
MULTICS TECHNICAL BULLETIN MTB - 154

Tot Dlstrlbutlon

Froml Richard G. Bratt

Date: 12112174

SubJectz A Proposal for Removing Name Space Management from Ring
Zero.

Multics allows obJects in its storage system hierarchy
to be referencea by three oistinct classes of names: oath names,
reference names, and segment numbers. The binding of these names
to obJects in the hierarchy ls control lea by directory control,
name space control, and address space control respectively.
Currently the modules ln the hardcore supervisor that implement
these functions are. more interconnected than need be. Thls HTB
proposes a restructuring of address and name space control which
allows name space control to be removed from the security kernel
of Multics. Together with Phil Jansons previously completeJ
user-ring linker , this design produces a simoler, small~r
supervisor with a simpler Interface.

Currently a process• name space has two distinct
componentsa a segment name space and a directory name space. The
segment name space associates names with non-directory segments.
This name space ls under explicit user control. That ls, the
process ls free to associate a~ name or group of names with a
segment. Furthermore, a process may dynamically modify its
segment name space. The directory name space which associates
names wlth directory segments, however, ls not SYbJect to
exollcit user control. Instead, lt ls managed by ring zero whlcn
constrains names of directories to be absolute pathnames of the
alrectory.

The distinction between segm9nt reference names and
directory reference names seems somewhat artlfical. A process
should be free to associate any name it chooses with a directory.
Consider how easily the working directory and search directory
concepts flt Into such a scheme. We could bind the name
"worklng_dlr" to a process• working directory and ''search_dlr_n"
to its n•th search directory. A process could then reference
these dlrectorles by name using the normal name space management
mechanisms.

The primary goal of the design presented in thls MTB ls
to remove name space management from the security kernel of

"ultlcs ProJect Internal working documentation. Not to
reproduced or distributed outside the Multics Pro)ect.

- 1 -

be

Hultlcs. It has been arguea that a serious conseauence of any
scheme which realizes this goal ls that a process• name space can
no I onger reflect name changes in the hierarchy. Th ls argument
ls basea on a conf uslon between reference names and directory
entry names. It seems obvious that a process does not want its
name space to 'change without its consent. Changing a segment•s
name does not change a process• access to lt. A prime aavantage
of reference names is precisely thls ability to insulate a
process from name changes ln the hierarchy~ We should
dlstlngulsh reference names from airectory entry names. A
reference name ls a name we temporarily bind to a segment. A
directory entry name ls a selector of a oartlcular entry ln a
directory. We neeo directory entry names only to physically
select a branch. for the first time; after that we should be free
to cat I lt what~ver we choose. If any valid reason exists for
notlflng a process that the names on a segment or directory that
it ls using have changej, the system could signal a
name_change_on segment_x condition. This would reaulre the
addition of some sort of KST trailer mechanism to the system.
This may eventually be necessary if for no other reason than
Hui tics wll t eventually run for extremely long unlnterupted
stretches. If· a orocess were t~ stay permanently toggea ln lt
would reQulre not if !cation of on-1 lne Installations. This in
itself ls a difficult problem which I do not intend to address
here. The only point I wish to make is that the process and not
the system should control the duration of name bindings.

While there does not appear to be any intrinsic neej
for the Multics security kernel to support name space management,
1 ts removal from ring zero ls comp I lcated by .the fact that the
current Mu It lcs address space manager, which pro.vldes a
legitimate kernel function, depends on the name space manager.
Speclflcal ly, the address space manager uses the name space
manager to manage an associative memory of <alrectory pathname,
segment number> pairs. It is therefore necessary to decouple
address space management from name space management before the
tatter can be removed from ring zero.

The dependence of address space control on name space
control manifests Itself in the recursive proce~ure find_ ~hlch
the address soace manager uses to map directory pathnames into
directory segment numbers. When find_ ls invoked lt calls the
name space manager with the pathname lt ls given. If the na~e
soace manager returns a segment number the~ f lnd_ ls done.
Otherwise, flnd_ splits the pathname Into a pathname of the
oarent alrectory of the target airectory and the name of the
target directory. It then calls itself recursively to obtain a
segment number for the parent directory. Using this segment
number as a pointer to the parent directory, flna_ attempts to
lnltlate the target directory. If it suceeds it· adds the pair
(path name of target, segment number of target) to the name space
manager•s data base and returns.

- 2 -

This proposal suggests a radical change in the ring
zero acoress space manager. The essential result of thls change
ls that find_, as described above, need no longer be catted by
the address soace manager. This allows both find_ and name space
managenent to be removed from ring zero.

Currently, determining whether a process should be
permitted to lnltlate an arbitrary directory ls Quite dlff lcult
since we wish to prevent a process from detecting whether or not
a given directory exists unless lt has access to that alrectory.
This difficulty stems from the fact that the ACL of a branch and
its physical storage map reside in lts parent. Since we wish the
ACL of a branch to exercise complete control over access to that
branch, we must permit a process to Initiate all superiors of
accessible segments lncependent of access to these superiors! To
avoid this dlfficul ty, Hui tics inexorably couples the initiation
of a directory with lnltlating an inferior segment. This
inability to initiate directories directly has lead to many
needlessly complex mechanisms for manipulating directories. In
addition it has forced us always to refer to directories by
pathname. Not only is this Inefficient, but it reQulres that the
address space manager be able to call find • If we could
lnitlate directories directly then we could use segment numbers
as directory speclf iers. Address space control could then take a
segment number Instead of taking a pathname as a directory
specifier. Since address space control would no tonger need to
call find_ it could move out of ring zero along with name space
management without compromlslng the security of address space
control.

Actually, coupling ~!rectory and segment Initiation
does not solve the problem. Since a process cannot read the
access control list of a segment until its oarent ls known, the
system still must permit a process to initiate directories which
it may not have the right to know exist! By causing the
initiation of these superior directories to occur ln a single,
lndlvisable ring zero call, the system could, ln principle,
prevent security leaks. This could be accomplished by termlnatlng
those Intermediate directories which had to be lnltlated only to
find that the process had no access to the terminal segment,
before returning to the caller. Unfortunately, the current system
does not do so. This allows any process to determine the
existence of any postulated directory. Certainly one aooroach ls
to correct this flaw ln the current system. However, there seem
to be many ways of forcing such a scheme to compromise
Information. For example, suppose a process filled uo Its
aadress space intentionally and then cal led ring zero to initiate
>secret>x. If ring zero was not very careful lt might cause the
process to die due to a KST overflow if and onty lf >secret
existeo. Thls wou•d al low the existence of >secret to be inferred
by whether or not the process died.

I propose that we decouple segment and directory

- 3 -

lnitlatlon. As was noted earlier the basic problem to be solved
ls how can the system decide whether a process should be allowed
to initiate a given directory. There are essentially four
schemes for maklng this decision. The first scheme involves
recognizing that if the access control list of a directory ls to
completely express access to that directory we must make explicit
the now "hidden" permission to inltlate a directory if some
descendent of the directory is accessible to the process. The
obvious way to accomplish this is to invent a new directory
access mode called "initiate". This mode allows the named
principal to initiate a directory and to use the information lt
contains which ls relevent to accessing descendents of that
directory. This makes the decision of whether or not a process
should be al lowed to lnltlate a directory Quite slmpte. If the
orocess has non-nul I access to the olrectory then it may initiate
it. Otherwise, it may not. Unfortunately, this scheme defeats
our desire to have the access control I 1st of a segment or
directory completely express what processes may access that
segment or directory.

A second way to decide whether a process may lnltlate a
directory ls to s~arch the hierarchy subtree rooted at that
directory. If the process has non-null access to any member of
this subtree then the process shoulo be allowed to lnltlate the
directory in ouestlon. Naturally, this scheme is far too
lnefflclent to consider seriously.

A third method of aecialng whether a process may
Initiate a directory ls to reQulre non-null access to the
directory. This scheme has the disadvantage, sharea by the first
scheme discussed, of preventing the access control list of a
1lrectorv or segment from being the sole arbiter of access to
that clrectory or segment. Inorder to initiate a segment a
process would need non-nul I access to the superiors of that
segment.

I propose that we take a forth approach to the problem
of initiating directories. Insteaa of worrying about whether or
not a process has the right to initiate a directory let us allow
al I processes to initiate any directory - whether or not lt
exists! The key to this scheme ls preventing the user from
detecting any difference between an lnltlated alrectory whlch
does not exist and an initiated directory which exists but which
the user has not proven his right to know exists. How this ls to
be oone wll I be discussed later. The ring zero adaress space
manager interface resulting from this approach seems auite
natural. Ring zero no longer concerns itself with pathnames.
Insteac, lt accepts alrectory segment numbers for directory
specifiers. To allow this scheme to bootstrap itself we will
define the segment number of the parent of the root to be zero.
Initiation of segments ano directories will be controlled by
initiate_ which will accept a parameter speclfing ~hether a
segment or directory ls to be lnltlted. The rationale behlnj

- t+ -

dlstinguishlng dlrectory and segment lnltiatlon ls that a process
usually has a preconceived Idea about the type of a branch lt
wishes to lnltlate. When reality aoes not support this
preconceived idea the process ls usual f y In error. Forcing the
process to make explicit the type of branch It ls exptctlng
al lows rlng zero to immediately catch all such errors. This
prevents a careless process from bumbling along thinking all ls
well only to dle when lt attempts to access a directory as a
segment or vlce versa.

An important conseouence of not handling pathnames in
rlng zero ls that flle system finks can no longer be interpreted
ln rlng zero. This reQuires that links be readable in the outer
rlngs which raises the auestion of what, lf any, access control
shoula be placed on reading finks. The simple approach, which is
taken ln the current system, ls to make links completely public,
readable in all rings by all processes. Thls has the disadvantage
that if some process can guess the pathname of a real llnk then
it can prove the existence of the parent directories of that
link. At the other end of the spectrum we could olace access
control lists on links thereby explicitly naming those processes
which may read the link. This seems a blt too bulky. I propose
that we consider a link to be part of its containing directory,
readable only by processes having status permlsslon on that
directory. This scheme has the virtues of being simple, easy to
Implement, and plugging the information hole which uncontrolled
access to links provides in the current system. While this scheme
does make one class of currently legal uses of llnks 11 legal,
thls restriction does not seem too severe.

When initiate_ encounters a link it will return the
link and a status code which informs the outer ring procedure
that a link was encounterea. The outer ring procedure may then
try the new path specified by the link. Since this ls happening
ln an outer ring we need no longer have a standard interpretation
of links. That ls unless the function moves out of the kernel but
not out of the supervisor. If ,however, it resides ln the user
ring the process may interpret links in any manner it chooses.
Why not let llnks contain relatlve pathnames ,offsets, or even
arbitrary character strings? The important point ls that whl le
the kernel may be the keeper of links lt does not interpret them.
Naturally the restriction on link depth, which was intended to
keep ring zero from getting into trouble, vanishes.

He can use thls same mechanism of reflectlng
information out to an outer ring by setting a status code to
indicate the fact that a segment•s copy switch was set. This
allows the concept of a copy switch to move out of ring zero.
Whether it ls still handled within the supervisor but in a higher
ring or within the user•s ring depends on whether lt ls to be
considered a baslc, unchangable system function or not.
Personally I would move lt to the user ring!

- 5 -

To complete our new rlng zero address space manager
interface we must introduce a termlnate primitlve. This
prlmltive accepts three arguments. The flrst argument specifies
the segment number to be terminated. The second argument
specifies whether or not the released segment number ls to be
reserved. The final argument ls a status code. It should be
noticed that this orlmltlve may be called with either a segment
or ·c1rectorv segment number. In the case of termlnating a
directory one constraint is enforced. Since the system reQulres
that a known segment•s parent also be known, terminate will not
terminate a airectory with known lnferlors.

Since this scheme removes the important function of
name space management from rlng zero we must provide a name space
manager in the outer ring. Again it is a matter of opinion
whether name space management should be handled in the supervisor
or ln the user ring. If it resloes ln the supervisor lt cannot be
clobbered by the user -- neither can it be changed. It ls my
opinion that it should reside In the user ring. Perhaps the
system coulc also provide a secure address space m~nager which
could be used by those users not Interested ln providing their
own. I wll I assume that name space management will be moved to
the user ring. Regaraless of where It ls placed all ring zero
orlmltlves whi~h currently accept pathnames will have to become
write arounds in some outer ring. These write arounds must f lrst
call an outer ring procedure which, through approprlate calls to
the outer rlng name space manager and the new ring zero address
space primltlves, translate pathnames Into segment ·numbers. Thls
corresponds to the function now performed ln ring zero by find_.
These segment numbers may then be passed to the new rlng zero
primitives which wlll not accept pathnames.

So far everything seems rosey. This scheme seems to
remove many functions from ring zero and to simplify the ring
zero Interface In the bargain. Where ls the hitch? Do we get all
this for free? The answer is, of course, no. I have glossed over
one Important point. In order to decouple directory and segment
lnltlatlon we must be able to sucessfully cloak the physical
inltlatlon of directories from a process• detection until lt has
established Its right to know of the existence of the directory.
As was pointea out earlier, this need for aeceptlon ls lntrinslc
to the hierarchy structure arid functlonallty of the curren~
system. While this proposal makes the system•s need to deceive
the user more obvious, It ls not responsible for the reQulred
deceit.

I will cal I a directory detectable if a process has
established Its right to know that the directory exists.
Detectabllity may be establlshed either by having non-nul• access
to the alrectory or by having non-null access to its oarent or by
establishing the detectability of an inferlor of the directory.
The reason that non-null access on the parent of a branch
establishes oetectablllty ls that either status , modify or

- 0 -

append permission is sufficient to allow the process to detect if
the branch in Question actually exists. It shoula be noted that
the detectablilly of a directory ls a function of the process•
history and the ring of execution. A directory ls detectable by
a process ln rings zero through the highest ring ln which it has
detectably initlated some member of the tree rooted at that
directory. This highest detectable ring number of a directory ls
kept in lts KSTE.

We must prevent a process from detecting anv difference
between an initiated directory which does not exlst and an
initlated existing but undetectable directory. If a process
could detect a difference in these two cases then it could
establish the existence of an~ postulated path in the hierarchy.
This would constitute a clear violation of security. To
accomplish this means abandoning the current one-to-one ano onto
mapping which exists between occupied seg~ent numbers and known
segments and directories. We must allow multiple segment numbers
for the same directory. The reason for this is simple. Since
the ACL of a segment completely controls the right to inltlate
that segment there ls no need to allow a process to initiate a
segment to which it has no access. This allows us to hide the
physical existence of a segment from a process which has no right
to know if the segment exists by returning the ambiguous status
code noinfo in response to an initiate reQuest. This simple
mechanism fails for directories since we must always allow a
process to initiate an existing directory ln case it has access
to some inferior of that directory. This forces us to return more
than one segment number for a directory ln some cases in order to
orevent the process from detecting the existence of physical Iv
lnltlated but logically undetectable directories. If initiate_
returned the same segment number for two different entries then
the process could be assured that the corresponding directory
exists! This reQulres that we return a new segment number lf a
process relnitiates a directory which ls still undetectable with
a new name. In fact we will even return a new segment number if
lt tries to initiate an undetectable directory with the same name
twice. If we returned the same segment number then lnorder for
directories which do not physically exist to appear the same to
the user ring, ring zero would have to remember the name of every
phoney directory. This ls a needless complication of ring zero.

This scheme will merrily allow a process to initiate
vast trees of directories which do not exist! These directories
will be indistinguishable from real undetectable directories.
The potential multiplicity of segment numbers for directories
implies that if we compare two directory pointers and find them
to be not eQuat we cannot conclude that the obJects pointed to
are not one and the same. Since processes running outsiae the
supervisor cannot currently use segment numbers for directories,
no user code can be effected by this new restriction.· To allow
processes to Quickly determine if two segment numbers are bound
to the same obJect the system should support a function for

- 7 -

mapping a segment number into the unlaue ldentlfler of the ob)ect
it is bouna to. Naturally, thls function must return an error lf ·~
the ob}ect ls not detectable to the process. The system must
also Insure that lf the user attempts to reference through any
dlrEctory pointer in an outer ring he wl 11 get the appropriate
access violation whether our not the segment number he used
corresponded to a real or phoney directory.

The action to be taken by ring zero in response to a
reQuest to initiate a directory depends on four boolean state
variables of the target with respect to the accessing process.
These variables can be encoded as a blt string with the
lnterpretatlon of each blt given oelow.

- 8 -

il.D.ll
1000
0100
0010
0001

il.A!L~.~Ulli

m..e.an.J..o.g
target•s parent ls phoney
target detectable
t ar g e t ex l s t s
target already has KSTE

The possible actions which ring zero can take ln
reauest to initiate a directory are encoded
omitted the case wh~re the target ls a link as
alreaoy been dlscusseo.

res oonse to a
be I ow. I have

this case has

aas
ene

enc

rps

sd

sdz

assign a segment number to the olrectory
return a status code lndlcatlng that the
directory does not exist
return a status code J.ndlcatlng that the
directory either does not exist or that the
process has not established its right to know
that it exists
return segment number and a status coae
indicating that the directory was already
known
update highest aetectable ring flela of this
KSTE and its superior KSTEs to the maximum of
their current value ana the ring of execution
set highest detectable ring field to zero

This encoding allows us to compactly characterize the functioning
of initiate ln the following table. Entries in the state column
encode a possible state. Entries ln the action column encode the
actions to be taken given the state represented in the state
co I umn.

ilali
00--
010-
0110
0111
1---

~1.lml
aas,sdz,end
ene
aas,so
rps
aas,sdz,end

Two possible obJectlons I can see to this scheme are
that it can potentially waste segment numbers and !t reau!res
inspectlng the parent•s ACL. A close examination of the
preceed!ng chart indicates that there are only two ways to assign

- g -

a segment number which ls not directly connected to a olrectory.
The flrst way ls to relnitlate an undetectable directory. The
second ls to lnltiate a phoney directory. Neither of these
operations should occur ln normal operation. They could, however,
arise In an attempt to use a mlsspel led pathname. To eradicate
this problem the outer ring variant of find_ could terminate
those oirectories whlch might be phoney lf the terminal segment
could not be initiated. This would prevent a habitual misspeller
from ctutterlng up his address space. It seems that with this
addition a process must go out of Its way lnorder to clutter up
its address space. If that ls what lt wants fine! Even if a
orocess wastes at I its segment numbers it can recover by
terminating no longer needed segm~nt numbers. The apparent
lnefflcency of Inspecting the ACL of the parent of a branch
during initiation of that branch ls not serious since lt ls
normally not reQuired. Only when a process has null access to a
branch and has not prevlous.y established detectability for that
branch ls lt necessary to inspect the ACL of the parent.

In the olo KST scheme, the names stored ·with each KSTE
provided a means of telling what rings stil I had the associated
segment or alrectory inltlateo. Since these names will no longer
be keot In the KST some new mechanism must be Invented to supply
this information. This ls easily accomplished by adding an eight
blt flela, cat led rings, to each KSTE. If the 1 th bit< D
origined) ln this field ls on then the corresponding ring has the
segment or directory initiated. Thls allows rlng zero to detect
when a segment or clrectory may be physically terminateo, thereby
preventing one ring from terminating a segment or directory that
ls being used by another ring.

It should be carefully noted that the termlnatlon
primitive terminates a segment number. Only lf the last segment
number for a alrectory ls belng terminated and its Inferior count
is zero will lt be physically terminated! We can use the same
method to describe the action of the terminate primitive as was
useo to oescrlbe the action of the initiate primitive.

- 10 -

il.Ali
10 0
010
001

rr
tf
tr

state ~.c1li

mua.L.og
KSTE has inferlors known

KSTE known in other rlngs
reserve reQuested

reset this rlng•s known bit
thread KSTE onto free chain
threaa KSTE onto reservea chain

akl!~n o1 •. terminAU.-D.J:J..ml.t l ve

ilali
00 0
001
-1-
1--

all.i..20
rr,tf
rr,tr
rr
rr

In summary, this proposal cal ts for the complete
removal of name space management from ring zero. As a result the
concepts of pathnam£ and file system links also depart ring zero.
In the process of removing name space management from rlng zero,
I have reorganlzeo and Improved the rlng zero Interface and
address space manager. The KST has been simplified and contains
only two components: a KSTE array, and a UID hash table. The
contents of each KSTE and thelr ma) or ~ses are summarlzeJ below.

K.s.If. tl e I g

for ward pol nter,
backward pointer

unloue ldentif ler

Interior count

entry pointer

directory switch

Used to thread KSTE onto free or
hash class list as reQulred.

Unchanged (a ohoney directory will
have a uld = o>.

Unchanged.

A packed pointer to the dlrectorv
entry of this branch.

Unchanged.

transparent modif lcatlon switch,
transparent usage switch Unchanged.

- 11 -

rings An eight blt fleld contalning one
blt per ring. Whenever rlng i has
this segment number lnltlated then
bit 1 of this f lefa ls on.

highest detectable rlng A number which speclfles the
highest ring in which this process
has estabtlshed its right to know
of the existence of this alrectory.

The proposed rlng zero segment number manager Interface ls as
f o t I ows.

!nltiatE (dlrsegno,ename,dirsw,rsw,llnk,segno,code)

dlrsegno segment number of the parent (lnput>
e name en t r y name o f ta r ge t (in put)
dirsw directory switch(lnput)
rsw reserved segment swltch(lnput)
link link(output)
segno segment number of target(lf rsw then input
cooe status code<output>

terminate_Csegno,rsw,code)

segno
rsw
code

segment number to be termlnated(lnput)
see above
see above

To help cfarlfy the ldeas presentea in this proposal
let us consloer the following senario ln which a process trys to
initiate the segment >a>b>c>d>e>f in ring four. We will assume
that directory e and segment f do not exist and that the process
has no permission on a, b or d, and append permission on c !n
rings zero through four. To slmpllfy matters we wil I Ignore the
existence of the outer ring name space manager and we wil I assume
that we are operating in a virgin environment. What follows ls
how the outer ring flno_ would proceed in this caseo

step O

steo 1

c a I I l n i t i at e _ < O , '"" , 1 , O , I l n k , s e gn o _ o f _ r o o t , co de >

The root olrectory will be Initiated, its detectble
field in the KSTE will be set to four, and a status
code of zero wil I be returned.

ca 11
initiate_(segno_of_root,"a .. ,1,o,11nk,segno_of_a,code)

The directory wil I be initiated, its oetectable field
ln the KSTE will be set to four, and a status code of
zero wit I be returned.

- 12 -

step 2

step 3

step 4

step S

step 6

step 7

call lnltlate_(segno_of_a,"b",1,o,1ink,segno_of_b,code)

The directory wlll be Initiated , lts oetectable field
In the KSTE will be set to zero, and the status code
nolnfo wlll be returned.

call lnltiate_(segno_of_b,"c",1,0,tlnk,segno_of_c,code)

The directory wlll be Initiated, its detectable field
in the KSTE will be set to four, and a zero status code
will be returned. In addition this initiation
establishes the process• right to know of the existence
of superior alrectorles at least in rings zero through
four. This ls reflected, in this case, by setting the
detectable fleld in the KSTE of >a>b to four.

call inltlate_(segno_of_c,"d",1,o,1ink,segno_of_d,code)

The directory d wlll be initiated, Its detectable fleld
ln the KSTE will be set to four, ana a zero status cooe
wlll be returned.

call inltlate_(segno_of_d,"e",1,o,11nk,segno_of_e,code)

The non exlstant directory e will be assigned a KSTE
whlch wll I be marked as phoney and the status code
nolnfo wlll be returned.

call lnltlate_(segno_of_e,"f",o,o,11nk,segno_of_f,code>

No KSTE will be assigned and the status code nolnfo
will be returned.

call termlnate_(segno_of_e,o,code)

The segment number assigned toe wll I be released on
the grounds that e may really not exist.

The address space manager proposed ln this MTB has been
written and ls many times simpler and smaller than the current
ring zero adaress space manager. In some modules the reduction
in slze ls on the order of a factor of ten! In addition, a
version of hardcore which preserves the current rlng zero
interface ls being aebuggea which is built on this new aoaress
space manager.

- 13 -

Aef.E~OIX A

The maln data base for the current rlng zero address
ano name space manager ls the Known ~egment Iable. The KST ls a
per-process, rlng zero segment. Loglcally it contalns four ltems.
Flrst, lt contains an array of KST Entries. KSTEs are indexed by
segment number and contain al I per-process lnformatlon necessary
for the proper care and feeding of the segment or dlrectory
associated with the indexing segment number. Second, lt contalns
a hash coded mapplng from the space of UniQue lJlentlfiers onto
the space of segment numbers, or eQuivalently the space of KSTEs.
This mapping provides the means of locating the KSTE of an
already initiated segment should lt subseQuently be initiated by
a different name. Third, it contalns a hash codeo mapping from
the soace of names onto the space of segment numbers. This
association ls mainly of use to the dynamic tlnklng mechanism.
Forth, it provides a repository for per-ring search rules. Thls
later KST function wilt be considered no further as the user-ring
dynamic linker removes this Information from the KST. The current
contents of a KSTE and their maJor usages are given ln the
fol lowing table.

- 1'+ -

forward pointer.
backward pointer

uniQue identifier

name pointer

inferior count

parent segment number

offset of branch

alrectory switch

transparent modification,
transoarent usage switch

Used to chain the KSTE onto a llst
of free or re served KSTEs as
required.

Used to validate UID hash searches
and to properly identify the
corresponding branch after an
on-line salvage.

Used to chain together a list of
the reference names associated with
this segment or directory and the
rings in which they are known.

Used to prevent a directory from
being terminated while it has known
sons. If this were not done
segment faults would fail!

Used at segment fault time to
locate this branch•s parent. It
also is used to translate segment
numbers Into pathnames.

Used to locate the branch within
the parent dir~ctory.

Used to special case access setting
for directories at segment fault
time.

Used to control whether this
process• usage and/or modification
of thls segment or alrectorv shoulj
be transparent to the system.

- 15 -

