MULTICS TECHNICAL BULLETIN MTB - 150

To: Distribution
From: R F Mabee
Date: 11726/ 74

Subject: A Proposal for Processes to be Used in the Supervisor

summary

This memo proposes that a faclllity to provide special
processes for use within the hardcore supervisor be made part of
the standard Multics system,

The introduction shows why a speclial class of processes
should be avallable to the supervisor, and how these processes

must differ from the standard processes. The next section
describes the actual implementation at a moderate level of
detail. The 1last section presents a scheme for using such a

process for the TTY Interrupt handler.
A glossary of jargon terms is provided, as Appendix V.

This facility has been Iimplemented and tested 1in an
experimental version of the Multics system. Work Is underway by
several people to make use of these processes to simplify certain
areas of the hardcore supervisor.

ntrodugtion

Multics currently makes no use whatever of multiprogramming
within the supervisor. This results In highly convoluted coding
in many parts of the system where a module running In any one
process trles to mulitiplex itself so part of its algorithm seems
to be executed asynchronously., For example, the TTY Device
Control Module (DCM) simulates a process for each terminal, with
its own scheduler and undocumented synchronization facllity. In
many other cases, something is done In-1ine that doesn't really
need to be done synchronously. For example, in the page fault
path the faulting process currently checks the paging device to
see If |t Is getting too full, and iIf so moves some pages to
disk. This causes an unnecessary delay for the faulting process,

and requires the page-moving algorithm to execute in a severely

Multics Project internal working documentation. Not to be
reproduced or distributed outside the Multics Project.

1iited environment (fault-side, interrupts masked, can't wait

for 1/0 or 1locks). For another example, some {/0 interrupt
handlers currently execute long programs (taking up to two CPU
seconds) {in the same severely limited environment, requiring

complicated (undocumented) conventions for co-operation with the
processes that requested the [/0,

One can view the page-moving program or Interrupt handler as
a special kind of process that has absolute priority (it alwavys
runs to completion) but must run in a limited environment. By
locks or by masking, the programs ensure a single sequential flow
of control, as by:

check_paging_device: procedure ();
set local lock;
if should_run then run;
unlock local lock;
return;
end;

A program like this can be made into a real process. The
preceding fragment might become:

paging_device_process: procedure ();
while true do;
wait for wakeup;
if should_run then run;
end;
end;

and a call to check_pagling_device would become a call to send a
wakeup,

in summary, there are three reasons why a program may need
none or more dedicated processes: first, the algorithm may require
a process per device, as In the TTY DCM; second, 1t mav he
inconvenient to perform some complex operation in the limited
environment in which one happens to discover that it needs to he
done; and third, 1t may be Tnefficient to perform the operation
in the critical path in which one happens to discover that it
needs to be done. The last point is meant to include the case of
a program that requires more CPU time than one process can get,
in order to scale up its performance in a very large system.

These problems are shared by programs 1In all rings, both
user programs and system programs; however, | shall attempt a
solution only for the hardcore supervisor (ring zero). Let us
assume that processes are readlily available in ring zero for any
purpose, and examine some likely applications to get a feel for
the properties such processes must have. This cholce of examples
does affect the resulting design.

The handler for any external interrupt could run in a

process of its own, and the Interrupt would merely cause a
wakeup. Where Interrupts are multipltexed (as by the 10M) each
channel's handler could have a process. Such a process would he
started when the 1/0 device (or whatever) was attached, and would
destroy itself when the device was detached. lts program should
be specified when it is created; If the program is shared (e.g.
printer driver shared by all printer processes) then an argument
to the program should specify which device to run. This leads to
the primitive

FORK (procedure, argument)

which creates a new process that starts with the call
procedure (argument)

and the primitive

DESTROY_ME ()

which stops and obliterates the process which calls it. Clearly
the handler needs to block while awaiting the next interrupt, so
a full set of IPC primitives should be available to it. The

program should be allowed to use the virtual memory (take page
faults) so it can run in a more normal environment, and avold the
expense of wired code and data. The scheduler should provide as
fast response as the 1/0 device may require.

Another application is in resource managers to remove pages
from core or from the paging device, to remove segments from the
AST, to remove processes from the eligible 1ist or from the APT,
etc. Such processes must be created very early in
initialization, when the function they help implement is not vet
usable by FORK. Thus page faults are not allowed 1in <creating,
scheduling, or running a page control process.

These examples show processes that stil)l run in a somewhat
limited environment: they must not use the facility that they are
implementing, and must be trusted by the supervisor because they
must execute entirely in ring zero., Finally, using processes in
any application has to be competitive in '"cost" so that no
programmer has to choose between readability and efficlency.

An ordinary process of the sort currently created for each
user could meet most of these requirements, with sulitable changes
to keep it in ring zero. However, it s cumbersome, and has
features which cannot even be infitialized by the creating process
until system initialization is nearly complete -- for example, it
has a per-process directory (PDIR) which clearly cannot be
created until page control, segment control, and the file system
are all in operation. A simpler type of process rust be
introduced for use inside the supervisor. Let us dub the new
type H-process and the old (ordinary) type M-process, for this

discusslon. As a design goal, | choose to make the H=-process as
simple as is consistent with providing a normal program-execution
environment. This should also minimize the '"cost'" of the
H-process. The approach taken 1Is to strip away all costly
features that don't seem to be needed by all processes, By and
large, the H=-process could regain a feature by explicitly
initializing it.

First, an H-process can run only in ring zero; thus we can
eliminate the stack array used by the ring-crossing hardware,
The programs it can run are totally pre-linked; the linker is
unused and may be disabled, The address space could only he
extended for data segments and only by explicit calls. Here is a
very definite design choice: | choose to disallow this extension
nf the address space, in consequence of which | discard the KST,
This means that the process can never take a segment fault; it
can't use the file system; It can address non-hardcore segments
only through explicit <calis on segment control. Now the PDIR
can't be touched, so discard it; it normally contains a segment
called PIT by which the system passes initial arguments to a
M-process -=- discard this too, using a few words in the PDS for
the (greatly reduced) 1Initial conditions. At this point, onily
two per-process segments are left, PDS and DSEG, without which
the H-process could not run at all. We have reduced the cost of
the H-process to four pages + two ASTE's; Appendix |l describes a
way to reduce the cost to one page + one ASTE.

tlotice that | have removed features by removing data bases.
The features that are left, such as inter-process
synchronization, paged memory, etc. seem to have very 1little
incremental (per=process) cost, perhaps because their data bases
and code are globatl.

An H-process can take page faults, service interrupts, and

compete viith M-processes in the scheduler's queues. The
restrictions on it are less severe than those on fault-side or
interrupt side programs which it might replace. it can totally

avoid taking page faults (e.g. for a page control process) by
executing only In wired-down code, and can therefore be used as
deep In hardcore as requlred. However, it Is poorly suited to
the outer layers of the supervisor since it can't readily use the
file system, and therefore can't interface to user processes.
M=processes should be made available for outer-level applications
in the supervisor (including ring one), and for user
applications, but that is outside the scope of this project.

Details of oposed | n i

Multiprogramming 1is provided by pxss, using tc_data as the
principal data base, It must be turned on by execrntion of
tc_init before it will function normally; however, nxssfwait and
related entries are simulated during inftialization by looping In
wired_fin. tc_init is currently invoked very late in
initialization, so that page control (as a test case) cannot use
multiprogramming. | propose to call tc_init early in Collection
One, before page control is initialized. in this environment,
all segments are unpaged and in core. This state is called the
high-water mark because the core requirement is at its maximum.

tc_init contalns two steps: first, initialize all the
threaded 1lists and other data in tc_data; second, create the
initializer process and all idle processes. The first step does
not involve any references to data or procedires not present in
Collection One, and therefore causes no problems, The second
step starts any extra CPU's, and creates a PRDS for each such
CPU, as well as a PDS and DSEG for each 1idle Dprocess. Let us
assume that the extra CPU's are not started until late in
initialization (to avoid two-cpu hugs); the remaining problem 1is
the «creation of two new segments for the single idle process.
Any additional processes which may be created (e.g. for oparge
control) will also require two new segments. The initializer
process gets to keep the original PDS and DSEG.

Other conditions to be met in order for pxss to nperform
properly: those faults and interrupts used by pxss must be set
up; & number of routines and data segments must be moved into
Collection One; FORK and DESTROY_ME subroutines must be provided.
However, the only problems worth further discussion arise from
the requirement for a segment-creating primitive avalilable to

process creation, which must be able to work even before paging
is available,

Segments (for PDS or DSEG) could be created unpaged
initially, 1like segments read in during Collectinn One; however,
update_sst_pll, which makes segments paged later on, wottld have
difficulty finding the new segments. Any time after init_sst is
run (which is very early) a paged segment can be created, taking
a free ASTE and free page frames from appropriate lists.
Existing page control entries could be used to create and wire

pages; this approach was taken in the first experiments.
However, these entries (e.g. wire_wait) ought not to be invoked
when page control is not vet initialized -- if, for example, no

free page existed, they might reference the FSDCT before it s
addressable.

A new subroutine, GETSEG, will be written, to be used during

both initialization and normal operation. It will get an
unthreaded ASTE and (if during initialization) will assign page
frames, It will not wire the pages; that remains the caller's

responsibility.

It is essential that there bhe sufficient core left when
Multics 1is at the high-water mark for several tasks to be
created. This requirement Is about four pages per task. The
high-water mark is already very close to the 128K minimum size of
Multics main memory, but testing can proceed using a 256K system,
Appendix | describes one way to reduce the high-water mark, by
removing segments from Collection One,

Of course, wiring down more pages of core will of necessity
degrade system performance. Most PDS's and DSEG's can be
unloaded by traffic_control, but at 1least some hardcore tasks
won't allow that. It is useful to reduce the memory requirements
of H-processes to reduce the impact on system performance and on
the high-water mark; Appendix i describes a scheme for
shrinking the per-process segments, Each H-process also costs
two small ASTE's for its private segments, and one APTE,
amounting to 64 words of core. Since the AST and APT can readily
be made larger, this <cost 1is important only for appllications
requiring hundreds of H-processes.

Sorie increase in overhead of traffic control should be
expected, due to more frequent interactlons by H-processes. This
loss of throughput can be countered by a better implementation of
the process-switcher. The only other performance degradation to
be expected is an increase in response time when Interrupt-side
programs are moved into supervisor tasks, and this would probably
not affect system throughput. On the other hand, system
throughput may be Improved by moving certain housekeeping
functions out of critical paths and by making use of multiple
CPU's in bottleneck areas.

An H-process may demand very fast response, which should bhe
controlled by a bpriority attribute used by pxss. Such an
improvement is not part of this proposal, since acceptable
performance can be achieved by using a different WAIT entry that
suarantees fast response. Nevertheless, it has to be done
sometime, Some scheduling requirements may not be adequately
expressable by static priorities. This Is an example of a
limitation 1In pxss that may prevent optimum performance; such
probleins become more complex as nmore processes co-operate on
particular computations,

D)

Moving TTY DIM interrupt side processing into an H-process

Currently the Datanet=-355 front-end processor returns status
events by sending Multics a particular interrupt. The handler
for this interrupt, dn355%interrupt, examines a mailbhox at
location 1400 to find the status word, performing an involved
inter-computer ritual. For each status word 1t calls ttv_inter.
Every three seconds pxss <calls ttv_interSnoll, in case there
aren't enough Interrupts to drive the program. There 1is an
interlock between tty_Inter and ttv_inter$pnll sno both are not
active at once.

it is possible to restructure this as follnws: The handler
for the 355 interrupt, tty wiredd8interrunt, merely sends a
wakeup. A dedicated H-process, executing dn355¢ttv_process,
receives the wakeup, then performs the inter-computer ritual and
calls tty_inter as required. Every three seconds onxss calls
tty_wired$poll, which sends the same waleup and sets a flar. | f
dn3558tty_process finds the flag set, it <calls tty_inter$poll.
dn3558tty_process goes blocked when it runs out of worl to dn,

This scheme permits dn355, tty_inter, their utlility modules,
and two data bases to be unwired, releasings about ten pases nf
core, No further change Is required except to fix a lncking
strategy that only works when interrupts and page faults are not
allowed. A1l other Interrupt handlers get better respnnse since
they no longer have to walt while tty_inter runs. (ttv_inter
takes up to two seconds; to make matters worse, the 355 s
assigned the highest priority interrupt cell.,)

On the other hand, each 355 interrupt might pare in all ten
of the pages we just unwired, nlus two pages of stack, The extra
core is really available only when 355 traffic 1is 1light.
Furthermore, the TTY DIM will respond more slowly to interrunts,
since the scheduler imposes a considerable delay. This 1is a
serious problem since the TTY DIM is antimized for 11570-type
terminals that require program intervention to go from writing to
reading; the program ignores characters tvned in bhefore it
changes 1its 1internal state from writing to reading even if nn
external action was required. The user with a non-locking
keybonard may begin typing befnre the TTY DIM begins listenine,
even in the current system.

This problem can be solved without delving into the 355
code: the write DCW list created by tty_inter could chain into
the read DCW 11st instead of terminating. This would result in a
noticeable improvement even over the current system and make TTY
process response relatively unimportant.

The restructuring (but not the DC! list chaining) has heen
done and tested in an experimental system, wusing the improved
WAIT' (see Appendix I111). Response time was found to average
.2%.2 seconds worse than that of the standard svstem, The

experiment should be performed again to refine this measurement. -

Appendix |
Reduction of the high~-water mark

Currently, Collection One would nearly fil1l a 128K system,
leaving Insufficient room to create an H-process., Fortunately,
there 1s an abundance of code and data that is not needed 1In
Collection One, but 1is loaded at that time for historical
reasons. The following table indicates which segments can be
easily rmoved intec Collection Two, at some cost in page breakarge
for those which are currently kent unpasged. nf course,
segment__loader would be modified to implement the '"wired"
attribute for Collection Two.

Name Size Problems if moved to Collection Two
dn355_data 1050

dn355 2136 scs_init copies address of Sinter,
dn355_util 16

dn355_init 422 Called ton early by init_cnllections.
tty_ctl 2694

tty_free 6unN

tty_inter 3604 pxss calls $poll.

gioc_stat 174

printer_status 264

tdem_status Ly pxss calls $poll.,

imp_status_wired 26

pll_operators 2714 Fixed in standard system.
disk_traffic_data 1024 Touched by device_controlsinit.
temp_copyseg_1 1024

get_disk_meters 246

restart_fault 202 Stored into by iInitialize_faults.
return_to_ring_zero_ 4L8 Stored into by initialize_faults.
DST 762 pxss uses DST to find end of ITT!
total words 17492

For the immediate future my core needs can be met by these
simple changes. If it should become necessary, | can remove
another 11K of wired !/0 buffers that are 1naded with Collection
One in order to remain unpaged. These could be loaded later if
either unpaged segments could be 1Inaded in Conllection Two or
DCM's were modified to allow discontiguous buffers. Another 8K
is redundant, since the combined and uncombined linkage segments
both sit in core when at the high-water mark, 1In all, up to 36K
can be recovered as needed, with varyving effort. This allows
modest proliferation of hardcore tasks wlthout undue difficulty.
Since the currently available development system has 256K of main
memory, the high-water mark is not an obstacle to developrment.

Appendix |1 ﬂ
Reduction of memory requirements for H-processes

The additional memory for each H-process is required for the
per-process segments PDS (about three pages) and NSEG (one parge).
The PDS contains 1400 words of fixed-format data, most of which
Is of no use to an H-process, plus the execution stack which may
be less than a page for a simple-enough task. The bulk of this
data can be moved to a new per-process segment, process_info,
which need not even exist for an H-process. 0f course, this
costs one small ASTE per M-process, reducing the pasging pool by
one page in all., The PDS will contaln a minimum of fixed data
(about 200 words), 1leaving enough room in the first page for a
minimal execution stack. The following table lists the {tems of
the current PDS that an H-process will keep 1in its stack.
(Another 30 words will be added for new features.)

lten name Length

stack header 48
last_sp

processid (process_id)
lock_id

nrocess_group_1id
validation_level

apt_ntr

arsl, arg?, arg3, argh
time_1, time_2, time_v_temp
post_purged, pc_call, wakeup_flag
delayed_stop, delayed_timer
pre_emnpt_pending
interaction_switcn
virtual_time_at_elligibility
quota_inhib

hase_addr_reg, pll_machine
fim_data, page_fault_data
virtual_delta, cpu_time
nurmber_of_pages_in_use
page_waits, pd_page_faults
dstep

ips_pending

ips_mask

auto_mask

alarm_ring

ring_alarm_val

trace (truncated)

(o)
NN b O NN Y0 N 0

[
) 00 CO DO k= N

totail 235

Currently, references to the PDS are prelinked, and
therefore corresponding data items must apnear in the same ,4\
location in the PNDS in each process. it Is sufficient for our

- 10 -

goals to continue wusing this fixed data layout for the PDS and

PROCESS-INFO, but 1t may later prove too inflexible, An
H-process should bhe able to grow by adding to itself some of the
features normally associated only with an M-process. In order to

avoid reserving large blocks of data In all processes' stacks for
features that only some use, we could reserve a relatively small
block of pointers, accessed by name, that would point to the data
iteris allocated in whatever segment Is most appropriate. The
Network software already uses such a scheme -- 1ts only cell in
the PDS contains an index into a system-wide table.

The DSEG is currently a paged segment of which only about
256 words are used for hardcore segments. Clearly it can be made
an unpaged segment if core control s made able to handle such;
alternatively, page size could be reduced to 256. But closer
examination of the DSEG suggests an even more fascinating
solution: the only SDW's for which our hardcore DSEG differs
from the template are those for the PDS, PRDS, the DSEG itself,
and several abs-segs. This suggests that we can save cnre (at
the expense of simplicity) by fabricating the DSEG whenever the
process Is to be run. The SDW for the PDS can be saved in the
APTE; the PRDS SDW is already being patched every time an LDBR is
done; the DSEG SDW would not be changed since 1t would always
point to the scratch DSEG it lies in; and the abs-seg SNW's can
be saved in the PDS. This can be thougsht of as sharlng the
current idle process DSEG with other H-processes,.

Combining these tricks can reduce the per=-process memory
requirements by almost 75% for the hardcore-only tasks.

Both of these changes have been made and tested in an
experimental system.

Appendix |11
Miscellaneous changes required hy this system

A. Descriptor segment creation.

A DSEG is normally created by pIm$hc, which in the current
system copies the hardcore-segment-numbher portion of whatever
DSEG it is running with. (template_dseg 1Is still bheing
initiallzed but is never used,) pim has to be moved into
Collection One, modified to run before paging is avallable, and
modified to use the SLT to determine which SDW's to cony.

If pImShc is invoked early in Collection One, it produces a
DSEG with the segments unpaged. A routine, set_sdw_in_all_dsergs,
has to be provided, to be called by update_sst_pil whenever it
changes an SDW in the initia'izer's DSEG with the intention that
it affect all address spaces. segment_loader, Initialize_dims,
and delete_segs can use set_sdw_in_all_dsegs too.

One field in a DBR value contains a segment number for an
array of stack .segments, for use in automatic ring crossings.
Fortunately an H-process doesn't need this field. 1its value is
not determined until all segments are loaded, at which time
init_sys_var fills it in for the initializer; init_sys_var has to
be changed to set it In the APTE and in the register.

These changes have been made and tested,

B, PNDS creation.

build_template_pds copies a stack header and a stack frame
into template_pds; in so doing it messes up the initializer's
stack. This module 1s eliminated, since the header can bhe merged
with the template by those programs that create new PDS's,
build_template_pds - very cutely initializes the stack such that a
"return'" will transfer control to init_proc, the normal M-process
starting point. However, pxss has to observe that it is running
a process for the first time in order to do the proper return,
The requirement that an H-process start in an arbitrary procedure
forces a change: PXSS executes "eall stack_08first_proc
(stack_0sfirst_arg)'" in the special case instead of "return'". 1t
turns out that init_processor receives control in this way when
it starts the bootload CPlU, since to pxss the Initializer process
looks 1ike it has never run before.

bootstrap? can't initialize the pointer to signal_ in the
stack header (although the comment says it does) so
initialize_faults$fault_init_two does 1t later. Ry moving
signal_ into Collection One, this can be cleaned up.

These changes have been made and tested.

- 12 -

C. Control flags.

Assorted flags have to he added to the APTE:
.hardcore_process, .use_hardcore_dsegz, and .always_loaded, | f
.use_hardcore_dseg then the .dbr cell is really an SDW for the
PDS. O0Other flags have to be added to wired_hardcore_data:
$page_fault_works, $segment_fault_works, and $init_segs_gone.

D. Certain deficiencies in the scheduler.

One little known property of the current scheduler is that a
process cannot lose its absolute priority (eligibility) unless it
either takes a timer-runout/pre-empt interrupt while running in
an outer ring or explicitly calls BLOCK, Since nart of BLOCK 1Is
outside of ring zero and therefore not availahle to an H-process,
and since interrupts are masked while running in ring zero, an
H-process will keep its eligibility even if it uses WAIT, the
normal ring=-zero synchronization method, and will attain the
highest possible priority. (If any process loops in ring zero,
it will tie up the CPU forever.)

Allowing loss of eligibility by pre-emption in ring zero has
other 1implications, requiring that eligibility be given up by
WAIT because of assumptions embedded In all hardcore locking
strategies, etc, | performed some experiments in this direction,
concluding that even if | could find all the ramifications of
such a change, includlng re-tuning the system, the change would
have to be made and defended separately. This area remains open
to anyone wth a particular Interest in performance effects.

For the H-process running the TTY DCM, WAIT was an
unsatisfactory synchronization primitive, as It left the process
loaded and eligible indefinitely. 1 could have introduced a
slightly different version, WAIT_and_do_what_Il_want, but instead
| adapted a different fundamental mechanism originated by David

Reed, that has been advocated as a primitive capable of
implementing both WAIT and BLOCK. Reed will soon publish an RFC
describing his model, SO | shall merely describe the

Implementation.

A shared memory cell is used to pass the information as to
whether or not an event has occurred, This cell Is provided by
the caller of WAIT' or NOTIFY', which is not inconvenient when a
shared data base exists anyway, and which avoids the allocation
problems of WAIT and BLOCK. The cell changes to a new state (in
fact it is incremented) every time the event occurs (every time
NOTIFY' is called). WAIT' is given both the cell and the state
it had when the caller first decided to wait; it returns whenever
the cell contains some newer state. A list of processes waiting
in this way is needed, so NOTIFY' can awaken them. In my
implementation, the cell must be wired (since it is examined
under the APT lock) and at the same address in every orncess

- 13 -

using it (since the address is used as a readiiv-available unique
identifer).

MOTIFY' always awards hisgh priority to an awakened process
to improve response to interactions, Since the averase delay for
the process to become eligible in the normal way is three seconds

(unless system load is very light), | had to make HNOTIFY' award
eligibility as well, The nprocess will run as socn as the
lowest-priority running process leaves ring zero and gets

pre-enipted,

For best response, the pre-emnt should be allowed even in
ring zero., Most of the problems with pre-emption in ring zero
can be avoided if the pre-empt doesn't take away eligibility, but
merely causes the highest-priority process to resgain the CP!,
This scheme should be tried as it should make TTY nrocess
response adequate for emulat:on of interrupt-side behavior.

The response time should be determined by a opriority
parameter associated with the process rather than by which WAIT
the process calls. Future applications of H=processes will male
such a feature in pxss rmore desirable,

The YUAIT' primitives have been tested in an exnerimental
system,

- 1“ -

.

Appendix 1V
Calling sequences of new routines

A. FORK
Usage:

declare create_supervisor_task entry (char (%), entrv (pointer),
pointer, bit (36), bit (3R));

call create_supervisor_task (group_id, F, arg_nointer,
return_proc_id, return_code);

1) group_id is process group name of new process.
(I nput)
2) F is starting procedure of new proncess,
(I nput)
3) arg_polinter Is passed to F in the new nrocess. (Innnt)
k) return_proc_id identiflies the new process. (Output)
5) return_code is zero If no error occurred. (Output)

This Interface 1is Intended to remain changeabhle so that
additional features can be put in, such as an indication that the
tricks described in Appendix Il are to bhe used,.

This entry creates an H-process and starts it runnings. The
call to F in the new process is equivalent to:

call F (arg_pointer);

F rmust not be an internal procedure. The data pointed to by
arg_pointer must not Jlie in a per-process segment (such as the
stack).

Entrv: create_supervisor_task$make_pnrocess

declare create_supervisor_taskSmake_process entry (1 1like sdw,
char (*), bit (36), pointer, bit (36));

call create_supervisor_taskS8make_process (pds_sdw, group_id,

return_proc_id, return_ant_otr, return_code);

1) pds_sdw is an SDW describing the PDS to be used by
the new process., (lnput)

2) group_id as above. (lnput)
3) return_proc_id as above, except right half must be set by

caller. (lnput/OQutput)

- 15 =

L) return_apt_ptr points to the newly created APT entrv.

(Output)
5) return_code as above. (Output)
This entry provides a process in the stopped state, it 1is

used in creating the idle process.

B. DESTROY_ME

This entry does not yet exist as it Is not needed,

C. GETSEG

Usage:

decliare get_segment entry (pointer, fixed binary,
1 1ike sdw aligned, bit (36)):
call get_segment (template, length, return_sdw, return_code);

1) template is a pointer containing a segment number
which can be used to look up segment
attributes in the SLT, (!nput)

2) length is the number of words which must be created,
(Input)

3) return_sdw is an SDW which describes this segment.
(Qutput)

h) return_code is zero iff the operation succeeded.
(Dutput)

For example, a PDS for a new process may be created bv:

call get_segment (addr (pds$), pdsScony_lensth, pds_sdw, code);

D. WAIT' and HNOTIFY'

Entrv: pxssSwait_on_counter

declare pxss$wait_on_counter entry (fixed binary, fixed binary,
fixed binarv (71));

call pxssSwait_on_counter (event_cell, last_state, timeout);

1) event_cell is the shared state cell. (lnput)

2) last_state is a saved copy of the event cell. (lnput)

- 16 -

"D

3) timeout Is an upper bound on wait time, (input)

Notes

timeout s not presently implemented: it

is a placeholder.
This entry is normally used as follows:

L: last_state = event_cell;
if should_run then run;

else call pxss$wait_on_counter (event_cell, last_state,

3eh);
goto L;

Entry: pxss$step_counter

declare pxss$step_counter entry (fixed binary);
call pxss$step_counter (event_cell);

1) event_cell as above. (lnput/Output)

This entry is used to record the occurrence nf an event.

Appendix V
Jargon explained

PDS stands for Process Data Segment. It contains data
blocks that once were in three distinct per-process segments
(pds, pdf, and process_info), Some of the data must remain in
core, so the first page is wired as long as the process is
eligible. The data items are referenced through 1inks (e.g.
declare pds$apt_ptr external;) so they must have the same virtual
address in all processes, although the data is per-process. This
is accomplished by using the same segment number in each process
for the per-process segment, and by having the same data Tlavout
within each segment. The PDS also serves as executlon stack for
ring zero for both call-side and fault-side programs. So that
the ring-crossing hardware will work, the PDS iIs also reachable
by another segment number which is the first in a group of eight
reserved for stacks,.

PRDS stands for Processor Data Segment. There is one PRDS
for each CPU in the system. it contains a fairly small data
block and an exectution stack for those faults and interrupts that
mMus t not cause further faults, e.g. page faults and /0
interrupts. The entire PRDS Is wired down.

DSEG stands for Descriptor Segment. This is used by the
hardware to map segment numbers into segments: it defines the
address space. it may be thought of as a set of hardware
registers. The flrst page of the DSEG is temp-wired whenever the
process is loaded.

The machine instructlion LDBR is used to swltch the CPU to a
new DSEG described by a given DBR (Descriptor Base Register)
value.

SDW stands for Segment Descriptor Word. Fach entry in the
DSEG is an SDW for one segment., The SDW merely points to the
page table for the segment, or specifies that a segment fauit is
to be caused,

An abs-seg is a reserved hardcore segment number for which a
null SDW is present most of the time, Supervisor programs
fabricate an SDW, stick It in the DSEG, reference the segment for
a while, then <clear the DSEG slot. This is useful in getting
around such problems as addressing directories not knowm in this
address space.

ASTE stands for Actlve Segment Table Entry. The primary
content of the ASTE is a page table. The AST Is therefore the
data Dblock containing all page tables, and is part of the wired
segment sst.

APTE stands for Active Process Table Entry. The APTE 1is
forty-eight words long, and contains alt the data about a

- 18 -

L]

particular process needed by traffic control. The APT s
therefore the data block containing an APTE for each process, and
is allocated in the wired segment tc_data.

pxss stands for Process Exchange Switch Stack, combining the
names of two older traffic control modules. Currently pxss
contains the bulk of trafflc control.

Eligible processes are those to which enough core has been
committed for them to run. Eligibility can be revoked after one
cpu second if the process Is running outside ring zero; otherwise
it can only be lost by an explicit call to BLOCK. Eligibility
entitles the holder to absolute pre-emptive priority over any
process which subsequently becomes eligibte,

To load a process, the first pages of PDS and DSEG are read
into core and temp~-wired. A process will be loaded (by pxss) as
soon as possible after it Is awarded eligibility, and unloaded
when it loses elligibility.

KST stands for Known Segment Table. It is primarily used at
segment-fault time to find a segment that must be made active.
Hardcore segments are not in the KST as they are always active.

PDIR stands for Process Directory. This s a per-process
directory in which an M=-process may create 1Its temporary
segments. '

P!IT stands for Process Initialization Table. It is not used
by hardcore. The outer ring programs of an M-process <can find
their process-creation parameters in this segment.

DST stands for Device Signal Table. This is a data block
used by some /0 interfaces, and 1is currently allocated in
tc_data immediately after the ITT, although it has nothing to do
with traffic control.

ITT stands for interprocess Transmission Table. It 1s a
message queue used to pass information with interprocess wakeuns.
It is currently allocated iIn tc_data between the APT and the DST.

M-process is a new term, from MPM process. 1t designates
the type of process Multics has traditionally supplied for each
user: cumbersome and expensive, but able to use all of the
features of the Multics environment. An M-process always has an
unshared address space, implemented with an unshared XST and
DSEG. It aiways has a distinct PDIR in which to store 1its many
per-process segments.

H-process is a new term, from hardcore-only process. 1t
designates a process which can reference only hardcore segments,
using a nmostly-shared address space,. Since even M-processes
already have identical address spaces for most ring zero

- 19 -

segments, and the system is coded to take advantage of this, the
H-process does not create any unusual programming restrictions.

An idle process is a fiction of traffic control. There 1is
one per CPU, and it is run whenever there is nothing useful for
that CPU to do. It is not supposed to take page faults because
that might cause It to become unrunnable. An idle process has an
unshared PDS and DSEG, and in the current implementation may be
considered an H-process.

