
Multics Technical Bulletin HTB-144 

To: Olstributlon 

From I Jerola c. Whltmore 

SubJect: Restructuring of the I/O Daemon Driver Software 

Date: December 12, 1974 

I. Motivation for the Restructuring 

During our work in proviaing some new features for the Air 
Force, we needed to create a new tvpe of device driver which 
woulc be controllea bv the I/O Coordinator. However, due to 
the current structure of the driver software, we found this 
task verv alfficult. Speclflcallv, it would be necessary to 
lntroauce a new operator response at IO Daemon initialization 
time and write new software to be executed for the remalnoer 
of the process. Limitations withln exlstlng modules, due to 
the assumptions about posslble aevlce types and how they would 
be controllEd, prevent their use in new drivers. 

It occurred to us that if we are having this trouble now, 
others will have the same proble~ ln the future as more 
devlces, which could be controlled by a device driver, are 
aaaea to the system. For example, the MIT/IPC effort to write 
a spooling tape dim with a command interface shows one attempt 
to aad a tape drlver wlthin the current structure. In the 
f~ture we may want to aad plotters, COM or other devices, 
which may be controlled by Queued reQuests. 

Therefore, now that we have a need for a new arlver tvpe, it 
will be easier to generalize the driver structure at this tlme 
rather than rewrite even more software in the future. This 
MTB adcresses this generalization with the following goals• 

1. Allow the easy addition of new driver software for new 
devices <or device classes» without recompiling existing 
software or changing the operator interface except for 
device specific functions. 

2. Separate the ~river control software 
functional modules for easy malnt~nance 

tailoring to new arlvers. 

into generic 
and sharing or 

3. Generallze the specifications of devices and device classes 
within lo_daemon_parms al lowing parameters to determine the 
control module which will be called. 

Multics proJect Internal worklng documentation. Not to be 
reproduced or distributed outsiae the Multics proJect. 

-1-



HTB-144 Multics Technical Bulletin 

II.Problems wlth the Current Oriv~r Software 

The statements made in the first paragraph were very general9 
so the followlng ls presented as further Justlflcatlon. The 
reader may wish to look at the source programs in 
bound_lodd_.s.archlve ln the tools library to clarify some of 
the specl f lcs. 

1. All modules of the driver software assume elther print or 
pJnch device spec1f 1cs throughout. Extensive checking of 
new "switches" would be reauired if this software were to 
b~ used for new devices. 

2. The format of a user reauest assumes printer or punch 
control functions which may not apply to other devices. 
(Only a smal I amount of aata ln the front of the structure 
ls shared by the IO Coordinator.> 

3, Current data areas in lodd_static assume that there will be 
no more than two logical devices per physical device (e.g.9 
the printer and punch of a mohawkt. Thls makes the 
aaaltlon of new multi-function devices more dlfflcult. 

4, Only the remote_ module knows how to find the two logical 
aevlces associated wlth a multi-function device using the 
.. remote_tab" (which also limits the logical devices to 
.. rJrt_name" and "pun_name"). Thls forces the single 
function ano multi-function device initialization 
algorithms to be completely different. The limitation of 
multi-function devices to remote_ ls also seen in 
i o_oa emon_par ms. 

5. The module lnput_cmd_9 which does 
processing, assumes that only 
soeclflc operator commands. 

general driver command 
remote_ could have device 

&. To share code between the print and punch reQuests for 
local ano remote arivers (and for historical reasons), the 
module output_reQuest_ carefully formats printer head and 
tall sheets for punch reQuests and writes them through the 
discard_outout_ aim. 

7. The module iodd_listen_, which dispatches a user reQuest 
<from the coordinator) to be processed by the driver, 
assumes that only one module knows how to handle the 
reQuest, no matter what device is to be used. 

In summary, the IO da~mon driver is structured as an output only 
driver ~hlch knows how to prlnt and punch wlth on site or remote 
<mohawk> devices. The dlm_name in io_daemon_parms allows some 
flexibility, but not enough for completely new functions with the 
existing software. """\ 



Multics Technical Bulletin MTB-144 

III.Proposed Changes 

At initialization time for any IO.SysOaemon the operator is 
asked whether the process is to be a "coordinator, driver, 
remote or carQs." This will be changed to allow only 
"coordinator or orlver", moving the distinction between remote 
and local drivers untll later in the process so we can use 
some common general procedures for assignment of cevlces and 
aevice classes. <"cards" aoes not have to run as 
IO.SysOaemon. The removal of the '"caras" optior. ls the 
sublect of another MTB.> 

The current ioaa_overseer_ will take on additional functions 
from io_aaemon_arlver_, remote_, and driver_lnit_, providing 
centralization of all initialization code and a uniform 
approach to searching the lod_device_tab. This is a necessary 
step since the "remote" response has been removed (above> and 
we must now determine the existence of multiple logical 
devices differently. 

To accomplish this, we will introduce the concepts of maJor 
ana minor aevlces to io_daemon_parms and to the 
lod_oevlce_tab. A '"maJor aevice" ls a generic name assoclatea 
wlth a physical device. A '"minor device" is a generic name of 
a logical device associated with a maJor device. There may be 
up to ten <10) minor devices per 11aJor device. <Ten ls an 
aroitrary number chosen to limit table size and still allow 
f lexlbl I ity.) 

Each ~aJor aevice corresponds to a physical piece of hardware 
attached to the process through a physical I/O or TTY channel. 
The per aevice attributes such as channel, dim, arlver module, 
device dial ld (for remote devices), and control terminal dial 
la <see HTB 129>, are associated with the mator device. Each 
mlnor device then has the device type ana default device class 
associated with it. 

Now, when the operator ls ask~d to give the "aevlce name and 
optional aevlce class," he wilt specify the maJor device na11e 
<assume no device class for the present>. The module 
load_overseer_ will then proceed by reQuesting the IO 
coordinator .to associate each of the ~lnor aevices which 
betong to the maJor device with the driver process. Separate 
orlver status segments will be created for each minor aevlce. 
The driver may now behave as separate logical drivers for each 
ml~or device at lts discretion. The driver may even ignore 
one or more of the minor aevices. This does not tie up 
resources unnecessarily since they are al I part of the same 
physical device and can only be attached to one process at a 
ti me. 

-3-



MTB-144 Multlcs Technlcal Bulletin 

There are two cases whlch can arise when the operator 
specifies the optional device class. First, when there ls 
only one minor device for the ma)or aevice (e.g., a printer 
connectea to the IOM> the specified device class will override 
the oefault device class aeflned ln lo_daemon_parms. There ls 
no amblgultv in the operator•s intent 1n this case. The 
second case occurs when there are multiple minor devlces for 
the maJor aevice. Currently, only the Gefault device class 
for each device may be used. Since we do not know to which 
minor device the optional device class should apply, we 
propose thot the operator oe asked lf the speclfied aevice 
class is to be associated with each minor device, in turn, 
giving the operator the ablllty to choose a oifferent device 
class or retain the aefault for each minor oevice. This 
approach is chosen to simplify the operator interface for the 
common situation Un fact, lt wll 1 not change at all> and 
still allow the operator to swltch the processing of any 
device class to any driver whlch can 'handle it, local or 
r£:mote. 

A new aata item wll I be adQed to io_daemon_parms, called 
"driver_module". This will oe associated with the maJor 
oevice an·a will define the progra11 to be caltea by 
loda_overseer_ after the initial driver-coordinator protocols 
are completed. By convention, there will be standard entry 
point names ln the arlver mooule for initlallzation, reauest 
processing, commana processing and condition handllng. Entry 
variables wil I be aoded to lodd_statlc so each of the common 
driver subroutines (e.g., ioda_llsten_ and lnput_c11d_) can 
have standaro calls to perform driver specific functions. 

New driver modules may need new data from io_daemon_parms. 
Therefore, to avoid modifylng several programs and data 
structures for each new driver, the method of specifying the 
maJor ano mlnor aevlce attributes in the io_aaemon_parms file 
needs to be generalized. Only those attributes which are 
needea curing the common lnltiallzatlon of all drivers will 
have keyworas ln the par~s flle. Those attributes which may 
be more aynamic, on a per driver module basis, wlll be 
described by a auoted string after the new keyword "args". 
This allows the aaaltion of new driver control moaules to be 
completely parameterlzed ••• no recompllatlon shoula be 
necessary. 

The format of the user reQuest aata structure which is stored 
in th~ message segment must also become more general. Thls 
wlll al low oevice options ano ar!ver options to be tailored to 
each drlver module rather than changing one include file and 
recoTipiting all modules which use lt <currently there are nlne 
cg> external procedures which reference dpr1nt_msg.incl.pl1). 
WE will establish a standard header structure which will 
define that part of the reQuest data which must be known by ~ 

-4-



Multics Technical Bulfetln 11TB-14i+ 

the coordinator as wel I as al I dr-ivers. The "prlnt_punch" 
var-iable will be changea to indicate the driver module which 
is expected to perform the request. Only the cirlver module 
and the command setting the value need to agree on the value 
(but it must be unique among driver moaules>. Each driver 
module will check to ensure that the request ls meant for that 
oartlcutar driver. Then the remainder of the request data can 
be interpreted on a per ariver module basis. The coorainator 
does not care how long the request ls; it only needs the 
time, pathname, delete switch and version of the reQuest 
heaoer. 

IV. Summary 

These prooosea changes proviae the structure needed to 
completely generalize the driver software. A new type of 
oevice driver can be aoded by writing a driver moaule which 
meets the conventions and knows how to control the device. 
Then the lo_aaemon_parms file can be edited by an 
aomlnistrator to incluae the new device, aevice class and 
other attribut~s. 

The operator Interface will not change for the new oriver 
except for new driver specific commands. Each driver can make 
use of the same overseer, which wi 11 handle al I initial 
ariver-coordinator protocol. Some of the ariver subroutines 
can be directly used by the new driver module without changes; 
others can be easily tailored to meet new requirements. 

These changes imply that almost every module of the current 
driver process will be either rewritten, restructured or 
removea. Driver moo~les for controlling the printer, punch 
and mohawk devices will have to be written. At installation 
time, all driver modules and lo_daemon_parms wil I have to be 
replacea since they will now be incompatible with older 
versions. 

-5-



MTB-144 Multics Technical Bulletin 

APPENDIX I ~ 

IO DAEMON PARMS KEYHORO LIST - ORDERED BY OCCURENCE 

1• PL/I style comments may appear anywhere ln the parms file 4 / 

There are two keywords which specify global values for the IO 
coordinator ano must appear at the beginning of the parms file& 

Time: 

Hax_oueues: 

Defines the time In minutes that each 
completed reQuest wil I be saved to allow for 
restarting. Normally, a delete option will 
not be completed until after this time has 
elapsed. 

Defines the maximum number of message segment 
Queues to be created or read for each Queue 
group defined. 

The next group of keywords are used to aef ine the devices which 
driver processes may use. The device data ls used oy the IO 
coorainator to build the "devlce_table". All device definitions 
must appear ah~ad of the device class def initlons. 

Device: 

driver_modute: 

args: 

channel: 

dev_dial_ld: 

Defines the name of 
<reQulred - 32 char max) 

a 

Defines the pathname or search name 
program which runs the 
<reoulred - 1&8 char ~ax) 

device 

of the 
device 

Defines an arbitrary character string for the 
driver module to decode which describes the 
malor device. (optional - 128 char max> 

Defines the IOM channel of the device for 
direct attachment by the process. This must 
be specif led if the dev_dlal_la keyword is 
omitted and must be omitted lf the 
aev_dlal_ld ls speclfiea. <8 char max) 

Defines the dial_ld to be used if the device 
ls to be dialed to the process over a tty 
channel. Immediate attachment to a hard 
wlred tty channel will be specified in the 
alal table lf aesired by the site. This 
keyword may not oe specified if the channel 
keyword is used. (8 char max) 

-6-



Multics Technical Bultetln MTB-144 

ctl_aial_idl 

ctl_device: 

mlnor_devlce: 

args: 

aefault_classl 

I ike I 

Defines the dial id 
control terminal to be 
Optional - if omitted, 
reQuired for 
(optional - 8 char max) 

to be used for the 
elated to the process. 
no control terminal is 

the driver. 

Defines the device name expectea for the 
attachment of the control terminal. Examples 
ctl1 for the message coordlnator, net103 for 
the arpa net, ttv142 for the ON355. This 
kevworo ls primarily includea for the message 
coordinator since there will be no check to 
ensure that this ls the actual channel 
assigned. (optional - 8 char max) 

Defines the name of a minor device associated 
with the last named ma)or aevice. If omlttea, 
the mlnor device name ls taken to be the same 
as that of the maJor device. 
(optional - 32 char max) 

After the minor device keyword, args defines 
another arbitrary character string used by 
the driver module to describe the minor 
device. There may be one args keyword oer 
minor device. If omlttea for any minor 
aevice, a null character string ls assumea. 
(optional • 118 char max> 

Defines the default devlce class to be used 
for this minor device. If omitted, the 
operator must specifv the aevlce class during 
initlallzatlon. (optional - 32 char max) 

This keyword ls used to reduce the amount of 
text in the parms file when there are several 
ma)or devices with similar attrlbutes. All 
missing attributes ln the specification of 
the maJor device, including minor device 
names, are taken from the maJor device name 
which ls the value of the kevwora. 
(optional - 32 char max) (Note: the ma)or 
aevlce named must have been previously 
specified If the flle.J 

The following keywords define the device 
coorcinator ano arlvers. The device 
follow the definitions of the devices 
parsing of the parms flle. 

classes used by the IO 
class def lnitions must 
to help simplify the 

-7-



MTB- ll+L+ 

Oevlce_classs 

d~vlce: 

driver _user la: 

a cc o un t l n g I 

Queue_group: 

mln_access_class: 

max_dccess_classl 

Multics Technical Bulletin 

Defines the name of a dynamlc aevice class. 
<reQuired - 32 char max) 

Defines a minor device ~hlch may process 
reouests of the last named Devlce_class. One 
or more instances of this key~ord must be 
associateo with a device class. The value ls 
of the form major.minor to distinguish 
between minor devices of the same name in 
alfferent maJor devices. If only one 
component ls specified as the value9 then 
ma)or.ma)or ls assumed. 
<reQuirea - &5 char max) 

Defines the only process group id which may 
be used to handle reouests in thls device 
class. If omitted, IO.SysOaemon is assumed. 
A personid of• ls allowed, but the proJectld 
must be specif led. (optional - 32 char max) 

oennes the pathname of the accounting 
procedure to be used for the driver. If 
oml tted, or if the v a tue of "syste11" is 
specified, the standard system accounting 
procedure w i t I be used. The accounting 
proceaure speclfle;:J llUSt be found during 
process initialization, or the drlver Ml I I 
abort. (optional - 108 char max) 

Defines the message segment Queues to be used 
for reouests ln this device class. If 
omltted, the oueue group will be taken to be 
the same as the device class. Example& 
printer means use the orinter_N.ms Queues. 
(optional - 32 char max) 

Defines the lowest access class reouest which 
a driver of this device class may process 
from the specified ~ueue group. If omitted, 
the svstem_Jow access ct ass wll I be assu~ed. 
The string must be acceptable to the 
convert_authorlzatlon_ subroutine. 
(optional) 

Defines the highest access class reauest 
which a driver of this device class may 
process from the specified aueue group. The 
access authorization of the driver must be 
eaual or greater than this value. The 
max_access_class must be eaual or greater 
than the mln_access_class according to the 
rules of the access isolation mechanism. If 

-8-

~ 



Multics Technical Butletln HTB-144 

mln_banner: 

Ena: 

omitted, the value of mln_access_class is 
assumed. The string .•ust be acceptable to 
th~ convert_authorization_ subroutine. 
(optional) 

Defines the lowest access class to be used ln 
marking the output generatea by a drlver 
process. If omlttea, the value of 
min_access_class is assumed. The string must 
be acceptable to the convert_authorlzatlon_ 
subroutine. (optional) 

This keyword has no value associated with it. 
It only serves to define the end of the parms 
flte. <reaulred) 


