can prove the existence of the parent directories of that
ilnk. At the other end of the spectrum we could place access
contro!l {ists on 1lnks thereby expllicltly naming those processes
which may read the link. This seems a blt too bulky. I propose
that we conslder a ilnk to be part of Its contalning dlrectory,
readable oniy by processes havlng status permission on that
directory, This scheme has the virtues of being simple, easy to
Implementy, and plugging the informatlon hole which uncontrolled
access to links provides in the current system. HWhile this scheme
does make one class of currently legal uses of tinks illegal,
this restriction does not seem t0o0 severe.

When iInitiate_ encounters 3 1link it will return the
link and a status code which informs the outer ring procedure
that a3 1Ink was encounterede. The outer ring procedure may then
try the new path speclified by the links Since this 1Is happening
In an outer ring we need no longer have 3 standard Interpretation
of linkse That s uniess the function moves out of the kernel but
not out of the supervisor. If ,however, it resldes in the user
ring the process may Interpret llnks In any manner [t chooses.
Wwhy not let tfinks contaln relative pathnames j,offsets, or even
arbitrary character strings? The lmportant polnt is that while
the kernel may be the keeper of tlnks [t does not [nterpret them.
Naturally the restriction on link depthy, whlch was iIntended to
keep ring zero from gettlng into trouble, vanishes.

We can wuse this same mechanism of reflecting
information out to an outer ring by setting a status code to
indicate the fact that a segment®s copy swlitch was set. This
allows the concept of a copy switch to move out of ring zero.
Whether it is stiit handied within the supervisor but in a higher
ring or wilthin the user®s ring depends on whether it Is to be
cons liderecd a basic, unchangable system function or not.
Personally I would move [t to the user ring!?

To complete our new ring zero address space manager
interface we must Introduce a terminate oporimitive. This
primitive accepts three arguments. The first argument specifies
the segment number to be terminated. The second argument
specifles whether or not the released segment number s to be
reserved, The finat argument Is a status code., It should be
noticed that thils primitlve may be calied with either a segment
or clrectory segment number. In the case of termlnating a
directory one constraint is enforced. Since the system requires
that a known segment®s parent also be known, terminate wili not
tarminate a airectory with known Inferiors.,

Since this scheme removes the Important function of
name space management from rilng zero we must provide a name space
manager in the outer ring. Again it s a matter of opinion
whether name space management shoula be handled In the supervisor
or in the user ring. If [t residces In the supervisor it cannot be
clobbered by the user =-=- neither can it be changed. It is my
opinion that it should reside In the user ring. Perhaps the
system coulc also provide a secure address space manager whilch
could be wused by those users not interested in providing their
OWN ., I will assume that name space management will be moved to
the user ring. Regaraless of where [t Is ptaced all ring zero
primitives which currently accept pathnames wili have to become
write arounds in some outer ring. These write arounds must first
calt an outer ring procedure which, through appropriate catis to
the outer ring name space manager and the new ring zero address
space primltives, translate pathnames into segment numbers. This
corresponds to the function now performed In ring zero by flnd_.
These segment numbers may then be passed to the new ring zero
primitives which wlil not accept pathnames.

So far everything seems rosey. Thls scheme seems fto
remove many functions from ring zero and to simpiify the ring
Zero Interface in the bargain. Where s the hitch? Do we get all
this for free? The answer is, of coursey, no. I have glossed over
one lmportant polint. In order to decouple directory and segment
initiatlion we must be able to sucessfully cloak the physical
inltjiation of directories from a procaess" detection unti!{ it has
established its right to know of the exlstence of the directorye.
As was polntea out earller, this need for aeception Is Intrinsic
to the hierarchy structure and functionality of the current
system. While this proposal makes the system®s need to decelve
the wuser more obviousy It is not responsible for the reaquired
deceijt,

I wlill call a directory detectable 1[f a process has
estabilshed its right +to know that +the directory existse.
Detectability may be establlished either by having non-null access

to the clrectory or by having non-nuil access to its parent or by
establishing the detectablliity of an interior of the dlrectory.
The reason that non-null access on the parent of a branch

establishes cetectabllity is that elther status » modl fy or

append permission is sufficient to allow the process to detect if
the ©branch in question actually exists. It shoula be notea that
the detectablliiiy of a directory is a function of the process®
history and the ring of execution. A dlrectory Ils detectabie by
38 process In rings zero through the hlghest ring In which it has
detectably initiated some member of the tree rooted at that
directory. This hlghest detectable ring number of a directory Is
kept In [Its KSTE.

We must prevent a process from detecting any dilfference
between an [nitlated directory which does not exist and an
initiated existing but wundetectable directory. It a process
could detect a difference In these +two cases then it could
establlish the existence of gpny postulated path In the hierarchy.
This would constlitute a clear violatlon of security. To
accomptish thls means abandoning the current one-tfo-one anc onto
mapping which exists between occupied segment numbers and known
segments and directories. We must allow muttiplie segment numbers
for the same dilrectory. The reason for this is simple. Slince
the ACL of a segment completely controls the right to Initiate
that segment there Is no need to aliow a process to initiate a
segment to which it has no access. Thils allows us to hlage the
physical existence of a segment from a process which has no rignt
to know [f the segment exists by returning the amblguous status
code noinfo In response to an initiate request. This simple
mechanism fails for directories since we must always allow a
process to initiate an exlsting directory In case It has access
to some Inferior of that cirectorys. This forces us to return more
than one segment number for a directory In some cases in order to
prevent the process from detecting the exlistence of physlically
Initiated but ltogically undetectable directories. If initiate_
returned the same segment number for two different entries then
the process could be assured that the correspondlng dlrectory
exists! This requlres that we return a new segment number [f a
process reinitlates a directory which is still undetectable with
a4 nNnew name, In fact we wlil! even return a new Segment number |f
It trles to Initiate an undetectable directory with the same name
twice. If we returned the same segment number then Inorder for
directorles which do not physicaily exist to appear the same fto
the user ring, ring zero would have to remember the name of every
phoney directory. Thils is a needless complication of ring zero.

This scheme will merrjily allion a process to initilate
vast trees of directories which do not exist! These directories
will be indistinguishable from real undetectabie directories.

The potential multipllcity of segment numbers for directorles
Impiies that if we compare two directory pointers and find them
to be not equal we cannot conclude that the obj)ects polnted to
are not one and the same. Since processes running outsice the
supervisor cannot currently use segment numbers for directories,
no user code can be effected by this new restrictione. To atlow
processes to quickly determine if two segment numbers are bound
to the same object the system should support a function for

mappling a3 segment number Into the unique identifier of the oblect
it is bouna to. Naturally, thls function must return an error if

the oblect is nrot detectable to the processe. The system nust
also insure that |[f the user attempts to reference through any
directory pointer in an outer ring he wili get the appropriate

access violation whether our not the segment number he used
corresponded to a real or phoney directory,

The action to be taken by ring zero in response to a
request to inltlate a directory depends on four boolean state
variables of the target with respect to the accessing processe.
These variabies c¢an be encoded as a bt string with the
Interpretation of each bit given pelowe.

-

state codes

state meaning

1000 target®s parent s phoney
0100 target detectable

0010 target exjists

0o0G1 target already has KSTE

The possibte actlons which ring zero can take In resporse to a
request to initiate a directory are encoded below. I have
omitted the case where the target [s a link as this case has
alreacy been discussec.

action_codes
aas assign a segment number to the cirectory
ene return a status code indicating that t he
directory does not exist
enc return a status <code indicating that the

directory elther does not exist or that the
process has not established Its rlight to know
that It exists

rps return segment number and a status code
Indicating that the dlrectory was already
known

sd update highest cetectable ring fiela of this

KSTE and lIts superlor KSTEs to the maximum of
their current value ana the ring of execution
sdz set highest detectable ring field to zero

This encoding allows us to compactly characterlze the functioning
of initiate_ In the foltowing table. Entries in the state colunmn
encode a possible state. Entries In the actlion column encode the
actions to be ftaken glven the state represented in the stafte
column,

action ot Ipitiste

state action

0=~ aassysdzyend
010~ ene

01160 aassSa

0111 rps

1=-=- aaseysdzyend

Two possible oblections I can see to this scheme are
that it can potentlally waste segment numbers and [t requires
inspecting the parent®'s ACL. A close examlnatlon of the
preceeding chart jindicates that there are only two ways to assign

a segment number which Is not dlrectly connected to 3 clrectory.
The first way is to reinitiate an undetectablie directory. The
second is to Inltlate a phoney directory. Nelther of these
operations should occur in normat operation. They could, however,
arise in an attempt to use a misspeiled pathname. To eradicate
this problem the outer ring variant of find_ could terminate
those cirectories which might be phoney If the terminal segment
could not be initiated. This would prevent a habitual misspeller
from cluttering up hls address space. It seems that wlith this
addltion a process must go out of lts way lnorder to clutter up
its address space. If that is what [t wants fine! Even |[if a
process wastes aill its segment numbers [t c¢an recover by
terminating no Jlonger needea segment numbers, The apparent
inefficency of inspecting the ACL of the parent of a branch
4quring Initiation of that branch s not serlous since 1[It Is
normally not requlred. Only when a process has null access to a
branch and has not previous.y established detectability for that
branch Is It necessary to inspect the ACL of the parent.

In the oila KST schemey the names stored with each KSTE
provided 3 means of telling what rings stlilil had the assoclated
segment or dlrectory Initliatec. Since these names wiil no {onger
be kept in the KST some new mechanism must be Invented to supply
thls information. Thls Is easily accomplished by adding an eight
bit fieldy calied ringsy to each KSTE. It the 1 th bIt{(0
origined) In this fielad is on then the corresponding ring has the
segment or directory inltiated. This allows ring zero to detect
vhen 2 segment or cirectory may be physlically terminatea, thereby
preventing one ring from terminating a segment or directory that
is being used by another ring.

It should be carefully noted that the termination
primitive terminates a segment number. Oniy If the fast segment
number for a alrectory is being terminated and its inferlor count
is zero will it be physically terminated! We can use the same
method to describe the action of the terminate primitlve as was
Jusec to aescribe the action of the inltlate primitive.

state codes

state meaning

100 KSTE has inferlors known
010 KSTE known in other rings
001 reserve requested

actlion_codes

re reset this ring*s known bit
t¢ thread KSTE onto free chain
tr threac XSTE onto reservea chain

actlon of terminate pcimitive

state action
000 rrytt
001 rretr
-1~ rr
1-- rr
In summary, this proposal callils for the complete
removal of name space management from ring zero. As a result the

concepts of pathname and file system links also depart ring zero.
In the process of removling name space management from ring zero,
I have reorganizec and improved the ring zero interface and
address space manager. The KST has been simplified and contains
oniy two components? a KSTE arrays and a UID hash tabte. The
contents of each KSTE and thelr major Jses are summarlzed below.

KSTE_fleild Use

forward pointer,
backward polnter Used to thread KSTE onto free or
hash class 1lst as required.

uniqgue identifier Unchanged (a phoney directory will
have a uld =).

Inferjor count Unchanged.

entry polinter A packed polinter to the directory

entry of thls branch.
directory switch Unchanged.

transparent modiflication switch,
transparent usage switch Unchangede.

rings An elght blt tielid containing one
bit per ring. Whenever ring i has
this segment number Inltiated then
bit 1 of thils field is on.

highest detectable ring A number which specifies the
highest ring in which this process
has establlished its right to «&now
of the existence of this clrectory.

The proposed ring zero segment number manager interface (s as
follons.,

inltiate_ (dirsegnosename,dirswWyrsw,linkysegnoscode)

dirsegno segment number of the parent (input}

ename entry name of target(input)

dirsw directory swlitch(input)

rsw reserved segment swltch(input)

link fink{(output)

segno segment number of target(if rsw then Input)
coge status codel(output)

terminate_(segnoysrswycode)

segno segment number to be terminated(input)
rsw see above
code see above

To help clarity the jdeas presentec in this proposatl
let us consider the tollowing senario in which a process trys to
initlate the segment >a>b>c>d>e>f in ring four. We wil{ assume
that directory e and segment t do not exist and that the process
has no permission on a, b or dy and append permisslon on ¢ In
rings zero through four. To simpilfy matters we will lgnore the
exlstence of the outer ring name space manager and we wil! assume
that we are operatling In a virgln envlironment. What follows |s
how the outer rilng flna_ woufid proceed In thls case.

step O call initiate_{(0+""91404linkysegno_of_rootycode)

The root alrectory‘wlll be Inltlated, its detectbie
field in fthe KSTE will be set to four, and a status
code of zero will be returnade.

step 1 call
injtlate_{segno_of_root,"a"s14+0+11lnkysegno_of_a,code)
The directory wili be inltiatedy Its detectable field

in the KSTE wilt be set to four, and a status code of
zero wlili be returnede.

step 2 call Initiate_{(segno_of_a,"b",140,1inkysegno_of_b,code)

The dlrectory will be Initlatead , its cetectable flietd
In the KSTE will be set to zero, and the status cogde
nolnfo wlii be returned.

step 3 cail Initiate_{segno_ot_b,"c"y1,0siinkySegno_of_c,code)

The directory will be Initiated, lts detectable flelid
In the KSTE witl be set to fours and a zero status code
will be returned. In addition this initiation
establishes the process® right to know of the existence
of superlor alrectorlies at least In rings zero through
four. This is reflected, in this case, by setting the
detectabie fleld In the KSTE of >a>b to foure.

step &4 cal! initlate_(segno_of_cy" d"41.0s1inkysegno_of_d,code)
The directory d wiil be [nitiated, Its detectabie fleid

In the KSTE witll be set to foury ana a zero status codqe
will be returned.

step 5 calt Initlate_(segno_of_dy*e",1,041inkeysegno_of_escode)
The non existant directory e will be assligred a KSTE
which will be marked as phoney and the status code

noinfo will be returned.
step 6 cail initiate_(segno_of_e "t ,040ylinkysegno_of_t,code)

No KSTE wiltl be asslgned and the status code noinfo
will be returned.

step 7 call termlinate_(segno_of_eq404ycode)

The segment number assigned to e will be reteased on
the grounds that e may really not exist.

The address space manager proposed in this MIB has been
written and 1s many times simpler and smaller than the current
ring zero address space manager. In some modutes the reduction
in <size is on the order of a3 factor of ten! In addition, a
verslon of hardcore which preserves the current ring zero
Interface 1iIs being debuggec which [s built on this new agaress
space manager.

ARPENDIX A

The maln data base for the current ring zero address
ang name space manager is the Known Segment Iabie. The KST [s a
per=-process, ring zero segment, Logically it contains four items.
Flrsty it contains an array of XST Entrles. KSTEs are indexed by
segment number and contain all per-process information necessary
for the proper care and feedlng of the segment or directory
associated wlith the indexing segment number. Second, it contains
a hash coded mapplng from the space of Unlque IDentiflers onto
the space of segment numbers, or equivalently the space of KSTEs,
This mspping provides the means of locating the KSTE of an
already initiated segment should It subsequently be initlated by
a different name., Third, it contalns a hash coded mapping from
the space of names onto the space of segment numbers. This
association 1iIs mainty of use to the dynamic linking mechanisme.
Forth, it provides a repository for per-ring search rules, This
tater KST function wilil be consldered no further as the user-ring
dynamic linker removes this informatlion from the KST, The current
contents of a KSTE and their major usages are given in the
followlng table.

KSTE tieid

formard pointer,
backward pointer

unigue identifier

name pojinter

inferior count

parent segment number

offset of branch

gQirectory switch

transparent mocdiflcation,
transparent usage switch

Use

Used to chaln the KSTE onto a list
of free or reserved KSTEs as
requlired.

Used to valldate UID hash searches
and to property identify the
caorresponding branch after an
on-line salvage.

Used to chaln together a ilst of
the reference names associated wlth
this segment or directory and the
rings in which they are known.

Used to prevent a directory from
belng terminated while It has known
SONSe If thls were not done
segment faults would fail!

Used at segment fautt time to
locate this branch®s parent. It
also is used to transiate segment
numbers into pathnames.

Used to locate 1t he branch within
the parent dlractory.

Used to special case access setting
for directories at segment fault
time.

Used to control whether this
process* usage and/or modification
of this segment or alrectory should
be transparent to the system.

