Multics Technical Buttletin MT3-144

To: Distribution

From: Jeroid C. Whitmore

Subjlectt Restructuring of the I/0 Daemon Driver Software
Date: December 12, 1974

I. Mptivation for the Restructuring

During our WOrk in providing some new features for the Air
Forcey nwe needed to create a new type of device driver which
woula Dbe controltiea by the I/0 Coordinator. However, due to
the current structure of the driver software, we found this
task wvery difficult. Specificailyy It would be necessary to
Introgduce a new operator response at I0 Daemon initiatlzation
time and write new software to be executed for the remainaer
of the processe. Limitations within existing modules, due fto
the assumptions about possibile vevice types and how they would
be controllied, prevent their use in new drivers.

It occurred fto us that [f we are having this trouble now,
others will have the same problem in the future 3as more
devicesy, whlch «could be controtied by a devlce driver, are
acdaea to the system. For exampley the MIT/IPC effort to write
a spooling tape dim with a command interface shows one attempt
to 3dd a tape driver within the current structure. In the
tuture we may want to aud plottersy, COM or other devices,
which may be controlled by queued requests.

Therefore, now that we have a need for a new drjiver type, it
will be easier to generalize the driver structure at this time
rather than rewrite even more software in the future., This
MTB adaresses this generaltization with the following goalst

1. Allow the easy addition of new driver software for new
agvices (or device classes) wlthout recomplliing existing
software or changing the operator intertace except for
device speclflic functions.

2. Separate the driver control sof tware into generic
functional modules for easy maintenance and sharing or
talloring to new arivers.

3. Generalize the specifications of devices and device classes
within jo_daemon_parms allowing parameters to determine the
control module which will be called.

Multics prolect internal working documentation., Not to be
reproduced or distributed outside the Multics projlect,

-] -



MTB- 144 Multics Technical Buifetin

II.Probiems with the Current DOrivar Software

The statements made in the ftirst paragraph were very general,
so the tollowing is presented as further justificatlon. The
reader may Wish to ook at the source progranms in
bound_lodd_eSsarchjve In the tools llbrary to cliarlify some of
the specificse

1. Ail mocdules ot the driver software assume either print or
pdnch device specifics throughout. Extensive checking of
neWw “switches"™ would be required it this software were to
be used for new devices.

2. The format of s Jser request assumes printer or punch
controt functions which may not appiy to other devices.
{Oniy a small amount of cata in the front ot the structure
is shared by the I0 Coordinator,)

3. Current data areas In iodd_static assume that there will be
no more than two logical devices per physical device (€.Jey
the printer ana punch of a mohawk)e. This makes the

acuition of new multi-function devlices more difficult.

4, Only the remote_ module knows how to find the two logicatl
gevices associated with a multi=-function device using the
“remote_tab"™ (which also timits the logical devices to
“vrt_name" and “pun_name') . This forces the single
function ana multi=-function device initiatization
algorithms to be compietely different,. The limitation of
multi-function devices to remote_ |s atso seen in
io_cdaemon_parmse.

5« The mogule input_cmd_, which does general driver command
processings assumes that only remote_ could have device
speclfic operator commandse.

6. To share code betw2en the print and punch requests for

local and remote drivers (and for historical reasonsi, the
moadule output_request_ carefulily formats printer head and
tajil sheets for punch requests and writes them through the

discard_output_ aime.

7. The module lodd_listen_, which dispatches a user request
(from the coordinator) to De processed by the driver,
assumes that onty one modulie KNOWS how to handle the
requesty No matter what device Is to be used.

In summary, the IO daemon driver is structured as an output onty
driver which knows how to print and punch with on site or remote
(mohawk) devicCese The dim_name in lo_daemon_parms allows some
flexibpility, but not enough for complieteiy new tunctions with the
existing software. :



Multics Technical Builetin MTB=-144

IIT.Proposed Changes

At initialization time for any I0.SysDaemon the operator is
asked whether the process is to be a "coordinator, drilver,
remote or cards."” This wiili be changed to aliow only
“coordinator or ariver®, moving the distinction between remote
and local arivers until fater In the process so we can use
some caommon general procedures for assignment of cevices and
device classes. (“caras"™ does not have to run as
I10.SysDaemon. The removal of the ‘cards" optior I3 the
sublect of another MTB.)

YThe current ioga_overseer_ will take on additlonal functlons
from io_caemon_driver_, remote_y and driver_init_, providing
centralization of ail initialization <c¢code and a wuniform
approach to searching the lod_device_tab. Thlis is a necessary
step since the "remote" response has been removed (above) and
we must now determine the existence of multiple togical
devices differentliy.

To accomplish thisy we wit! Introduce the concepts of major
and minor devices to io_daemon_parms and to the
loa_cevice_tabe. A "majJor cevice® 1Is a generic name assoclated
with a physical device. A "minor device'" is a generic name of
a8 loglical device assoclated with a malJor device. There may be
Up to ten (10) minor devices per major device. (Ten is an
aroitrary number chosen to limlt table size and still allow
flexibliity.)

Each majlor aevice corresponds to a physical piece of hardware
attached to the process through a physicat I/0 or TTY channel.
The per aevice attributes such as channel, dimy, oriver module,
device dial id (for remote devices)y and control terminal dial
la (see MTB 129), are associated with the ma)or device. Each
minor device then has the device type anc defautlt device class
3ssociated with jt,

Nows when the operator is asked to glve the "“gevice name and

optionatl aevice classs"™ he will specify the ma)jor device name
(assume no device class for the oresent). The modulie
iood_overseer_ will then proceed by requesting the 10

coordinator to associate each of the minor devices which
belong to the major device with the driver process. Separate
griver status segments will be created for each minor devicee.
The driver may now behave as separate logical arivers for each
minor device at its discretion. The driver may even lgnore

one or more of the minor aevices. This does not tle up
resources unnecessarily since they are all part of the same
physical device and can only be attached to one process at a
time.



MTB~-144 Muitlcs Technlical Bulietin

There are two cases whith <can arise when the operator
specifies the optional device classe. First, when there is
only one minor device for the malor device (e.ges a printer
connected to the IOM) the specified device class nill overrijide
the default device class defined in [lo_daemon_parms. There [s
no ambiguity in the operator®s intent In this case,. The
secona case occurs when there are multipie minor devices for
the major uevice. Currently, onty the cefault device ciass
for each device may be used.s Since we do not know to which
minor device the optional device <class should apply, we
propose that the operator be asked if the specified aevice
class is to be associated with each minor device, in turn,
giving the operator the ability to choose a dglfferent device
ctass or retain the dadefault for each minor device. This
approach (s chosen to simplify the operator interface for the
common situation (ln fact, it wilil not <change at all) and
stili aliow the operator to switch the processing of any
device class to any driver which can ‘handle ity focal or
remote.

A new daata item witl be adaed to lo_daemon_parms, catled
“driver_moduie". This wltl be associated with the major
agevice anc will deflne the program to be calfed by
ioda_overseer_ after the Inltial driver~-coordinator protocols
are completed. By convention, there wlll be standard entry
polnt names in the ariver mocule for initiatization, request
Processing, commanag processing and condition handiing. Entry
variables will be aaded to lodd_static so each of the common
ariver subroutines (e.ges doda_lilsten_ and [nput_cmd_) can
have standard calls to perform driver specific functions.

New driver modules may need new data from Jo_daemon_parmse.
Therefore, to avoid modifying several programs and data
structures for each new drilver, the method ot speclfying the
majlor anc minor device attributes In the lo_caemon_parms fitle
needs to be generalized. Only those attributes which are
needed during the common Inltjiatization of all drivers wilil
have keyworas in the parms fiie. Those attributes which may
be more aynamic, on a per driver module basisy will be
described by a aguoted string after the new keyword “args™.
This altows the acaition of new driver controt moaules to be
completely parameterizedses«.no recompiltation shoula be
necessarye.

T he format of the user request cata structure which is stored
in the message segment must also become more generatl. This
wilt allow Gevice options ana ariver options to be tailored to
each driver module rather than changing one Include file and
reconplliing all modules which use It (currently there are nlne
(9) external procedures which reference dprint_msg.incl.pill.
We witt establish a standard header structure which will
define that part of the request data which must be known by



Mul

Iv.

tics Technlcail Bultetin MTB-144

the coordinator as well as all drivers. The “print_punch®
variabile wiltl be changed to indicate the driver module which
is expected to pertform the request. Only the driver module
and the command setting the value need to agree on the value
{but it must be wunique among driver moadules). Each drijver
module will check to ensure that the request is meant for that
particular driver. Then the remalinder of the request data can
be iInterpreted on a3 per arjver moduie basis. The cooralinator
dogs not care how iong the request is; it only needs the
time, pathname, delete switch and version of the request
heager.

Summary
These proposed changes provige the structure needed to
completely generalize the driver software. A new type of

gevice driver «c¢an be aoded by writing a driver mocuie which
meets the conventions and knows how to control the device.
T hen the lo_daemon_parms flle can be edlted by an
aaministrator to incluwge the new devicey, device <cltass and
other attributes.

The operator Interface wWill not change for the new driver
except for new driver specitic commands. Each driver can make
use of the same overseer, which wllli handlie atll initial
griver=-coordinator protocol. Some of the arlver subroutines
can be directly used by the new driver module without changes)
others can be easily tallored to meet new requirements.,

These changes imply that almost every module of the current
driver process will be elither rewritten, restructured or
removed. Driver mocules for controlling the printer, punch
and mohawk devices will have to be written. At installation
timey, all{ driver modules and lo_daemon_parms will have to be
replaced since they will now De incompatible with older
versions.



MTB- 144

Muiltics Technical Bulletin

APPENDIX I

I0 DAEMON PARMS KEYHWORD LIST - ORDERED BY QOCCURENCE

/* PL/] style comments may appear anywhere in the parms file */

There are two keywords which specify globali values for the I0

coordinator ana

Time:

Max_queues?

must appear at the beginning of the parms file?

Defines the time in minutes that each
completed request will be saved to allow for
restarting. Normally, a delete option will

not be completed untii after this time has
elapsed.,

Defines the maximum number of message segment
queues to be created or read for each queue
group defined.

The next group of keywords are used to deflne the aevices which

driver processes

may uJuSe. The device data is used oy the IO

coorginator to build the "“device_tabte™., All device definitions
must appear ahead of the agevice class definitions.

Device:

driver_module?

args?

channel:

dev_agial_ida:

Detines the name of a major device
(requlired = 32 char max)

Defines the pathname or search name of the
program which runs the device
(required - 168 char max)

Defines an arbitrary character string for the
darlver module to decode which describes the
major device. {optional - 128 char max)

Detines the IOM channel of the device for
glrect attachment by the process. This must
be speciftied if the dev_dial_la keyword is
omitted and mus t be omitted If the
dev_dial_id Is specifiea. (8 char max)

Defines the dial_ld to be used if the device
{s to be diated to the process over a3 tty
channel. Immediate attachment to a hard
wired tty channef will be specitjied In the
dgial table It gesired by the site. This
keyword may not be specified if the channel
keyword Is used. {8 char max}



Multics Technical Buifetin MTB=-144

ctl_dial_ids Deftines the diaf Ild to be wused ftor the
control terminal to be claled to the process.
Optional - if omittedy, no control terminat is
requireaq for the arjver.

(optionatl -~ 8 char max)

ctl _device? Detines the device name expected for the
attachment of the control terminat. Examplet
ctit for the message coordinator, neti03 for
the arpa nety ttyt14? for the 0ON3S55. This
keyworc ls primarliy includea for the message
coordinator since there will be no check to
ensure that this 1Is the actual channel
assigneds (optional - 8 char max)

minor_devices Defines the name of a minor device associated
with the last nameo malor qgevice. If omitteag,
the minor device name is taken to be the same
as that of the major device,
(optionat - 32 char max)

args: After the minor device keyword, args defines
another arbltftrary character string used by
the driver module to describe the minor

device. There may be one args keyword per
minor device. It omitted for any minor
devicey a null character string is assumede.

{optionail -~ 188 char max)

detault_class! Defines the defauit device class to be used
for thils minor device. If omitteds, the
operator must specity the gevice cltass during
initialization. (optionat - 32 char max)

}ike! This keyword lIs used to reduce the amount of
text in the parms filte when there are several
major devices wilth simitar attributes. All
missing attributes In the specification of
the major device, including minor device
namesy are taken from the malor device name

which is the vatlue of the Keywords
{optional - 32 char max) {Notet the major
gevice named must have been previously

specified if the file.l

The following keywords define the devlce classes used by the I0
coorcinator - ang drijivers. The device <class definitions must
follow the definitions of the devices to help simplify the
parsing of the parms fjile.



MTB= 144

Device_class?

devlce?

driver_userias

accounting?

qQueue_group?

min_access_class:

max_access_class?

Multics Technicai Bulletin

Defines the name of a daynamic device class.
(required -~ 32 char max}

Defines a minor daevice which may process
requests of the last named Device_classs. One
or more instances of this keyword must be
associateo with a device ciass. The value s
of the form major.minor to distinguish
between minor devices of the same name in

agifferent major devices. If only one
component is specified as the value, then
major.major is assumed.

{(requirea - 6% char max)

Defines the only process group id which may
be wused to handle requests in this device
classe If omitted, IO0.SysDaemon is assumed.
A personid of * |s aliowed, but the projectid
must be specifiede. {optionat - 32 char max)

Defines the pathname of the accounting
procedure to be wused for the driver. If
omittedy or it the value of "systea™ |Is
specitied, the standard system accounting
procedure will be wused. The accounting
procedure specifled must be found d4auring
process initialization, or the driver wilil
abort. (optional - 168 char max)

Defines the message segment gqueues to be used

for requests in this devlce cilass. It
omittedy the queue group will be taken to be
the same as the device <class. Examplet

printer means use the oprinter_N.ms queues.
(optional - 32 char max)

Defines the lowest access cliass request which
a driver of thls device class may process
from the specified gqueue group. It omitted,

the system_low access class wlil be assumed,
The string must be acceptable to the
convert_authorization_ subroutine.

{optional)

Detines the highest access c¢lass request
which a driver of thlis device class may
process trom the specified aqueue groupe. The
access authorization of the driver must be
equal or greater than this value. The
max_access_ciliass must be equal or greater
than the min_access_class according to the
rutes of the access lsolation mechanisme If

-8~



Multics Technical

min_banner?

End:

Bulletin MTB=-144

omitted, the value of min_access_ctltass Iis
assumeds The string must be acceptable to
the convert_authorization_ subroutine.
{optional)

Defines the lowest access class to be used in
marking the output generated by a drilver
processSe It omittea, the value of
min_access_class is assumeds. The string must
be acceptabie to the convert_authorization
subroutine. {optlonal)}

This keyword has no value associated with |t,
It ontly serves to define the end of the parms
fiie. (requlred)



